Позиция
 t021
 Страница
 2

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/021
 Версия
 2025.000

<u>Поз. t021</u> <u>База грунтов</u>

Описание	грунтов

N	Название	Тип грунта
1	игэ 2	Крупный песок
2	игэ з	

Характеристики грунтов

Вес и влажность

N	γ [кН/м ³]	γ _s [кН/м ³]	γ _d [кΗ/м ³]	е		W _{sat} [%]	
1	18.0	26.0	15.7	0.66	15.0	24.9	0.60
2	20.0	27.0	17.5	0.54	14.0	19.6	0.72

Механические характеристики

N	φ	C	E	Εe	ν
	[град]	[кН/м²]	[МПа]	[МПа]	
1	37.0	2.0	30.0	150.0	0.30
2	30.0	5.0	28.0	140.0	0.25

Коэффициенты надежности

N	γ _{g(g)}	γg(φ)	γ _{g (c)}	N	γ _{g(g)}	γ _{g (φ})	γ _{g (c)}
1	1.10	1.30	1.40	2	1.10	1.20	1.30

Поз. t026 Проектные воздействия

Воздействия согласно СП 20.13330.2016

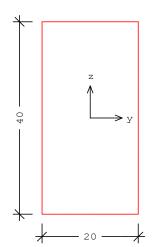
№ Тип воздействия Описание
1 Постоянное Собственный вес ж/б конструкций
2 Кратковременное
Равномерно распределенная нагрузка - жилые помещения
3 Особое Особое воздействие

Характеристики воздействий

$N_{\bar{0}}$	γf	k _l	уч	ет	группа	знак	распред
			С	0	несоч.		по прол
1	1.10						
2	1.30	0.35	+	+			неблаг.
3	1.00					±	

Коэффициент

учет C - кратковр. нагрузка учитывают в сейсм. РСН учет O - кратковр. нагрузка учитывают в особом РСН надежности по ответственности сооружения $\gamma_n=1.00$


Поз. t100 Элементы деревянных конструкций

Расчетная схема	Длина балки	1	=	5.00	М
	Ширина сечения	b	=	20.0	СМ
	Высота сечения	h	=	40.0	CM

 Позиция
 t100
 Страница
 3

 проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/100
 Версия
 2025.000

Характеристики сечения

I _y	W _у	S _у
[cM4]	[см3]	[см3]
106667	5333	4000

Закрепления

х [м]	Вид	закрепления
0.00		Шарнирное
5.00		Шарнирное

Нагрузки

Nº	Вид нагрузки	γf	Знак
1	Постоянная	1.10	
2	Длительная	1.20	

Сосредоточенные нагрузки

N ₀	X	Qz	M _V
	[M]	[ĸH]	[кНм]
2	2.50	3.0	

Распределенные нагрузки

$N_{\tilde{0}}$	OT X	до х	q_z
	[M]	[м]	[кН/м]
1	0.00	5.00	15.00

Продольные растягивающие силы

$N_{\tilde{0}}$	N	Nº	N
	[ĸH]		[KH]
2	0.2		

Комбинации нагрузок

1 (1.10) 2 1 (1.10) 2 (1.20)	K	Номер	нагрузки	(Коз	ФФи	ициент)
1 (1.10) 2 (1.20)	1		1 (1	.10)		
	2		1 (1	.10)	2	(1.20)

Расчет

Согласно СП 64.13330.2017

Материал

Клееный элемент из древесины

Толщина слоев - 5.0 см

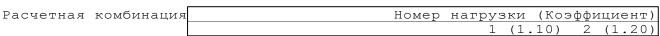
Порода - лиственница европейская

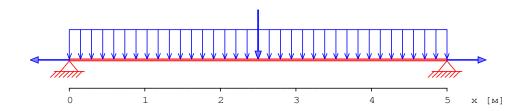
Сорт - 1

Элемент подвергнут пропитке антипиреном

Класс условий эксплуатации - 2 Температура воздуха - 20 $^{\circ}$ С Срок службы сооружения - 10 лет

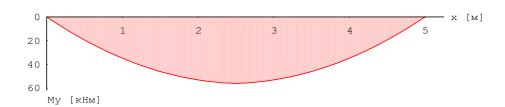
Коэффициенты условий работы


 $m_{\rm B} = 1.00 - 6.00$ $m_{\rm m} = 1.00 - 6.00$ $m_{\rm a} = 0.90$


Проверка прочности по нормальному напряжению

 Позиция
 t100
 Страница
 4

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024


 Разраб.
 Разработчик
 СТАТИКА/100
 Версия
 2025.000

Изгибающий момент

X	M_{V}	$M_{V, \Pi \Pi}$
[M]	[кНм]	[кНм]
0.00	0.00	0.00
1.00	34.80	34.80
2.00	53.10	53.10
2.50	56.06	56.06
3.00	53.10	53.10
4.00	34.80	34.80
5.00	0.00	0.00

Расчетные усилия

N	$M_{ m V}$	$N_{I\!\!\!/\!I}$	$M_{y, \pi\pi}$
[ĸH]	[кHм]	[ĸH]	[кНм]
0.24	56.06	0.24	56.06

Нормальное напряжение от N $\sigma_{\rm N}=0.00$ МПа $\sigma_{\rm N,\, дл}=0.00$ МПа $\sigma_{\rm N,\, дл}$ / $\sigma_{\rm N}=1.000$ —

Коэффициенты условий работы

Вид	$m_{ extsf{ iny I}}$	m_n	$m_{\mathfrak{S}}$	m_{CJ}	m _{c.c}
деформации					
Растяжение	0.53	1.00	1.00	1.00	1.00

Расчетное сопротивление

$$R_{\rm p} = R^{\rm A} m_{\rm ДЛ} \Pi m_{\rm i} = 8.59$$
 МПа $R^{\rm A} = 18.00$ МПа

Нормальное напряжение от M $_{y}$ σ_{M} = 10.51 МПа $\sigma_{M,\,\, \Pi \, \Pi}$ = 10.51 МПа $\sigma_{M,\,\, \Pi \, \Pi}$ / σ_{M} = 1.000 -

Коэффициенты условий работы

Вид	$m_{\pi\pi}$	m_n	m_{6}	m_{CJI}	m _{c.c}
деформации					
Изгиб	0.53	1.00	1.00	0.95	1.00

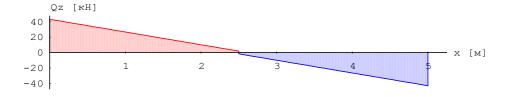
Расчетное сопротивление

$$R_{\text{M}} = R^{\text{A}} m_{\text{M},\text{M}} \Pi m_{i} = 10.88$$
 MNa $R^{\text{A}} = 24.00$ MNa

Условие прочности

$$\sigma_{\rm N}/{\rm R}_{\rm p}$$
 + $\sigma_{\rm M}/{\rm R}_{\rm M}$ = 0.000 + 0.967 = **0.967** <= 1

Проверка прочности по касательному напряжению


Позиция t100 Страница СТАТИКА тест всех модулей 28.10.2024 Проект Дата Разраб. Разработчик **СТАТИКА/100** Версия 2025.000

Расчетная комбинация

Номер	нагру	ЗКИ	(Коэф	фип	ие	нт)
	1	(1.1	LO)	2 (11.2	20)

Поперечная сила

X	Q_z	Q _{z,дл}
[M]	[ĸH]	[ĸH]
0.00	43.05	43.05
1.00	26.55	26.55
2.00	10.05	10.05
2.50	1.80	1.80
	-1.80	-1.80
3.00	-10.05	-10.05
4.00	-26.55	-26.55
5.00	-43.05	-43.05

Расчетная поперечная сила $Q_z = 43.05$ 43.05 $Q_{z, \mu \pi} =$ кН Касательное напряжение 0.81 МΠа 0.81 МΠа $\tau_{\,_{\textrm{Д}\,\textrm{Л}}}$ 1.000

Коэффициенты условий работы

Вид	тдл	m _n	m ₆	М _{СЛ}	m _{c.c}
деформации					
Скалывание	0.53	1.00	1.00	0.95	1.00

