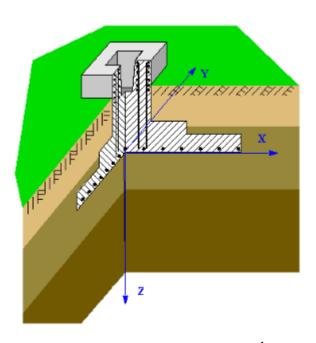
11.03.2021 Дата

РФ, Москва

Комплекс СТАТИКА 2021.010


Позиция Проект

Стр.

СТАТИКА 2021

t537

t537 - Несимметричный столбчатый фундамент

Программа предназначена для проектирования отдельного фундамента под стальную или железобетонную колонну согласно следующим нормам:

СП 63.13330.2018, СП 22.13330.2011, СП 52-101-2003, СНиП 2.03.01-84*, СНБ 5.03.01-02, СП 43.13330.2012, СНиП 2.02.01-83*, СП 50-101-2004, СП 22.13330.2011.

Предусмотрено два типа сопряжения железобетонной колонны с фундаментом: монолитное и заделка колонны в стакан, стальная колонна считается опирающейся на стальную плиту. Стакан или подколонник могут быть расположены произвольным образом по отношению к плите, с привязкой к ее сторонам или центру. Производится расчет несущей способности и осадки основания под фундаментом. Для железобетонного фундамента производится расчет арматуры фундаментной плиты, продольной арматуры стакана или подколонника, поперечной арматуры стакана, расчет фундаментных болтов. В режиме проектирования подбираются размеры ступенчатой фундаментной плиты, арматура плиты и стакана и косвенная арматура, препятствующая смятию дна стакана..

Расчётные сочетания нагрузок от колонны (продольная и поперечные силы и моменты) определяются в соответствии с СП 20.13330.2016.

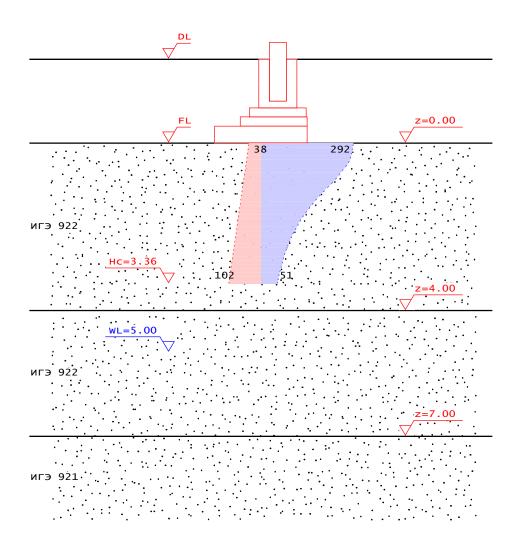
Дата

РФ, Москва

11.03.2021 Комплекс СТАТИКА 2021.010

Позиция Проект

Стр.


СТАТИКА_2021

t537

Данные для расчета

M = 1 : 90

Схема расположения слоев грунта

Грунт

N	Слой	Тип грунта в слое	
1	ИГЭ 922	Песок средней крупности	
2	ИГЭ 922	Песок средней крупности	
3	ИГЭ 921	Крупный песок	

Нормативные значения характеристик по слоям.

	тип	Z	g	E	fi	c/Rc	е	ΙL
		[м][$\kappa H/m^3$]	[MПa]	[град]	[кПа]	[%]	
ИГЭ	922	0.00	19.0	45.0	39.0	2.0 4	10.0	
СЛИ	922	4.00	19.0	45.0	39.0	2.0 4	10.0	
ИГЭ	921	7.00	18.0	30.0	38.0	2.0 4	10.0	

Обозн.проект. Тест всех модулей

РФ, Москва Позиция **t537** Дата **11.03.2021** Комплекс СТАТИКА **2021.010** Проект **СТАТИКА_2021**

Размеры

Объект	размеры по Х	и по Ү	высота/глубина h/dc
	[CM]	[CM]	[CM]
плита	200.0	200.0	40.0
подколо	нник 90.0	90.0	160.0
колонна	40.0	40.0	100.0
Высота	фундамента от	подошвы	200.0 CM

Стр.

