

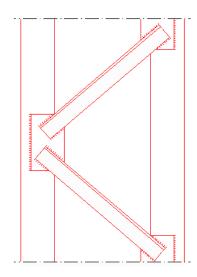
Обозн.проект. Тест всех модулей

РФ, Москва

Дата 24.03.2021

Комплекс СТАТИКА 2021.010

Позиция Проект


Стр.

t470 СТАТИКА 2021

Pos. t470

Сквозная колонна

470 - Сквозная колонна

Программа предназначена для конструирования стальной сквозной двухветвевой колонны согласно следующим нормам:

СП 16.13330.2017 «Стальные конструкции»,

СП 53-102-2004 «Общие правила проектирования стальных конструкций»,

СНиП II-23-81* «Стальные конструкции».

Программа производит подбор сечения ветвей колонны и соединительных элементов.

В программе проводятся следующие проверки: 1) проверка прочности колонны по напряжениям, 2) проверка устойчивости колонны, 3) проверка прочности поясных швов ветвей, 4) проверка устойчивости ветвей, 5) проверка устойчивости стенок и полок ветвей, 6) проверка прочности планок по напряжениям, 7) проверка прочности сварного соединения планок с полками ветвей, 8) проверка устойчивости раскосов, 9) проверка прочности сварного соединения раскосов с полками ветвей или с узловыми фасонками, 10) проверка прочности сварного соединения фасонок с полками ветвей.

Наряду с подбором конструкции, предусмотрена проверка прочности и устойчивости заданной конструкции сквозной колонны.

Обозн.г	проект. Тест всех мод	улей	Стр.	
РФ, Мо	сква		Позиция	t470
Лата	24.03.2021	Комплекс СТАТИКА 2021.010	Проект	СТАТИКА 2021

Расчетная схема

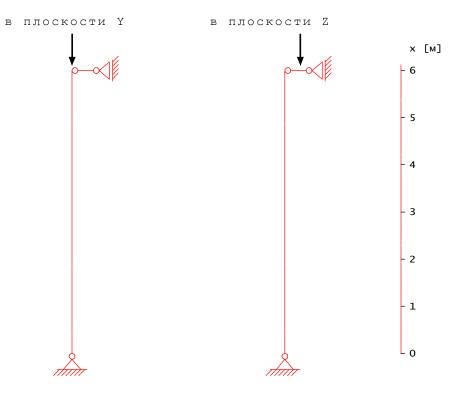
Длина колонны

 $1_{c} = 6.00$

M

Закрепления

	В плоскости У	В плоскости Z
Вверху	шарнирное	шарнирное
Внизу	шарнирное	шарнирное


Нагрузки

№ Вид нагрузки γ_f Группа Знак 1 Постоянная 1.10

Вертикальные силы

Нагрузка 1

Расчет

Согласно СП 16.13330.2017

Сталь C 375 $\gamma_{\rm c} = 1.000$ -

Расчетные сопротивления $R_{\text{Y}}=365$ МПа $R_{\text{S}}=212$ МПа

Сечение ветви

Швеллер 24П

FOCT 8240-97

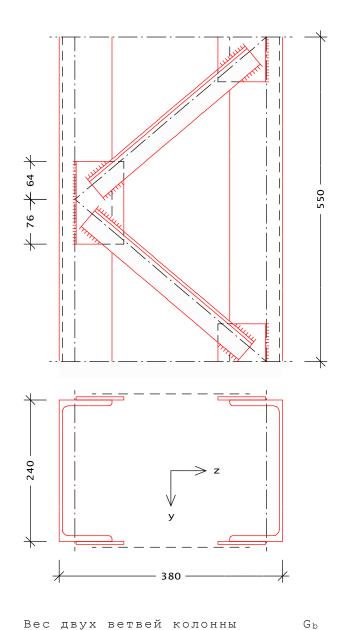
Размеры швеллера

h	b	t _w	t _f
[MM]	[MM]	[MM]	[MM]
240	9.0	5 6	100

Расстояние от наружной грани стенки швеллера до центра тяжести $z_0=27.2$ мм Высота сечения колонны $h_c=380$ мм Расстояние между полками $a_f=200$ мм Расстояние между осями ветвей $a_b=325.6$

Обозн.проект. **Тест всех модулей**РФ, Москва

Дата **24.03.2021**Комплекс СТАТИКА **2021.010**Стр.