Расчетное сопротивление

$$R = R^{A} m_{\pi\pi} \Pi m_{\dot{1}} = 1.09$$
 МПа $R^{\dot{A}} = 2.40$ МПа

кН

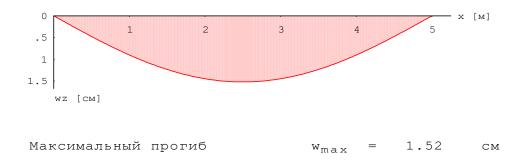
Условие прочности

$$\tau$$
 / R = 0.81 / 1.09 = 0.742 <= 1

Проверка устойчивости балки по условию (30) не проводится при $\phi_{\rm M}$ > 1

Несущая способность балки обеспечена

Определение прогиба

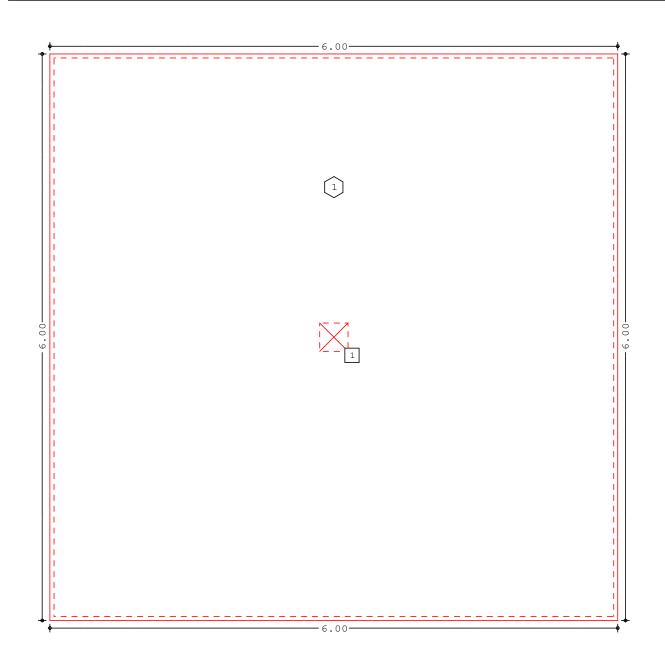

Норматив. комбинация	Ŧ.	Ном	ер на	агруз:	ки	(Коэффи	циент)
				1	(1.	00) 2	(1.00)
Модуль упругости		$E^{II} = E_{CP} m_{\pi\pi,E} m_{B}$	$m_m m_c$. c	=	8.00	ГΠа
		- 1		E _{cp}	=	10.00	ГПа
				m _{дл,1}	E =	0.80	_
				m _{c.c}	=	1.00	_
	Изгибная	жесткость		EI_{V}	=	8.53	МНм2
Прогиб и поворот	×	W _	d				

Прогиб и поворот

Х	Wz	d_{v}
[M]	[CM]	[- j
0.00	0.00	0.00970
1.00	0.90	0.00771
2.00	1.45	0.00291
2.50	1.52	0.00000
3.00	1.45	-0.00291
4.00	0.90	-0.00771
5.00	0.00	-0.00970

ООО Техсофт, Москва

Позиция	t100		Страниц	a 6
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/100	Версия	2025.000


Расчет выполнен модулем 100 программы СТАТИКА 2025 © 000 Техсофт

Поз. t200K

Квадратная плита

 $\frac{\text{Расчетная схема}}{\text{M} = 1 : 40}$

t200K Позиция Страница СТАТИКА тест всех модулей 28.10.2024 Проект Дата Версия 2025.000 Разраб. Разработчик **СТАТИКА/200**

Плиты

Nº	Разм	Размеры		Координаты	
	lx[M]	lу[м]	[CM]	X[M]	у[м]
1	6.00	6.00	20.0	0.00	0.00

Условия закрепления

$N_{\bar{0}}$	Ширин	а опи	ирания	F[CM]	Закрепл	ения	сторо	н[-,%]	
плиты	Н	П	В	Л	H	Π	В	Л	
1	30.0	30.0	30.0	30.0	0	0	0	0	

Обозначения Н - снизу, П - справа, В - сверху, Л - слева

Опирание плиты : -1 - свободный край 0 - шарнирное опирание

100 - заделка

Колонны

Nº	lx	ly	Х	У	П	В	М	Жёсткость
	[CM]	[CM]	[M]	[M]				
1	30.0	30.0	3.00	3.00	1	1	1	5.000e+06

х, у - координаты центра колонны, заданные относительно вершины (В) плиты (П)

t200K Позиция Страница СТАТИКА тест всех модулей 28.10.2024 Проект Дата Разработчик **СТАТИКА/200** Версия 2025.000 Разраб.

Модель колонны (М):

(жёсткость в кН/м3)

1 - упругое основание по всей площади колонны

2 - жёсткая точечная опора в центре колонны 3 - точечные пружины в центре колонны

(жёсткости в кН/м и кНм соответственно)

Капители колонн

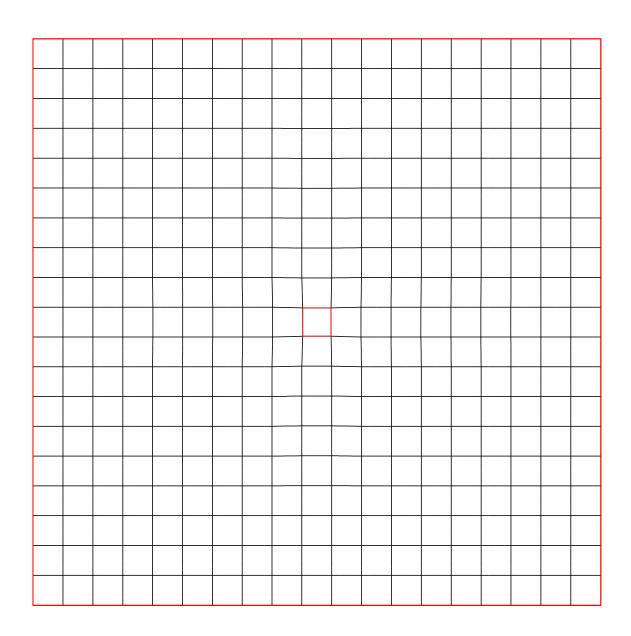
	$N_{\bar{0}}$	Вид	lx	ly	h
L	колонны		[CM]	[см]	[см]
Ĺ	1	плавн.	50.0	50.0	30.0

Нагружение

$N_{\tilde{0}}$	Вид	Kl	γf	Распределение по пролётам	р[кПа]	Р[кН]
1	постоянная		1.10	Заданное	5.00	180.00
2	кратковременная	0.35	1.20	Неблагопр.	20.00	720.00

Р - суммарная нагрузка

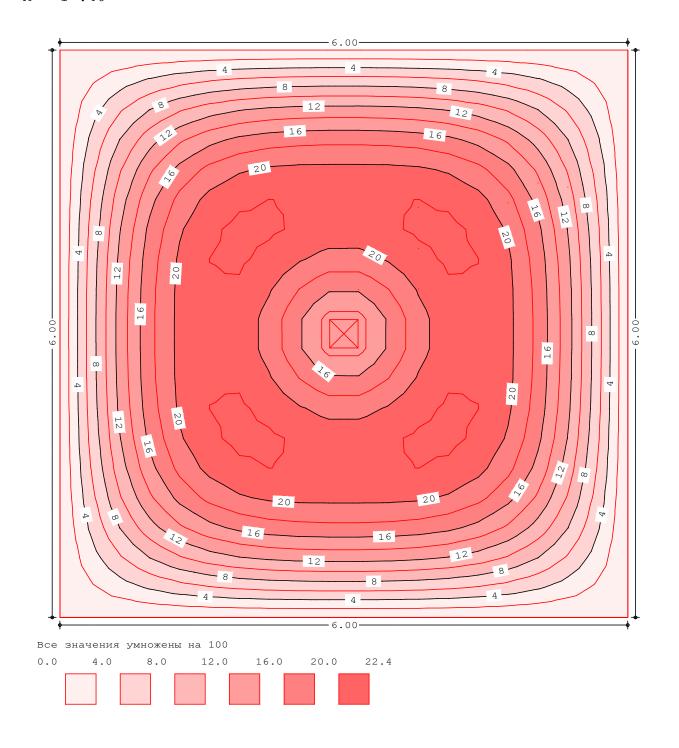
Kl - коэффициент длительной части


Внутренние усилия

по каждой нагрузке

(расчёт методом конечных элементов)

КЭ-сетка M = 1 : 40 Позиция **t200K** Страница **9** Дата **28.10.2024** 9 Проект СТАТИКА тест всех модулей