Нагрузки

N	Нагрузка.	N	М×	Му	Qх	QУ
		[ĸ H]	[кН*м]	[кН*м]	[ĸH]	[KH]
1	Постоянная	1000.0	0.0	0.0	0.0	0.0
2	Кратковрем.	200.0	0.0	0.0	0.0	0.0

<u>РСУ</u>

Усилия и моменты

расчетные сочетания усилий по СП 20.13330.2016 для опасных РСУ на высоте H от подошвы фундамента.

N	Тип	табл.	N	М×	МУ	Qx	QУ
	РСУ	коэф.	[ĸH]	[кН*м]	[кН*м]	[ĸH]	[KH]
1	тр.кр.	. 1	1200.0	0.0	0.0	0.0	0.0
2	основ.	. 2	1340.0	0.0	0.0	0.0	0.0
3	основ.	. 3	1140.0	0.0	0.0	0.0	0.0

Наиболее опасные сочетания усилий

Наг-		Коэ	ффици	иенты	РСУ	Наг-	Ко	эффиц	иенты	РСУ
руж.		1	2	3	4	руж.	1	2	3	4
1	1	00 1	1.0	n an		2 1	1 00	1 20	1 20	

Результаты расчета

геометрических характеристик фундамента.

размеры по Х	и по Ү	высота h
[cm]	[cm]	[cm]
220.0	220.0	40.0
178.0	178.0	22.0
134.0	134.0	22.0
ник 90.0	90.0	116.0
	[cm] 220.0 178.0 134.0	220.0 220.0 178.0 178.0 134.0 134.0

Обозн.проект. Тест всех модулей

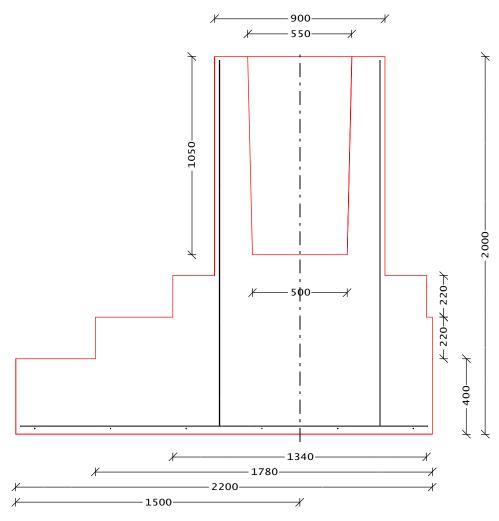
РФ, Москва

Дата

11.03.2021

Комплекс СТАТИКА 2021.010

Позиция Проект


Стр.

t537 СТАТИКА_2021

Схема фундамента

вид сбоку

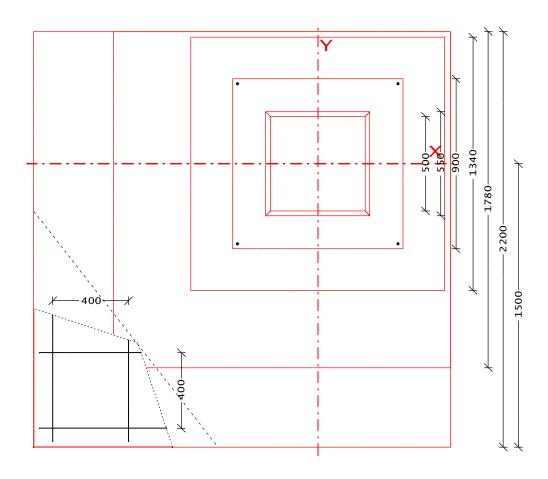
M = 1 : 20

Обозн.проект. Тест всех модулей

РФ, Москва

Дата 11.03.2021

Комплекс СТАТИКА 2021.010


Позиция Проект

Стр.

