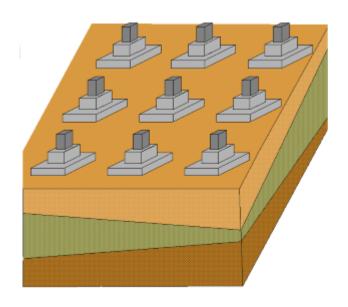
улеи

Стр.

Позиция

t536


Дата 11.03.2021

РФ, Москва

Комплекс СТАТИКА 2021.010

Проект СТАТИКА_2021

536 – Поле столбчатых фундаментов под колонны

Программа предназначена для проектирования поля столбчатых фундаментов под стальные или железобетонные колонны согласно следующим нормам:

СП 63.13330.2012, СП 52-101-2003, СНиП 2.03.01-84*, СНБ 5.03.01-02, СП 43.13330.2012, СНиП 2.02.01-83*, СП 50-101-2004, СП 22.13330.2011, СП 20.13330.2011.

Предусмотрено два типа сопряжения колонн с фундаментами: монолитное и заделка колонн в стаканы. Производится расчет несущей способности и осадки основания под фундаментами. Для железобетонных фундаментов производится расчет арматуры фундаментных плит, продольной арматуры стаканов или подколонников, поперечной арматуры стаканов, расчет фундаментных болтов. В режиме проектирования подбираются размеры ступенчатой фундаментной плиты, арматура плиты и стакана. Возможно раздельное проектирование отдельных фундаментов или групп фундаментов, или единое проектирование для всех.

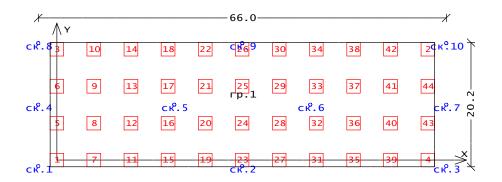
Расположение слоёв под каждым фундаментом определяется путём интерполяции данных о расположении их в скважинах. Взаимодействие фундаментов учитывается методом угловых точек.

РФ, Москва

Дата 11.03.2021

Комплекс СТАТИКА 2021.010

Позиция Проект


Стр.

СТАТИКА_2021

t536

Данные для расчета

План площадки М = 1 :610

Колонны: положение и нумерация

$N_{\bar{0}}$	Nº	X	У	угол	Nº	Nº	X	У	угол
кол.	грп.	[м]	[M]	грд.	кол	.грп.	[м]	[м]	грд.
1	1	0.0	0.0	0.0	2	1	60.0	18.0	0.0
3	1	0.0	18.0	0.0	4	1	60.0	0.0	0.0
5	1	0.0	6.0	0.0	6	1	0.0	12.0	0.0
7	1	6.0	0.0	0.0	8	1	6.0	6.0	0.0
9	1	6.0	12.0	0.0	10	1	6.0	18.0	0.0
11	1	12.0	0.0	0.0	12	1	12.0	6.0	0.0
13	1	12.0	12.0	0.0	14	1	12.0	18.0	0.0
15	1	18.0	0.0	0.0	16	1	18.0	6.0	0.0
17	1	18.0	12.0	0.0	18	1	18.0	18.0	0.0
19	1	24.0	0.0	0.0	20	1	24.0	6.0	0.0
21	1	24.0	12.0	0.0	22	1	24.0	18.0	0.0
23	1	30.0	0.0	0.0	24	1	30.0	6.0	0.0
25	1	30.0	12.0	0.0	26	1	30.0	18.0	0.0
27	1	36.0	0.0	0.0	28	1	36.0	6.0	0.0
29	1	36.0	12.0	0.0	3 0	1	36.0	18.0	0.0
31	1	42.0	0.0	0.0	32	1	42.0	6.0	0.0
3 3	1	42.0	12.0	0.0	3 4	1	42.0	18.0	0.0
3 5	1	48.0	0.0	0.0	3 6	1	48.0	6.0	0.0
3 7	1	48.0	12.0	0.0	3 8	1	48.0	18.0	0.0
3 9	1	54.0	0.0	0.0	4 0	1	54.0	6.0	0.0
4 1	1	54.0	12.0	0.0	42	1	54.0	18.0	0.0
4 3	1	60.0	6.0	0.0	4 4	1	60.0	12.0	0.0
-									