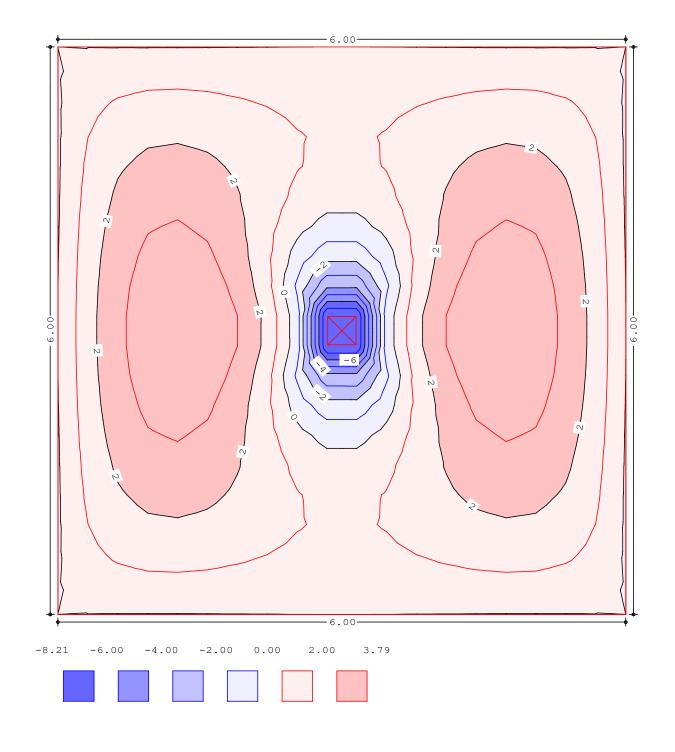

Разраб. Разработчик **СТАТИКА/200** Версия 2025.000

Характерный размер элемента сетки 1 = 0.30

Коэффициент Пуассона Коэффициент умасти $E_b = 30000$ МΠа

<u>Нагрузка № 1</u> Перемещения М = 1 :40 Постоянная нагрузка [мм]

