

Pos. t425

Обозн. проект. Тест всех модулей

РФ, Москва

Комплекс СТАТИКА 2021.010 24.03.2021 Дата

Каменные конструкции

Проект

Стр.

Позиция

СТАТИКА_2021

t425

СМ

25.0

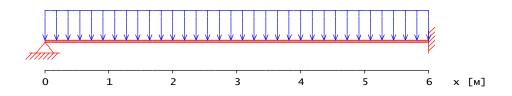
	1 3				
Вид расчета	Расчет кладки на смятие				
Расчетный случай	Смятие стены при опирании кол на распределительную плиту че			іадку	
	Толщина стены	h	=	60.0	СМ
	Расстояние между осями балок	b	=	150.0	СМ
	Длина балки Жесткость балки	l EI	=	6.00 10.000	м МНм2
	Закрепление другого конца ба:	пки		защемл	пение
Распределенные нагрузки на балку		q кН/м] 50.00			
	Материал распределительной п Класс бетона	питы		железоб	бетон В20
	Класс арматуры Длина плиты	1 p	_	50.0	A240 CM
	длина плиты Ширина плиты	b _p	=	40.0	CM
	_				

Начальный модуль упругости Еb 27.5 ГΠа Длина прокладки l_n 20.0 СМ Ширина прокладки 15.0 СМ

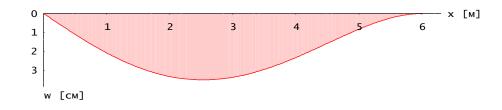
hp

Согласно СП 15.13330.2012 с Изменениями № 1,2,3 Расчет

> Марка кирпича 150 Марка раствора 75

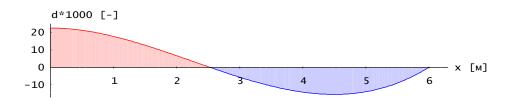

Высота плиты

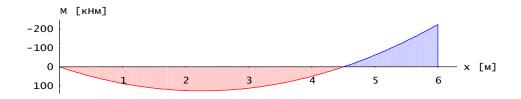
Расчетное сопротивление R принимается по таблице 2 2.000

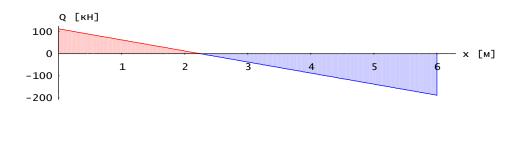

= 1000 Упругая характеристика

Определение усилия в опорном сечении балки

Нагружение балки


Прогиб балки




Поворот сечения

Изгибающий момент

Поперечная сила

Проверка прочности при смятии согласно Пособию к СНиП II-22-81, 4.18

Опорная реакция

Модуль	упругости	плиты	$E_p = 0$.	$85E_{b} =$	23.38	ГΠа
Модуль	упругости	кладки	E = 0.	$5\alpha Ru =$	2.00	ГΠа
Времен	ное сопроти	ивление	кладки	$R_u =$	4.00	МΠа

Qο

= 112.5

кН

Высота пояса кладки, эквивалентного по жесткости распределительной плите

 $H_0 = 2 (E_p I_p / Ed)^{1/3} = 2 (E_p h_p^3 / 12E)^{1/3} = 49.56$ cm

Обозн.проект. Тест всех модулей

РФ, Москва Дата **24.03.2021**

Комплекс СТАТИКА 2021.010

Позиция Проект

Стр.

СТАТИКА_2021

t425

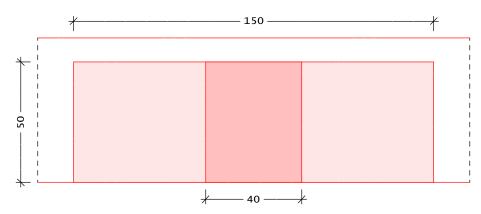
\$20 \$20 \$50 \$50 \$60

Фиксирующая прокладка размещается по центральным осям распределительной плиты

Давление на распределительную плиту под прокладкой принимается равномерным

Распределение напряжений под плитой вдоль оси балки по таблице 6

Схема	a	b	d	σmax	Ψ1
табл.6	[CM]	[CM]	[CM]	[МПа]	[-]
8	25.00	20.00	40.00	0.608	0.925


$$a = l_p / 2$$
, $b = l_n$, $d = b_p$

Распределение напряжений под плитой вдоль оси стены по таблице 6

Схема	a	b	d	σmax	ψ2
табл.6	[CM]	[CM]	[CM]	[МПа]	[-]
8	20.00	15.00	50.00	0.593	0.948

$$a = b_p/2$$
, $b = b_n$, $d = l_p$

Площадь смятия A_{C} и расчетная площадь A

Обозн.	проект. Тест всех м	Стр.		
РФ, Мо	осква		Позиция	t425
Дата	24.03.2021	Комплекс СТАТИКА 2021.010	Проект	СТАТИКА 2021

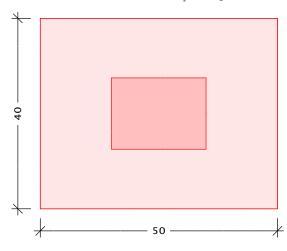
Данные для расчета на смятие

Αc	А	ξ	ξ1	Ψ	d	Rc
[cm2]	[см2]	[-]	[-]	[-]	[-]	[МПа]
2000.0	7500.0	1.554	2.00	0.877	1.062	3.107

 $\psi = \psi_1 \, \psi_2$ - коэффициент полноты эпюры давления

Условие прочности $Q_0 / (\psi dR_c A_c) = 0.194 <= 1$

Прочность кладки обеспечена


Проверка допустимости напряжений под плитой согласно Пособию, 4.22

Условие (28)
$$\sigma_{\text{max}}/(0.8\xi\,R_{\text{u}}) = 0.608/(0.8 * 1.554 * 4.00) = 0.122 <= 1$$

Расчет на смятие распределительной плиты согласно СП 63.13330.2018

Расчетные сопротивления	Rb	= 11.50	МΠа
	Rs	= 210	МΠа
Размеры площади смятия	C _X	= 20.0	CM
	СУ	= 15.0	CM

Площадь смятия $c_x c_y$ и расчетная площадь A_b , max

Условие прочности (8.80) $Q_0 / N_b = 0.158 <= 1$

По расчету на смятие арматура не требуется

Расчет выполнен модулем t425 программы СТАТИКА 2021 © 000 Техсофт