Грунт

N	Слой	Тип грунта в слое
1	игэ 921	Крупный песок
2	ИГЭ 922	Песок средней крупности
3	ИГЭ 925	Пылевато-глинистый, глина
4	игэ 923	Пылевато-глинистый, глина
5	игэ 924	Пылевато-глинистый, суглинок
6	игэ 921	Крупный песок

Нормативные значения характеристик по слоям. Уд. вес грунта выше подошвы фундамента 16.0 кН/м3.

Обозн.проект. Тест всех модулей Стр. t536 Позиция РФ, Москва Комплекс СТАТИКА 2021.010 Дата 11.03.2021 СТАТИКА_2021 Проект

M		шип	a	F	fi	c/Pc	е	тт
IA		1 1111	9	11	т т	C/IC	_	ТП
			[кН/м3]	[M∏a]	[град]	[кПа]	[%]	
1	игэ	921	18.0	30.0	38.0	2.0	40.0	
2	игэ	922	19.0	45.0	39.0	2.0	40.0	
3	игэ	925	18.0	20.0	28.0	16.0	40.0	0.50
4	игэ	923	17.0	17.0	17.0	48.0	40.0	0.40
5	игэ	924	17.0	14.0	18.0	19.0	40.0	0.52
6	игэ	921	18.0	30.0	38.0	2.0	40.0	
				1 1 -				

Сооружение II класса $\gamma_n = 1.15$

Коэффициенты условий работы: основные РСУ $\gamma_{\text{c}} = 1.00$ особые РСУ $\gamma_{\text{c}} = 1.00$

Коэффициенты надежности по грунту:

Скважины

Nº								=1.5		СПСОБ
	x = -3. $z [M]$	м00.		L.00 _h	и во;	доуп	орный	<u>голоже</u> й слой .00		
2	z [m]	0 .		3.50)	4.00		й слой .00		6.00
3		0 .	y=-:	5.00)	 9.00 5				
4	z [м]	0 .	y=9	3.50)	6.00	7.	слой . 00	W P = 6	.00 м
5	z [м]	0 .		2.00) .		7.	слой . 0 0		.00 м
6	z [m]	0 .	y=9	2.00		8.00		слой . 0 0	W P = 8	.00 м
7	z [м]	0	y=9	6.00)			слой	W P = 6	.00 м
8		0 .	y=1:	3.00) .			. 0 0		
9	z [м]	0	y = 1	5.00)			й слой 00	WP=	7.00
10		0 .	y=1:	5.00) 1	 0.00 5				

Нагрузки

N^{0}	Nº	N	Мх	Му	Qх	QУ
нагр.	колонны	[кН]	[кН*м]	[кН*м]	[ĸH]	[кН]
1 По	стоянная	$\gamma_{\rm f} = 1.10$				
	1	1000.0	0.0	0.0	0.0	0.0
	2	1000.0	0.0	0.0	0.0	0.0
	3	1000.0	0.0	0.0	0.0	0.0