Перемещения

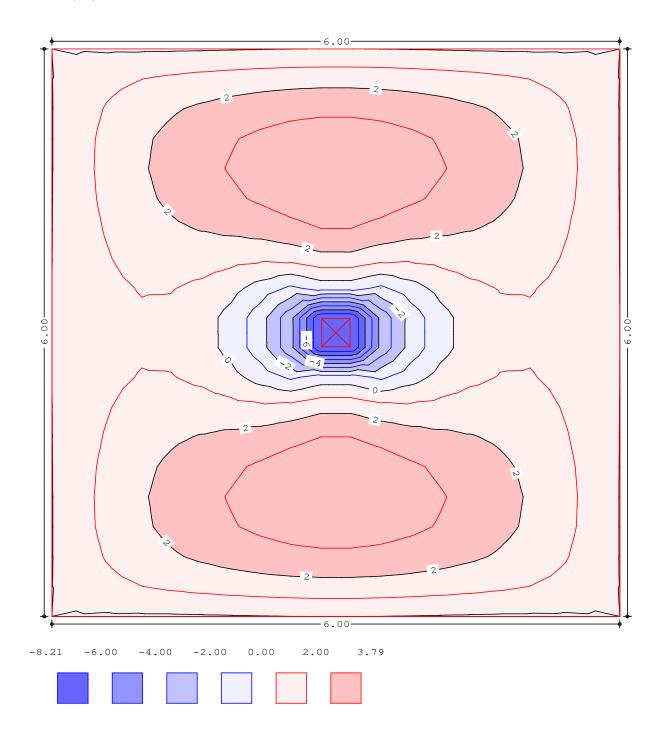

$N_{\bar{0}}$	плиты	W	[MM]
	1		0.22

 Позиция
 t200K
 Страница
 11

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/200
 Версия
 2025.000

Моменты Мх М = 1 :40

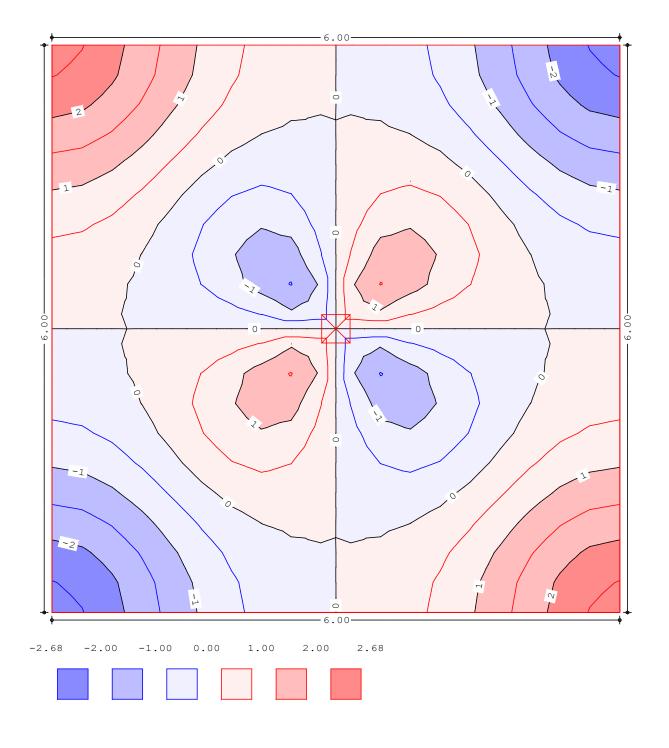


 Позиция
 t200К
 Страница
 12

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/200
 Версия
 2025.000

Моменты Му М = 1 :40

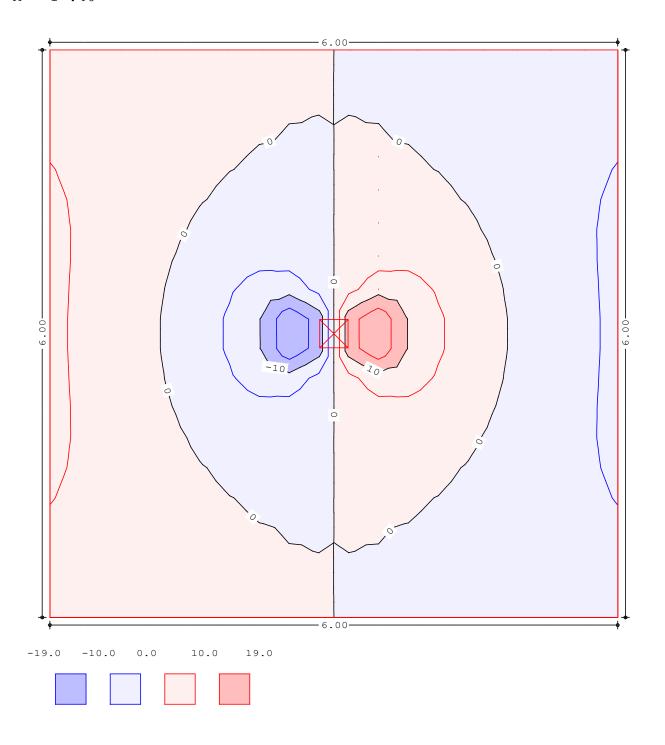


 Позиция
 t200К
 Страница
 13

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/200
 Версия
 2025.000

Моменты Мху М = 1 :40

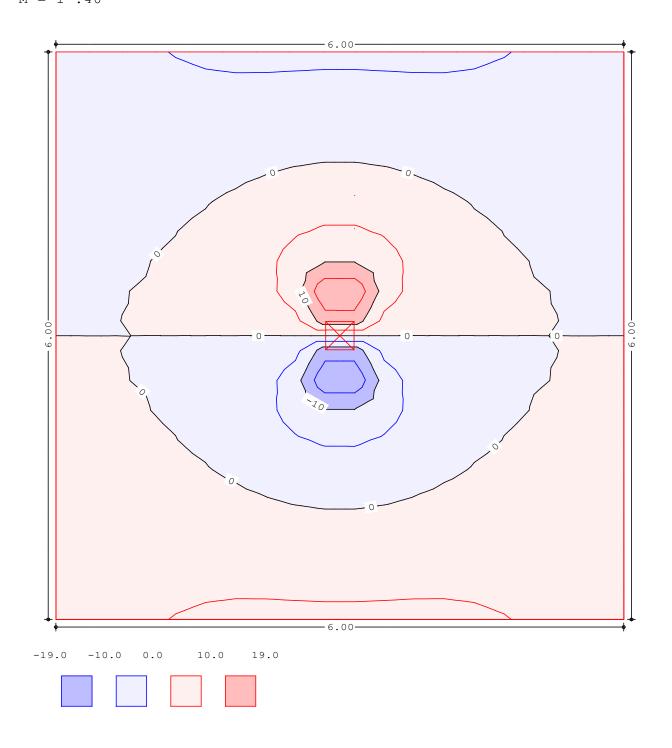


 Позиция
 t200K
 Страница
 14

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/200
 Версия
 2025.000

Поперечные силы Qx [кН/м] M = 1 : 40



 Позиция
 t200K
 Страница
 15

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/200
 Версия
 2025.000

Поперечные силы Qy [кH/м] M = 1 :40

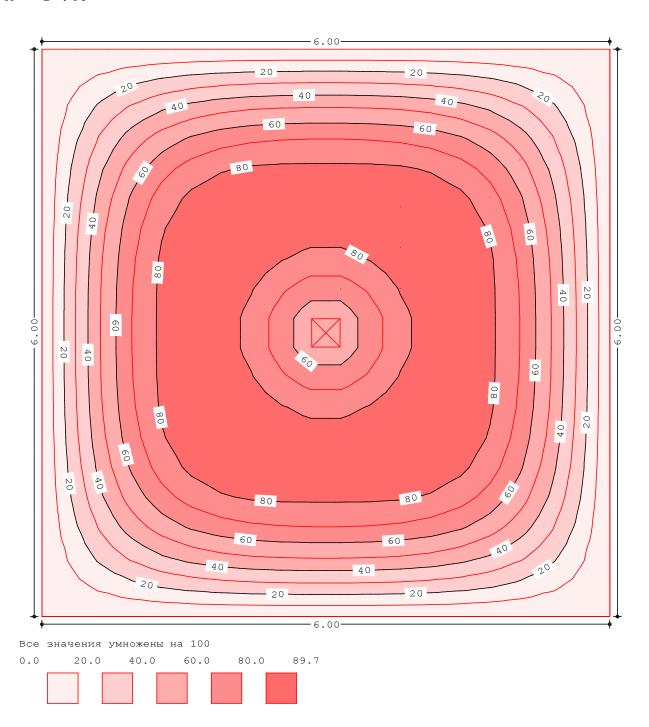
Опорные реакции по отрезкам

Nº	Сторона	a	1	q
плиты		[M]	[M]	[кН/м]
1	нижняя	0.00	6.00	5.13
	Правая	0.00	6.00	5.13
	Верхняя	0.00	6.00	5.13
	Левая	0.00	6.00	5.13

Опорные реакции колонн

Nº	Q	Mx	Му	
	[ĸH]	[кНм]	[кНм]	
1	56.88	0.00	-0.00	

 Позиция
 t200К
 Страница
 16

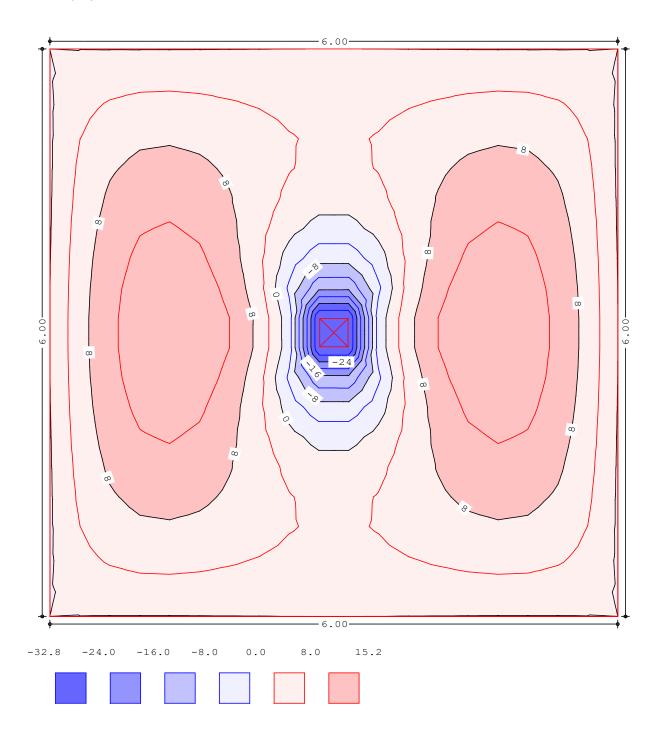

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/200
 Версия
 2025.000

Сумма всех опорных реакций

Q = 180.0 kH

<u>Нагрузка № 2</u> Перемещения М = 1 :40 Кратковременная нагрузка [мм]