Позиция **t470**Проект СТАТИКА_2021

Решетка

Соединительные элементы Уголок равнополочный 40х5	раскосы из уголка гост 8509-93
Длина раскосов 1р	= 350 мм
•	= 550.0 мм
Число раскосов одной грани n	= 20 -
	= 5.50 м
Угол между осью ветви и осью рас	коса
α	= 49.8 град
Коэффициент условий работы раско	
γ α	p = 0.750 -
Примечание. Раскосы центрируютс	я на оси ветвей
Для прикрепления раскосов примен	яются фасонки.
Ширина фасонок bф	= 81 мм
Высота фасонок $h_{\dot{\Phi}}$	= 140 мм
Толщина фасонок tф	= 5 мм
Расстояние от наружной грани вет	ви до края фасонки
аф	= 29 MM
Расстояние от узла до верхнего к	рая фасонки
аф	$_{0}$ = 64 MM
Катет сварных швов на обушке $k_{ m f}$	о = 6 мм
на пере $k_{ m f}$	
na nopo ni	
Зазор между сварными швами смежн	ых раскосов
a _c	= 10.2 мм
Фасонки прикрепляются к полкам в	
Катет сварных швов фасонок $k_{ m f}$	$_{\Phi}$ = 5 MM

Обозн. проект. Тест всех модулей Стр. t470 РФ, Москва Позиция Комплекс СТАТИКА 2021.010 24.03.2021 СТАТИКА_2021 Дата Проект

Характеристики сечения раскосов

Общий вес конструкции 3.41 3.79 см2 Площадь A_p Ιp Минимальный момент инерции 2.30 см4 Расстояние от наружной грани полки до центра тяжести 11.7 ММ Zop

2.83

кН

кН

Характеристики сечения ветви

Αb	Ιı	Ι2	W ₁	W 2
[cm2]	[см4]	[CM4]	[см3]	[cm3]
30.64	2915	2 4 8	242.9	39.5

Характеристики сечения колонны

А	Ιy	Ιz	Wy	W_z
[cm2]	[CM 4]	[см4]	[см3]	[cm3]
61.28	16738	5830	880.9	485.8

Жесткость сечения

34.48 в плоскости Z ΕΙy МНм2 = 12.01 в плоскости У ΕΙz МНм2

Обозн.п	роект. Тест всех моду	лей	Стр.	
РФ, Мос	сква		Позиция	t470
Дата	24.03.2021	Комплекс СТАТИКА 2021.010	Проект	СТАТИКА 2021

Уси	илия	
ОТ	нагрузки	1

X	N	Му	Μz	Qу	Qz
[M]	[ĸ H]	[кНм]	[кНм]	[ĸH]	[K H]
6.00	1000.00	100.00	0.00	0.00	-16.67
5.00	1000.00	83.33	0.00	0.00	-16.67
4.00	1000.00	66.67	0.00	0.00	-16.67
3.00	1000.00	50.00	0.00	0.00	-16.67
2.00	1000.00	33.33	0.00	0.00	-16.67
1.00	1000.00	16.67	0.00	0.00	-16.67
0.00	1000.00	0.00	0.00	0.00	-16.67

Проверка прочности колонны по напряжениям σ и τ

напря-	Комби-	X	N	Му	Μz	Qу	Q z
жение	нация	[M]	[ĸH]	[кНм]	[кНм]	[ĸH]	[KH]
σ	1	6.00	1100.0	110.0	0.0	0.0	-18.3
τ	1	0.00	1100.0	0.0	0.0	0.0	-18.3
			σ / Ryγc τ / Rsγc		365.0		3 4 <= 1 2 3 <= 1

Проверка устойчивости колонны в плоскостях Z и Y

Расчетные усилия	Плос-	Комби-	Х	N	Му	Μz
	кость	нация	[M]	[ĸH]	[кНм]	[кНм]
	Z	1	6.00	1100.0	110.0	
	Y	1	0.00	1100.0		0.0

Pδ	асчетные	длины
И	гибкость	колонны

Плос-	l _{e f}	Гибкость λ	Предельная
КОСТЬ	[м]		гибкость
Z	6.91	41.8	123.0
Y	6.00	61.5	139.3

Гибкость в плоскости Z определена по формуле (15) $\alpha = 26.55 - \lambda_{\rm Y} = 36.3 -$

В плоскости Z N / ϕ_e AR $_y$ γ_c = 0.950 <= 1 В плоскости Y N / ϕ_e AR $_y$ γ_c = 0.679 <= 1

Коэффициенты

Плоск.	m	η	m _{e f}	Фе	φ
Z	0.685			0.518	
Y					0.725

Примечание. Коэффициент m для nл. Z определяется no формуле (123) npu a = 187 mm

Проверка устойчивости ветви в плоскости 🛽

Расчетные усилия	Комби-	X	N	Му
	нация	[M]	[ĸH]	[кНм]
	1	6.00	1100.0	110.0

Расчетная длина и гибкость ветви

l _{e f}	Гибкость λ	Предельная
[M]		гибкость
0.550	19.3	64.1

Примечание. Расчетная длина принята равной $1_{\mathtt{b}}$.