Уровень грунтовых вод WL=5.00 м

	Обозн.пр	оект. Тест всех мо	Стр.					
	РФ, Моск			Позиция	t536			
ТЕХСОФТ		11.03.2021	Ком	плекс СТАТИ	KA 2021.010	Проект	СТАТИ	KA_2021
ILACOPI	Ната					poom.		
			4	1000.0	0.0	0.0	0.0	0.0
		2 Кратков	рем. 1		12.0	5 0	-20 0	20.0
			2		-12.0			-20.0
			3	1000.0	-2.0			-20.0
			4	1000.0	2.0	-5.0	20.0	20.0
Коэффициенты		Наг- Коэ	ффици	енты РСУ	Наг-	Коэфф	ициенты	г РСУ
существенных	РСУ	руж. 1	2		руж.	1	2 3	4
		1 1.00	1.10		2	1.00 1.	2 0	
Существенные	РСУ	$N_{\tilde{0}}$ $N_{\tilde{0}}$	Nº	N	Мх	Му	Qх	QУ
			фунд.			[кНм]	[кН]	[KH]
		1 1	4	2000.0	2.0	-5.0	20.0	20.0
		2 1 3 2	3 1	2000.0	-2.0 14.4		-20.0 -24.0	-20.0 24.0
		4 2	1		0.0		0.0	0.0
		5 2		2300.0	-14.4	-2.4	24.0	-24.0
		6 2			-2.4			-24.0
		7 1 8 1	3 /		-5.3 -12.0			-6.7 -20.0
		В РСУ для						
		включены в						
Расчет основания		по СП 22.1	3330.	2016				
Расчет по деформациям		Схема лине Наибольшая	осад	ка дости				
		у фундамен Осадка фун			s = 3.2	CM (su=15 0	СМ
		Наибольший						CM
		у фундамен	та №2		_			
		Крен фунда			i = 0.0		iu = 0.00	5 0
		Наибольшая между фунд				ок при 1	PCY Nº /	
		Неравномер					iu = 0.00	10
Расчет по нес	ущей	Наиболее о	пасны	м по уст	ойчивості	и являе	тся РСУ	N 6
способности		для фундам						
		Сила преде Сила, дейс					Nu = 5834 N = 2515	
Исходные данные		14 DODYELES	mii na	Q I I O M 2				
Размеры		и результа Объект р		ы по Х и	по У	высота/	глубина	h/dc
<u>-</u>		1		[CM]	[CM]		[c	:м]
		плита			120.0			. 0
		подколонни колонна	K	80.0	80.0		210 100	
		высота фун	дамен			0.0 см		. 0
_								
Результаты расчета		геометриче	СКИХ	характер:	истик фу	ндамент	a.	

плита 1

подколонник

размеры по Х и по У

80.0

[CM] [CM] 220.0 220.0

80.0

высота h

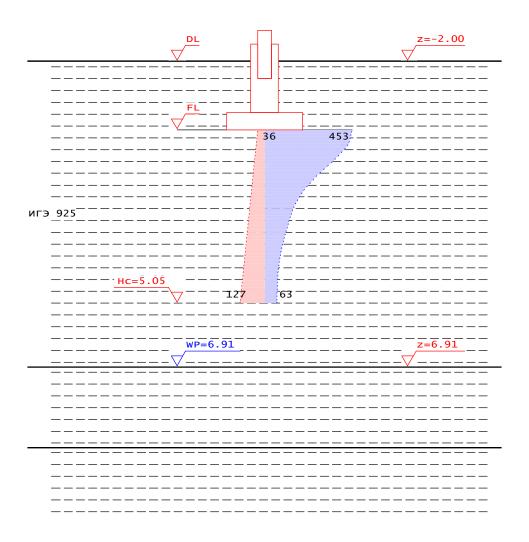
[см] 50.0

200.0

РФ, Москва

Дата 11.03.2021

Комплекс СТАТИКА 2021.010


Позиция Проект

Стр.

СТАТИКА 2021

t536

Фундамент №37 М = 1 :110 Схема расположения слоев грунта

Расчет основания

по СП 22.13330.2016

Расчет	ПО
деформа	мкиμ

Схема линейно деформируемого полупространства. Наибольшая осадка достигается при РСУ №7 Глубина сжимаемой толщи Hc = 5.05M р=452.8 кПа Среднее давление под подошвой ру=468.7 кПа Краевое давление вдоль оси у рх=459.2 кПа Краевое давление вдоль оси х Давление в угловой точке рху=475.1 кПа Расчетн. сопротивление грунта по 5.6.7 R=415.8 кПа Сопротивление грунта с учетом 5.6.24 R=498.9 кПа Осадка фундамента s=3.2 см < su=15.0 см Наибольший крен достигается при РСУ №8 i=0.0008 < iu=0.0050Крен фундамента