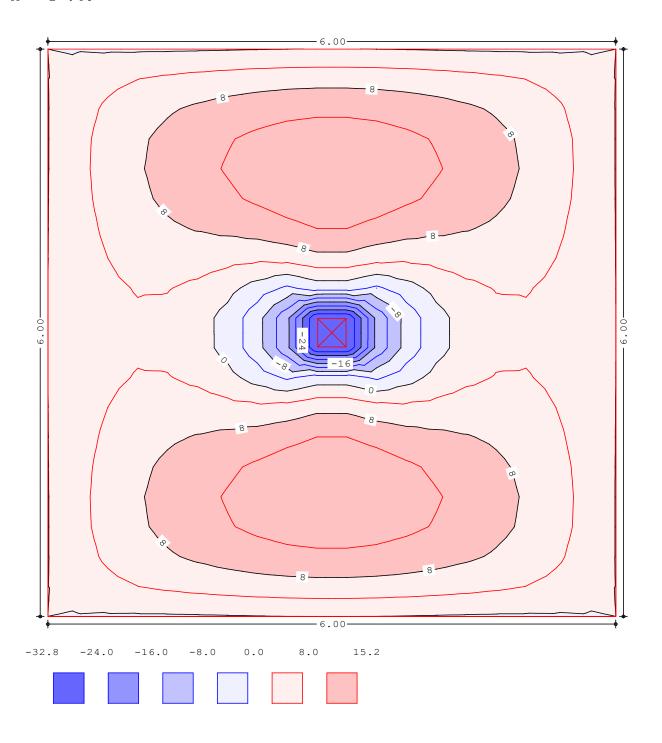

№ плиты	W [MM]	
1	0 90	

 Позиция
 t200К
 Страница
 17

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/200
 Версия
 2025.000

Моменты Мх М = 1 :40

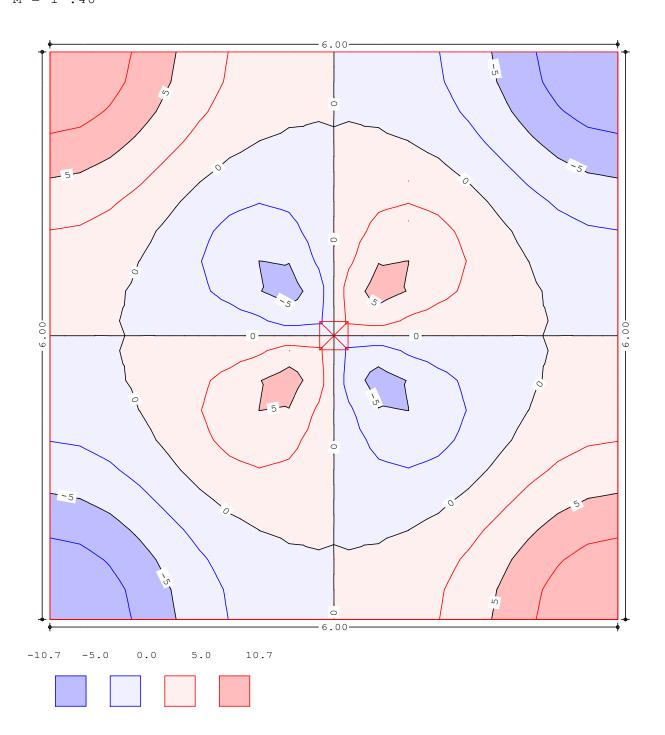


 Позиция
 t200К
 Страница
 18

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/200
 Версия
 2025.000

Моменты Му М = 1 :40

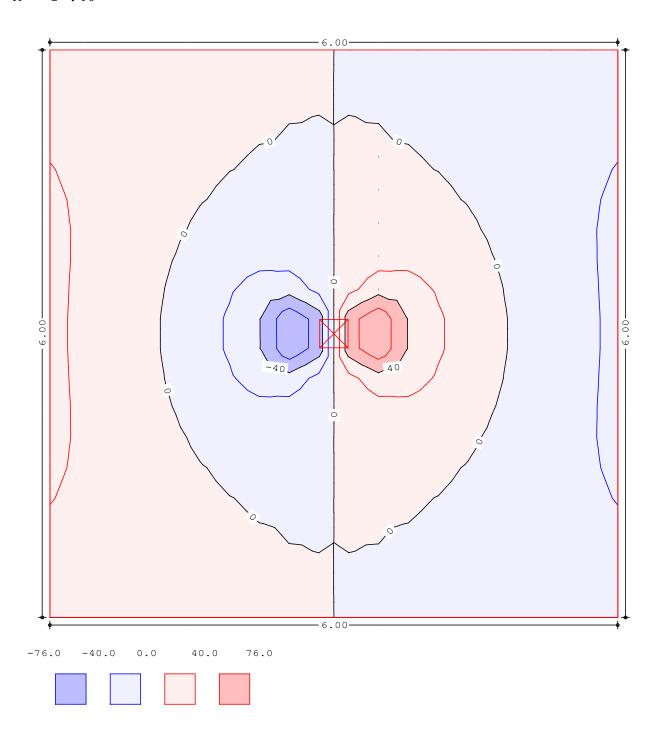


 Позиция
 t200К
 Страница
 19

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/200
 Версия
 2025.000

Моменты Мху М = 1 :40

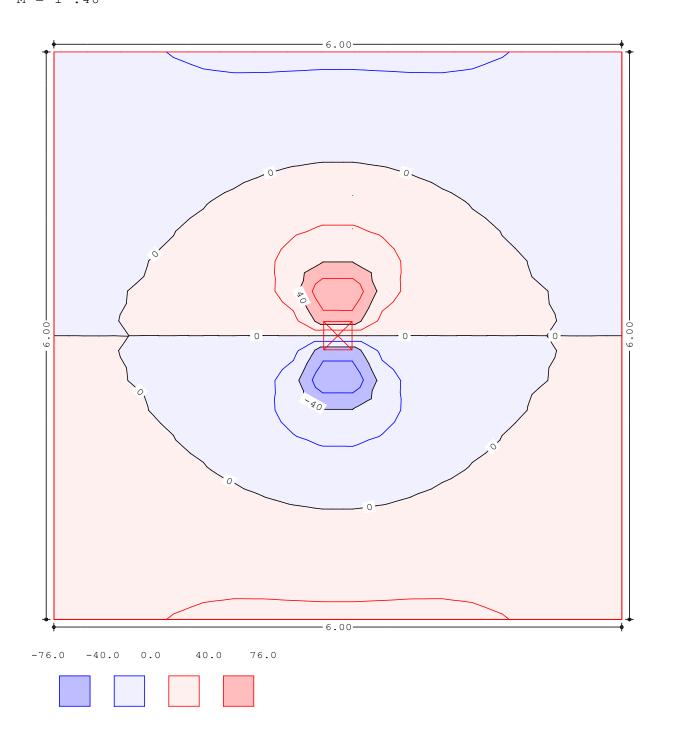


 Позиция
 t200K
 Страница
 20

 Проект
 CTATИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 CTATИКА/200
 Версия
 2025.000

Поперечные силы Qx [кН/м] M = 1 : 40



 Позиция
 t200K
 Страница
 21

 Проект
 CTATИКА тест всех модулей
 дата
 28.10.2024

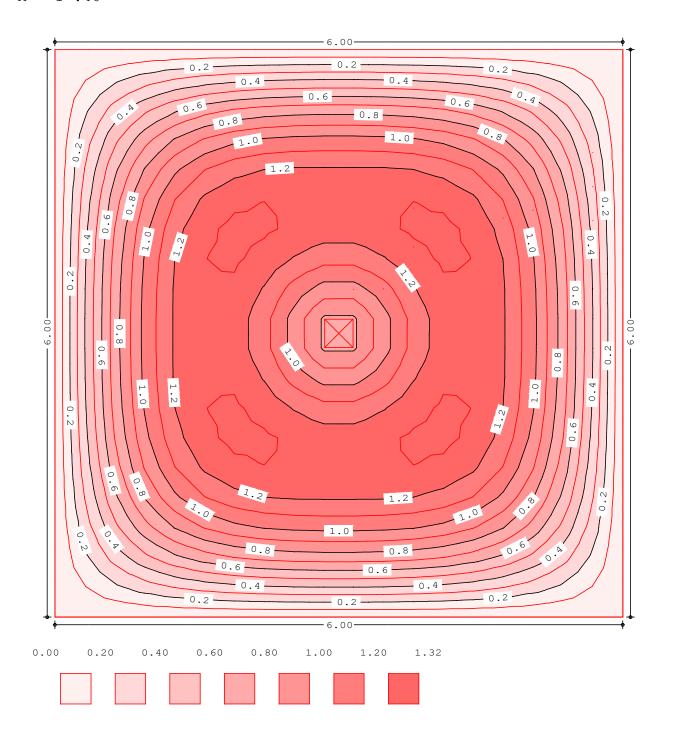
 Разраб.
 Pазработчик
 CTATИКА/200
 Версия
 2025.000

Поперечные силы Qy [кH/м] M = 1 :40

Опорные реакции по отрезкам

Nº	Сторона	a	1	q
плиты		[м]	[м]	[кН/м]
1	нижняя	0.00	6.00	20.52
	Правая	0.00	6.00	20.52
	Верхняя	0.00	6.00	20.52
	Левая	0.00	6.00	20.52

Опорные реакции колонн

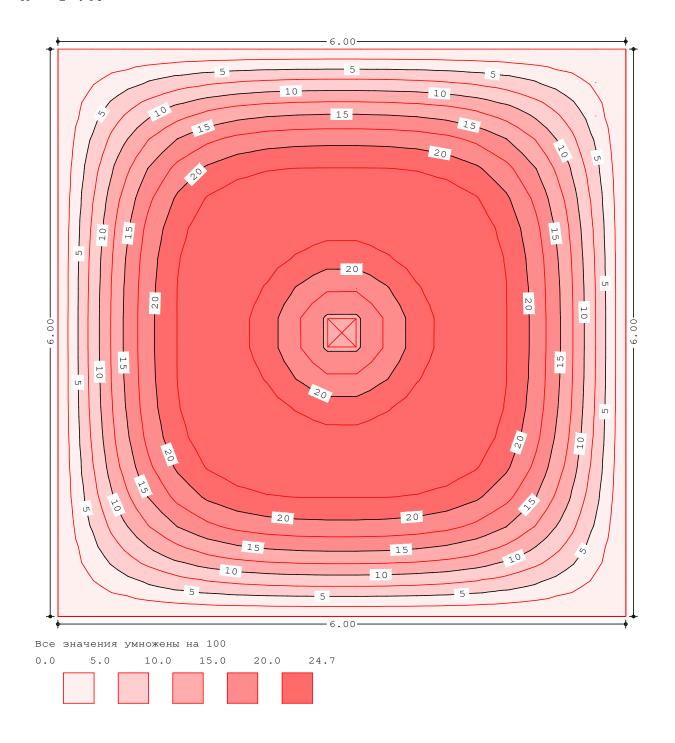

Nº	Q	Mx	Му	
	[ĸH]	[кНм]	[кНм]	
1	227.54	0.00	-0.00	

Q =

720.0 ĸH

Сумма всех опорных реакций

Расч. сочет. усилий согласно СП 20.13330.2016 Нагрузки и воздействия. Перемещения (максимальные значения) [мм] М = 1 :40

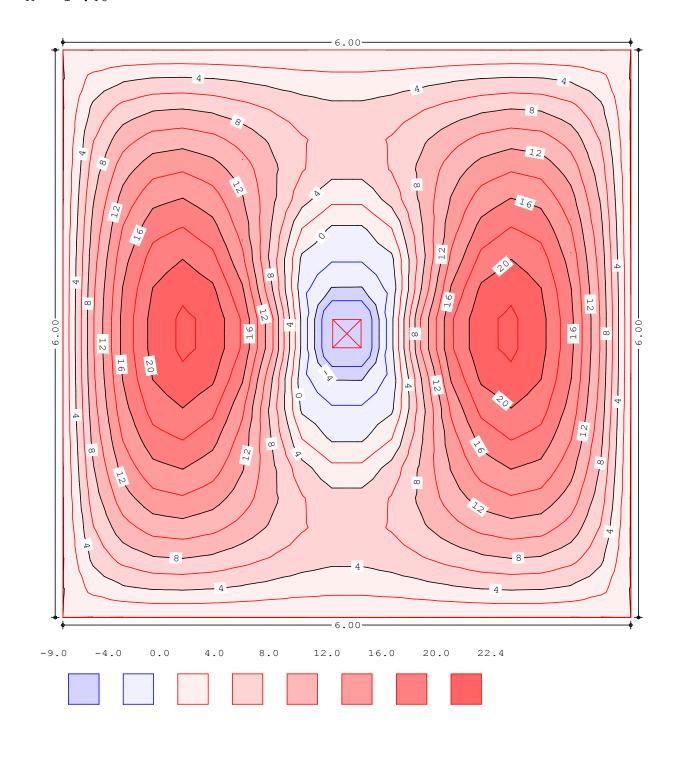


 Позиция
 t200K
 Страница
 23

 Проект
 CTATИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Pазработчик
 CTATИКА/200
 Версия
 2025.000