Продольная сила в ветви $N_b = N \ / \ 2 \ + \ |M_y| \ / \ a_b = 887.8$ кН $\text{Условие} \ (7) \qquad \qquad N_b \ / \ \phi A_b \, R_y \, \gamma_c = 0.856 \ <= 1$

	Обозн.г	проект. Тест всех м	одулей	Стр.	
	РФ, Мо	сква		Позиция	t470
ÞΤ	Дата	24.03.2021	Комплекс СТАТИКА 2021.010	Проект	СТАТИКА_2021
			φ	=	0.927 -

Проверка устойчивости стенки ветви

Расчетная высота стенки $h_{ef}=199.0$ мм $\lambda_w=h_{ef}/t_w$ * $(R_y/E)^{1/2}$ - условная гибкость стенки λ_{uw} определяется по таблице 9 при $\lambda=2.589$ $\lambda_w/\lambda_{uw}=1.50$ / 1.52=0.985 <= 1

Проверка устойчивости полок ветви

Расчетная ширина свеса полки $b_{ef}=73.9$ мм $\lambda_f=b_{ef}/t_f$ * $(R_y/E)^{1/2}$ — условная гибкость свеса $\lambda_f/\lambda_{uf}=0.31$ / 0.64=0.488<=1

Проверка устойчивости раскосов

Расчетные усилия	Комби-	X	N	Qz
	нация	[м]	[кН]	[кН]
	1	0.00	1100.0	-18.3
Расчетная длина	l _{e f}	Гибко	сть λ	Предельная
и гибкость раскосов	[M]			гибкость
	0.315		40.4	180.0
	Условная	и поперечная си	ла в колонне	
	Поперечн	ная сила, вос Q _p = max(Q _{fic}	-	одним раскосом = 9.2 кН
Усилие в раскосе		$N_p = Q_p / \sin \alpha +$	${\tt Ncos^2}\alpha{\tt Ap}/{\tt A}$	= 40.3 KH
	Условие	(7) N _p	/ $\phi_p A_p R_y \gamma_{cp}$	= 0.448 <= 1
			$\phi \mathtt{p}$	= 0.868 -

Проверка прочности сварного соединения раскосов с ϕ асонками

Вид сварки		p	учная о	сварка
Расчетные сопротивления	R_{wf}	=	200.0	МΠа
	R _{w z}	=	229.5	МΠа
Коэффициенты для расчета швов	βf	=	0.70	_
	βz	=	1.00	-
Расчетные усилия в сварных шва	ах			
на обушке	N _o	=	28.5	кН
на пере	N _n	=	11.8	кН
D				
Расчетные длины сварных швов	_			
на обушке	\perp_{w} \circ	=	40.1	MM
на пере	l _{w n}	=	40.3	MM
$\tau_{fo} / R_{wf} \gamma_{c} = 169.2 / 3$	200 0	_	0 844	5 <= 1
the contract of the contract o				5 <= 1
$\tau_{zo} / R_{wz} \gamma_c = 118.5 / 3$	229.5	=	0.516) <= T

Обозн.г	проект. Тест всех мод	улей	Стр.	
РФ, Мо	сква		Позиция	t470
Дата	24.03.2021	Комплекс СТАТИКА 2021.010	Проект	СТАТИКА 2021

```
\tau_{fn} / R_{wf}\gamma_{c} = 83.7 / 200.0 = 0.419 <= 1 
 \tau_{zn} / R_{wz}\gamma_{c} = 58.6 / 229.5 = 0.255 <= 1
```

Проверка прочности сварного соединения фасонок с полками ветвей

```
Расчетное усилие, действующее в одном шве фасонки F = N_{p}\cos\alpha = 26.0 \text{ кH} Расчетная длина шва l_{w} = 130.0 \text{ мм} \tau_{f} / R_{wf}\gamma_{c} = 57.2 / 200.0 = 0.286 <= 1 \tau_{z} / R_{wz}\gamma_{c} = 40.0 / 229.5 = 0.174 <= 1
```

Несущая способность колонны обеспечена

Расчет выполнен модулем t470 программы СТАТИКА 2021 © 000 Техсофт