СТАТИКА 2021

t537

Схема фундамента М = 1 :20 вид сверху

Расчет основания

по СП 22.13330.2016

Расчет по деформациям

Схема линейно деформируемого полупространства. Наибольшая осадка достигается при РСУ № 1. Depth of compressible layer Hc = 3.36р=291.6 кПа Среднее давление под подошвой $e_x = 0.34$ Эксцентриситеты равнодействующей M $e_y = 0.34$ M ру=559.7 кПа Краевое давление вдоль оси у Краевое давление вдоль оси х $p_x = 559.7$ кПа р_{жу}=883.9 кПа Давление в угловой точке Расчетн. сопротивление грунта по 5.6.7 R=893.2 кПа Сопротивление грунта с учетом 5.6.24 R=1071.8 кПа s = 0.8 $c_M < s_u = 10.0$ Осадка фундамента Наибольший крен достигается при РСУ \mathbb{N} 1, i=0.0036 < $i_u=0.0050$ Крен фундамента Наибольший отрыв подошвы фундамента от основания достигается при РСУ №1 и составляет 13% её площади

Расчет по несущей способности Наиболее опасным по устойчивости является РСУ № 2. Макс. глубина поверхности скольжения $z_m = 2.79$ M Коэф. надежн. по назначению сооруж. $\gamma_{n} = 1.15$ Опасное направление по оси Y, эксц. $e_y = 0.34$ Μ b'=1.53 Приведенная ширина фундамента M Сила предельного сопротивления грунта $N_u = 9368$ кН N = 1340УСЛОВИЕ ВЫПОЛНЕНО $< \gamma_c N_u / \gamma_n = 9776$

Обозн. проект. Тест всех модулей

РФ, Москва 11.03.2021 Дата

Комплекс СТАТИКА 2021.010

Позиция Проект

Стр.

t537 **СТАТИКА 2021**

Продавливание.

Расчет на продавливание по СП 63.13330.2018.

Бетон В 25 (тяжелый)

Плита	ось	РСУ	h 0	Lχ	Lу	η
			[cm]	[cm]	[cm]	·
1		2	36.1	0.0	0.00	0.94
2		2	58.1	0.0	0.00	0.94
3	Y	2	80.1	200.1	200.05	0.98

Расчет арматуры

по СП 63.13330.2018 с использованием трехлинейной диаграммы состояния сжатого бетона.

Арматура плиты Нижняя арматура

Сталь А500									
Ось	Коорд.	РСУ	Мизг	h ₀	As	d	n		
прутка	[м]		[кН*м]	[CM]	[CM ²]	[MM]			
X	0.00	3	0.0	35.7	0.0	12	6		
X	0.00	3	0.0	57.7	0.0				
X	0.00	3	0.0	79.7	0.0				
Y	0.00	3	0.0	36.9	0.0	12	6		
Y	0.00	3	0.0	58.9	0.0				
Y	0.00	3	0.0	80.9	0.0				
					3.7				

Нижние прутки ориентированы по оси Ү.

Верхняя арматура

и про	вері	ка пл	иты	на	действие	обратн	ОГО	$M \cap M \in$	ента.
Плита	a.	РСУ	Миз	г	R _{b t} * W _{p l}	As	n	d	S
	Ось		[кН*	м]	[кН*м]	[CM ²]		[MM]	[MM]
1	Y	2	0.	18	85.54				
1	X	2	Ω	1.8	85 54				

Продольная арматура подколонника: сталь А500

Наиболее опасное РСУ №3 . 4 прутка диаметром $12 \, \mathrm{Mm}$, расположенные по углам.

Трещиностойкость

Предельно допустимая ширина раскрытия трещин принимается по СП 63.13330.2018 из условия обеспечения сохранности арматуры acrc1=0.4мм acrc2=0.3мм

Плита

Ось	Коорд.	РСУ		Мизг2	Мизг1	Mcrc	acrc2	acrc1
	[м]	2	1	[кН*м]	[кН*м]	[кН*м]	[MM]	[MM]
X	-0.89	1	1	11.2	11.2	155.1	0.00	0.00
X	-0.67	1	1	34.5	34.5	353.9	0.00	0.00
X	-0.45	1	1	77.0	77.0	606.8	0.00	0.00
Y	0.89	1	1	11.2	11.2	155.5	0.00	0.00
Y	0.67	1	1	34.5	34.5	354.4	0.00	0.00
Y	0.45	1	1	77.0	77.0	607.3	0.00	0.00

Расчет выполнен модулем t537 программы CTATИКА 2021 © 000 Техсофт