Перемещения (минимальные значения) [мм] M = 1 : 40

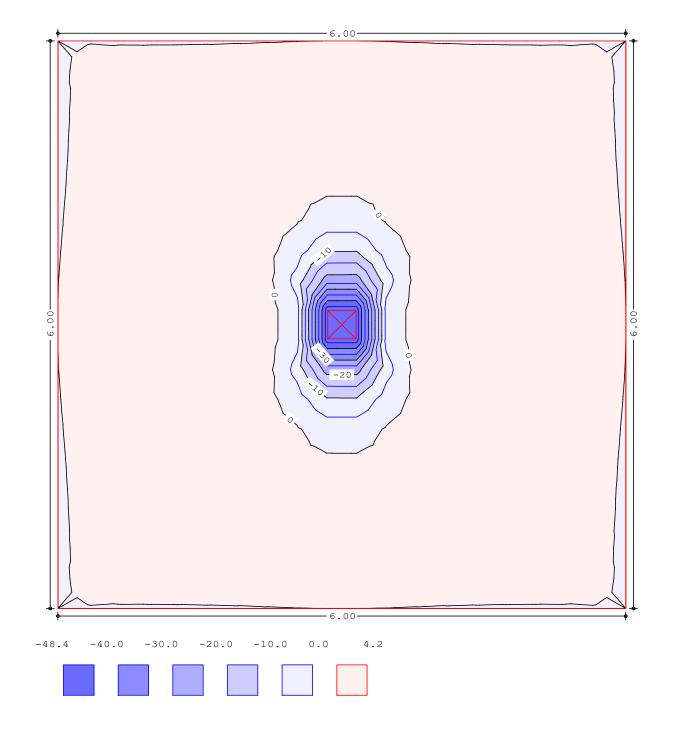

Перемещения	№ плиты	max w [мм]	min w [мм]
	1	1.32	0.00

 Позиция
 t200К
 Страница
 24

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/200
 Версия
 2025.000

Моменты Мх (максимальные значения) [кНм/м] M = 1 : 40

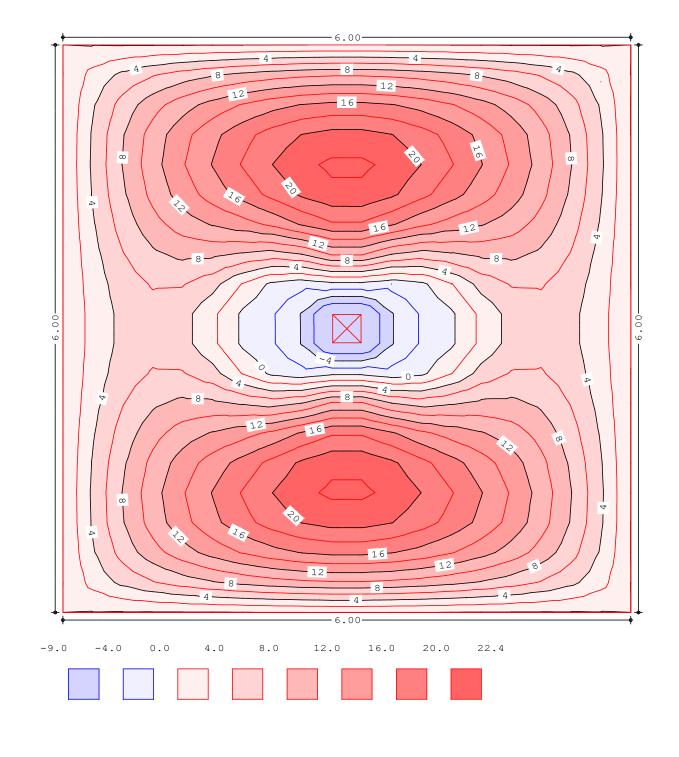


 Позиция
 t200К
 Страница
 25

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/200
 Версия
 2025.000

Моменты Мх (минимальные значения) [кНм/м] М = 1 :40

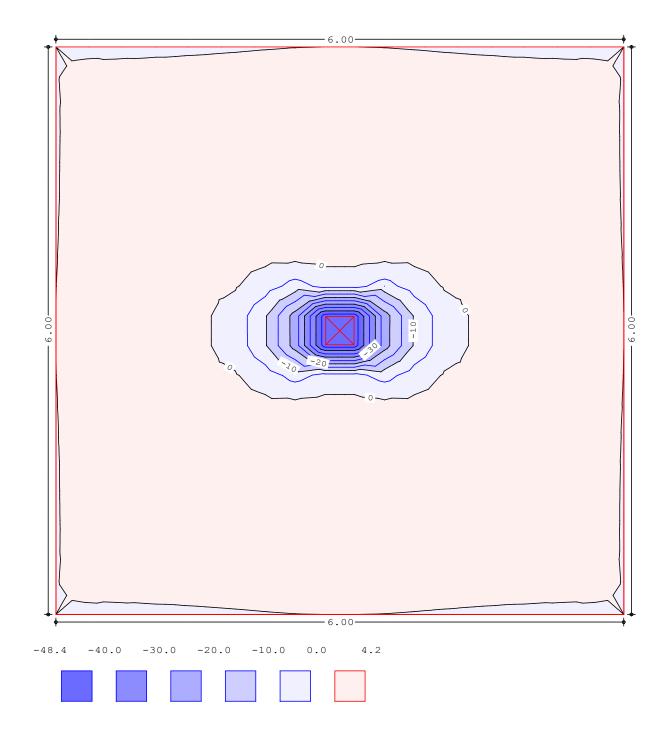


 Позиция
 t200К
 Страница
 26

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/200
 Версия
 2025.000

Моменты Му (максимальные значения) [кНм/м] М = 1 :40

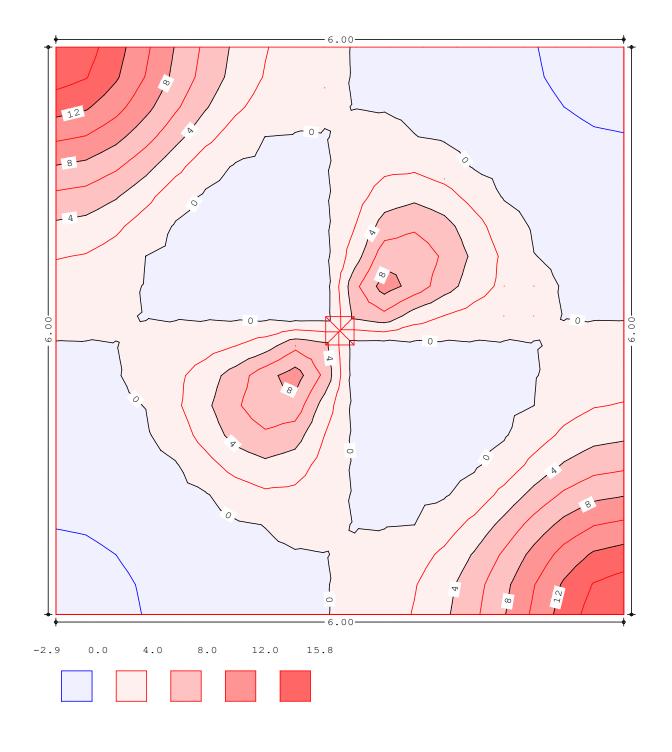


 Позиция
 t200K
 Страница
 27

 Проект
 CTATИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Pазработчик
 CTATИКА/200
 Версия
 2025.000