Расчет по несущей способности

Наиболее опасным по устойчивости является РСУ N6 Макс. глубина поверхности скольжения zm=2.84 м Коэф. надежн. по назначению сооруж. $\gamma_n=1.15$ Опасное направление по оси Y, эксц. $e_y=0.02$ м Приведенная ширина фундамента b'=2.15 м Сила предельного сопротивления грунта $N_u=5834$ кН

РФ, Москва

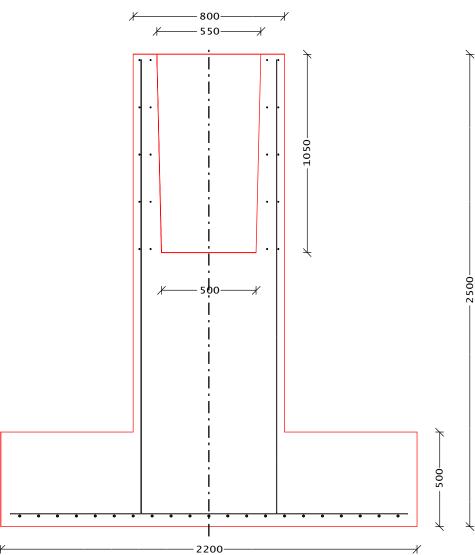
Дата 11.03.2021

Комплекс СТАТИКА 2021.010

Стр.

Позиция Проект

СТАТИКА_2021


t536

N = 2515 < $\gamma_c N_u / \gamma_n = 5073$

УСЛОВИЕ ВЫПОЛНЕНО

Схема фундамента M = 1 : 20

вид сбоку

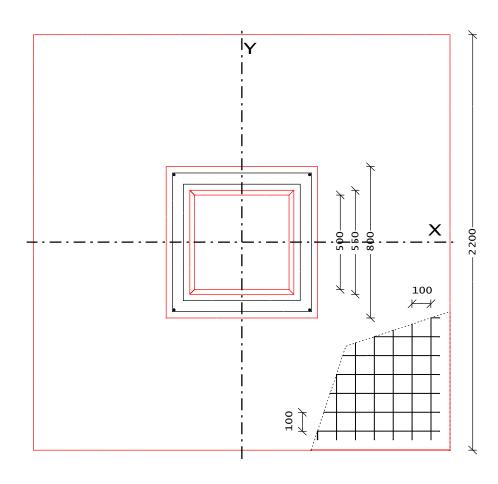
Дата 11.03.2021

РФ, Москва

Комплекс СТАТИКА 2021.010

Позиция Проект

Стр.


СТАТИКА_2021

t536

Схема фундамента

вид сверху

M = 1 : 20

Осадка и крен

Nº	осадка	РСУ	крен	РСУ	$N_{\bar{0}}$	осадка	РСУ	крен Р	СА
кол.	. [MM]		[x100]		кол.	[MM]		[x100]	
1	13.8		0.0348	3	2	30.9	8	0.0771	8
3	30.9	2	0.0771	. 2	4	30.9	1	0.0771	1
5	14.5		0.0367	7	6	14.7		0.0382	
7	14.2		0.0304	ļ.	8	15.1		0.0299	
9	15.2		0.0306	5	10	31.5		0.0755	
11	14.2		0.0312	2	12	15.4		0.0228	
13	15.4		0.0233	3	14	31.5		0.0739	
15	14.2		0.0320)	16	15.5		0.0153	
17	32.3		0.0302	2	18	31.5		0.0723	
19	14.2		0.0328	3	20	22.5		0.0156	
21	22.3		0.0178	3	22	31.5		0.0707	
23	21.1		0.0489)	2 4	22.3		0.0167	
25	22.1		0.0165	5	26	21.0		0.0490	
27	31.5		0.0707	7	28	23.1		0.0185	
29	22.7		0.0158	3	3 0	31.5		0.0675	
31	31.5		0.0723	3	32	32.3		0.0296	
33	32.3		0.0302	2	3 4	31.5		0.0659	
3 5	31.5		0.0739)	3 6	32.4		0.0444	
37	32.4	7	0.0453	3 7	38	31.5		0.0643	
3 9	31.5		0.0755	5	4 0	32.2		0.0591	
4 1	32.2		0.0604	Į	42	31.5		0.0627	
43	31.5		0.0739)	4 4	31.5		0.0755	