Моменты Му (минимальные значения) [кНм/м] М = 1 :40

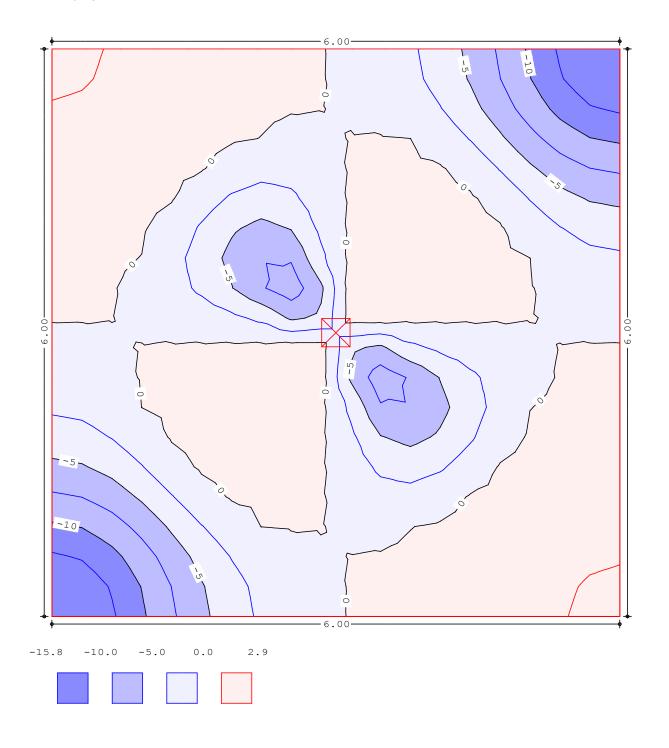


 Позиция
 t200К
 Страница
 28

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/200
 Версия
 2025.000

Моменты Мху (максимальные значения) [кНм/м] М = 1 :40

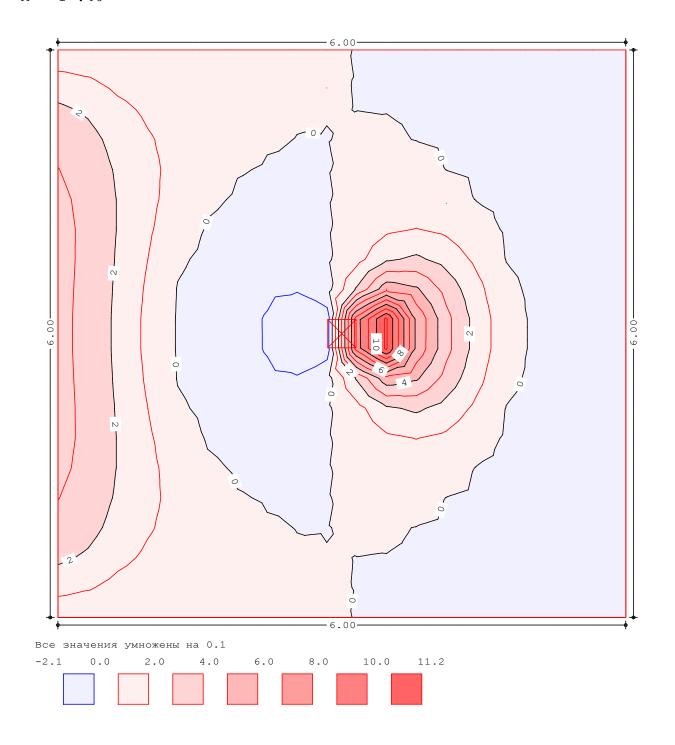


 Позиция
 t200K
 Страница
 29

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/200
 Версия
 2025.000

Моменты Мху (минимальные значения) [кНм/м] М = 1 :40

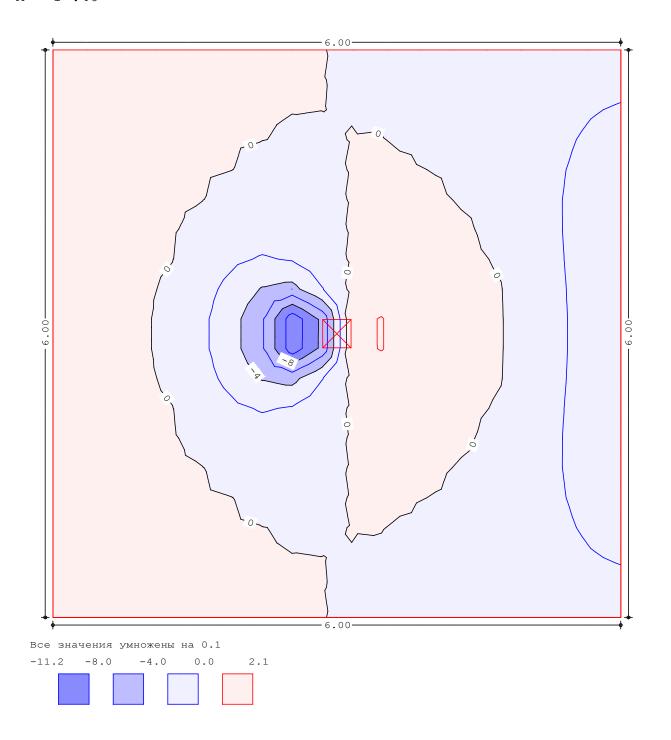


 Позиция
 t200К
 Страница
 30

 Проект
 CTATИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 CTATИКА/200
 Версия
 2025.000

Поперечные силы Qx (максимальные значения) [кН/м] М = 1 :40

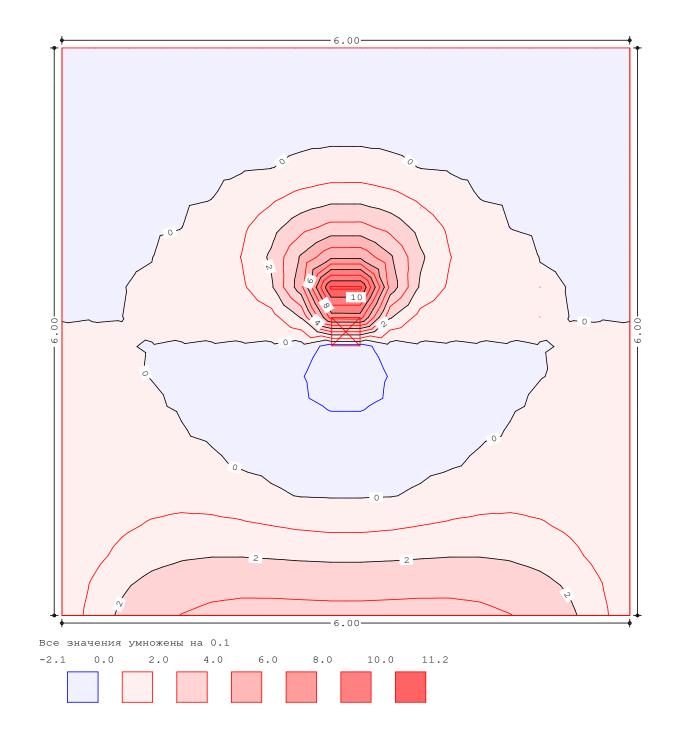


 Позиция
 t200К
 Страница
 31

 Проект
 CTATИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 CTATИКА/200
 Версия
 2025.000

Поперечные силы Qx (минимальные значения) [кН/м] М = 1 :40

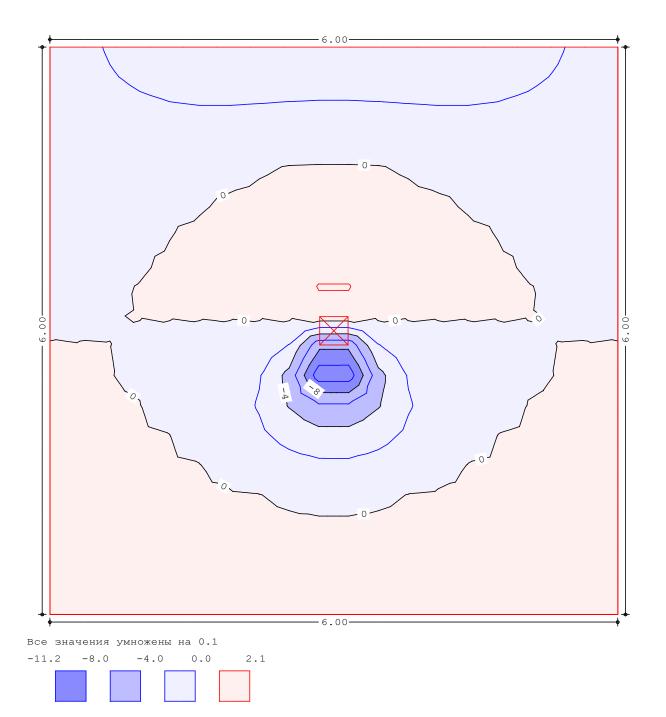


 Позиция
 t200К
 Страница
 32

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/200
 Версия
 2025.000

Поперечные силы Qy (максимальные значения) [кН/м] М = 1 :40



 Позиция
 t200К
 Страница
 33

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/200
 Версия
 2025.000

Поперечные силы Qy (минимальные значения) [кН/м] М = 1 :40

Опорные реакции (по отрезкам)

Nº	Сторона	a	1	max q	min q
плиты		[M]	[м]	[кН/м]	[кН/м]
1	Нижняя	0.00	6.00	30.27	5.64
	Правая	0.00	6.00	30.27	5.64
	Верхняя	0.00	6.00	30.27	5.64
	Левая	0.00	6.00	30.27	5.64

Опорные реакции колонн

ſ	Nº	max Q	min Q	max Mx	min Mx	max My	min My
		[ĸH]	[KH]	[кНм]	[кНм]	[кНм]	[кНм]
ſ	1	335.62	62.57	0.00	0.00	-0.00	-0.00

Позиция **t200K** 34 Страница 28.10.2024 СТАТИКА тест всех модулей Проект Дата Разработчик **СТАТИКА/200** Версия 2025.000 Разраб.