11.03.2021

РФ, Москва

Дата

Комплекс СТАТИКА 2021.010

Позиция

Проект

Стр.

t536 СТАТИКА 2021

Продавливание

Расчет на продавливание по СП 63.13330.2018.

Бетон В 25 (тяжелый)

Плита ось РСУ h0 Lx Ly eta [см] [см] [см]
1 Y 3 43.4 123.4 123.40 0.91

Расчет арматуры

по СП 63.13330.2018 с использованием трехлинейной диаграммы состояния сжатого бетона.

Арматура плиты

Сталь А500 Коорд. РСУ Ось Иизг h As d n прутка [м] [кН*м] [CM] [CM2] [MM] 0.40 267.0 Χ 43.2 14.6 12 21 0.40 4 267.0 44.4 12 14.2 21

Нижние прутки ориентированы по оси Ү.

Поперечная арматура стакана Сталь А400

Ось	Z	РСУ	р	As/s	S	d	n
	[см]		[кН/м]	[см2/м]	[MM]	[MM]	
Y	3.7	6	96.0	3.4	250	6	4
Y	28.7	6	54.7	2.0	250	6	4
Y	53.7	6	18.7	0.7	250	6	4
Y	78.7	6	17.3	0.6	250	6	4
Y	103.7	6	48.0	1.7	250	6	4
	Y Y Y Y	[CM] Y 3.7 Y 28.7 Y 53.7 Y 78.7	[CM] Y 3.7 6 Y 28.7 6 Y 53.7 6 Y 78.7 6	[CM] [KH/M] Y 3.7 6 96.0 Y 28.7 6 54.7 Y 53.7 6 18.7 Y 78.7 6 17.3	[CM] [KH/M] [CM2/M] Y 3.7 6 96.0 3.4 Y 28.7 6 54.7 2.0 Y 53.7 6 18.7 0.7 Y 78.7 6 17.3 0.6	[CM] [KH/M] [CM2/M] [MM] Y 3.7 6 96.0 3.4 250 Y 28.7 6 54.7 2.0 250 Y 53.7 6 18.7 0.7 250 Y 78.7 6 17.3 0.6 250	[CM] [KH/M] [CM2/M] [MM] [MM] Y 3.7 6 96.0 3.4 250 6 Y 28.7 6 54.7 2.0 250 6 Y 53.7 6 18.7 0.7 250 6 Y 78.7 6 17.3 0.6 250 6

Координата Z принимется от верхнего края стакана.

Продольная арматура подколонника: сталь А500

Наиболее опасное РСУ N 5. 4 прутка диаметром $12\,\mathrm{Mm}$, расположенные по углам.

<u>Трещиностойкость</u>

Плита

раскрытия трещин Предельно допустимая ширина принимается из условия обеспечения сохранности арматуры по СП 63.13330.12 acrc1=0.4мм acrc2=0.3мм Ось Коорд. РСУ Мизг2 Мизг1 Mcrc acrc2 acrc1 [м] 2 1 [кн*м] [кн*м] [кН*м] [MM] 0.40 0.00 234.2 234.2 252.1 0.00 Χ 1 1 Υ 0.40 2 2 234.2 234.2 0.00 253.6 0.00

Расчет выполнен модулем t536 программы СТАТИКА 2021 © 000 Техсофт