Расчётные моменты

Существенные сочетания усилий

$N_{\bar{0}}$	$N_{f \hat{o}}$	тнэриффеоХ	Нагружение	пролётов
сочетания	нагрузки	[
1	1	1.10	+	
	2	1.20	+	

Расчётные моменты для определения нижней арматуры

Nº	Н	N ₀	М	Соответ	ствующие	моменты
плиты		сочет.	[кНм/м]	M×	Му	Mxy
				[кНм/м]	[кНм/м]	[кНм/м]
1	Χ	1	23.36	20.37	4.76	-2.99
	Y	1	23.36	4.76	20.37	-2.99

Расчётные моменты для верхней арм. по сторонам плит

Nº	Сторона	Н	Nº	М	Соответст	гвующие	моменты
плиты		С	оч.	[кНм/м]	M×	My	Mxy
					[кНм/м]	[кНм/м]	[кНм/м]
1	Нижняя	Χ	1	-15.80	0.00	0.00	15.80
		Y	1	-15.80	0.00	0.00	15.80
	Правая	Χ	1	-15.80	0.00	0.00	-15.80
		Y	1	-15.80	0.00	0.00	-15.80
	Верхняя	Χ	1	-15.80	0.00	0.00	-15.80
		Y	1	-15.80	0.00	0.00	-15.80
	Левая	Χ	1	-15.80	0.00	0.00	15.80
		Y	1	-15.80	0.00	0.00	15.80

Расчётные моменты для верхней арм. над колоннами

Nº	Н	N^{o}	M	Соответс	ствующие	моменты
колонны		сочет.	[кНм/м]	Mx	My	Mxy
				[кНм/м]	[кНм/м]	[кНм/м]
1	Х	1	-52.88	-48.43	-48.43	4.45
	Y	1	-52.88	-48.43	-48.43	4.45

Коэффициент

Расчёт по прочности согласно СП 63.13330.2018 Бет. и железоб. констр. надежности по ответственности сооружения γ_n = 1.00

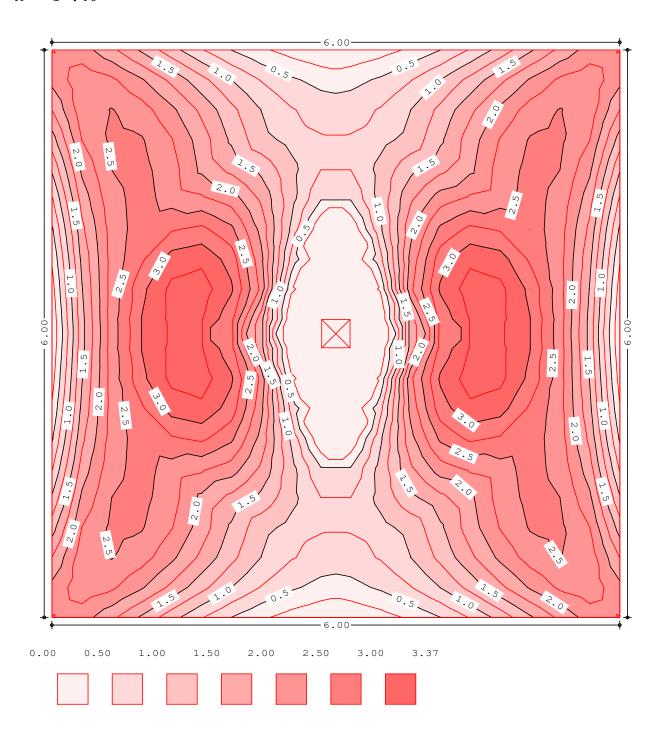
> Бетон класса B 25

Определение продольной арматуры

Продольная арматура класса

A 500

Расстояния до ц.т. продольной арматуры

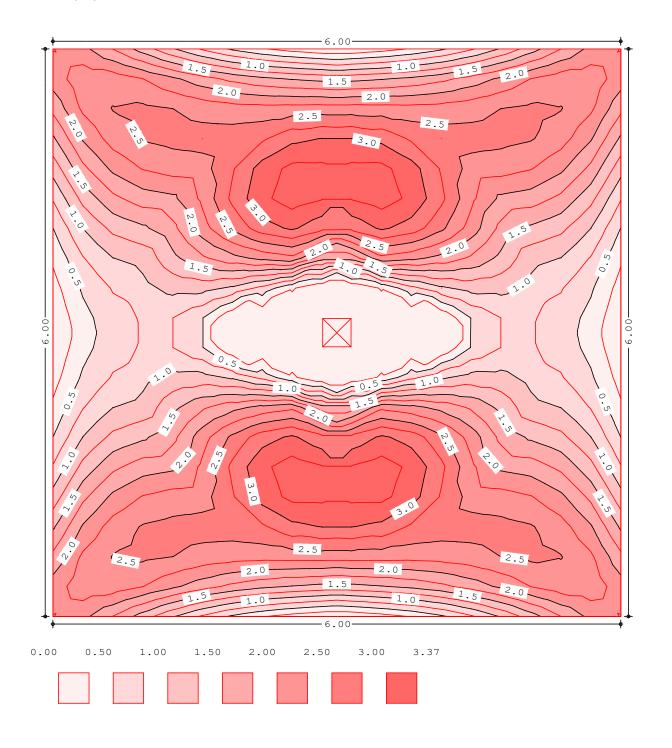

$N_{\bar{0}}$	пкнжиН	арматура	Верхняя	арматура	
плиты	ах[см]	ау[см]	ax[см]	ау[см]	
1	3.5	3.5	3.5	3.5	

 Позиция
 t200К
 Страница
 35

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/200
 Версия
 2025.000

Нижняя арматура Asx $[cm^2/m]$ M = 1 :40

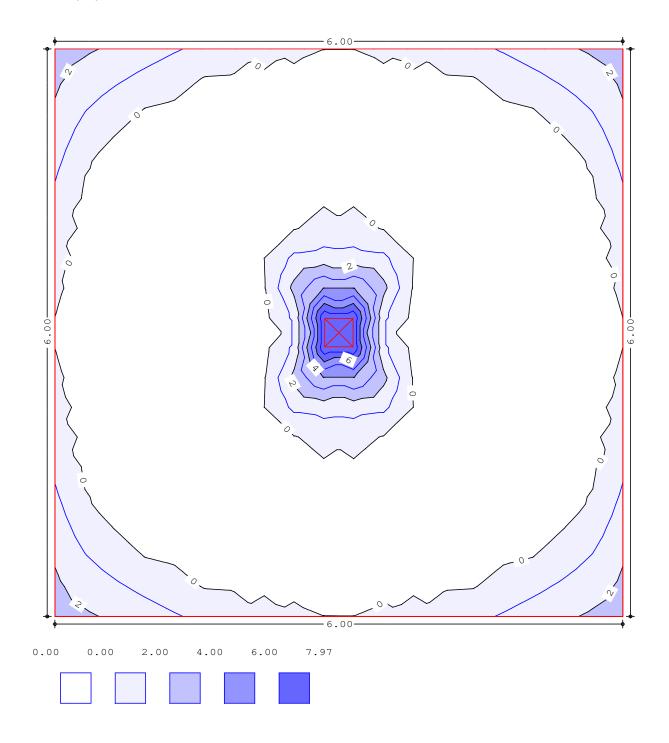


 Позиция
 t200K
 Страница
 36

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/200
 Версия
 2025.000

Нижняя арматура Asy $[cm^2/m]$ M = 1 :40

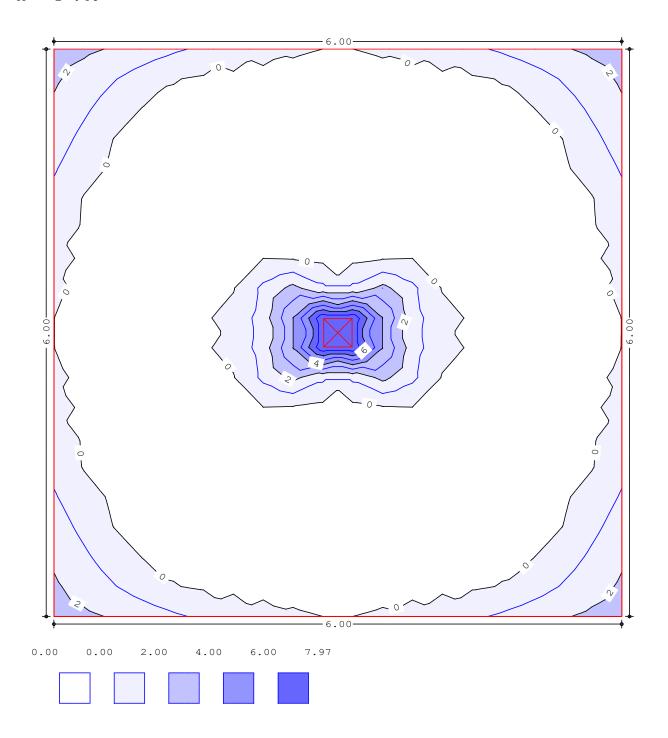


 Позиция
 t200K
 Страница
 37

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/200
 Версия
 2025.000

Верхняя арматура $Asx[cm^2/m]$ M = 1 :40



 Позиция
 t200K
 Страница
 38

 Проект
 CTATИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 CTATИКА/200
 Версия
 2025.000

Верхняя арматура $Asy[cm^2/m]$ M = 1 :40

Нижняя арматура

$N_{\tilde{0}}$	Mx	Asx	Му	Asy
плиты	[кНм/м]	$[cm^{2}/m]$	[кНм/м]	$[cm^2/m]$
1	23.36	3.37	23.36	3.37

Верхняя арматура по сторонам плит

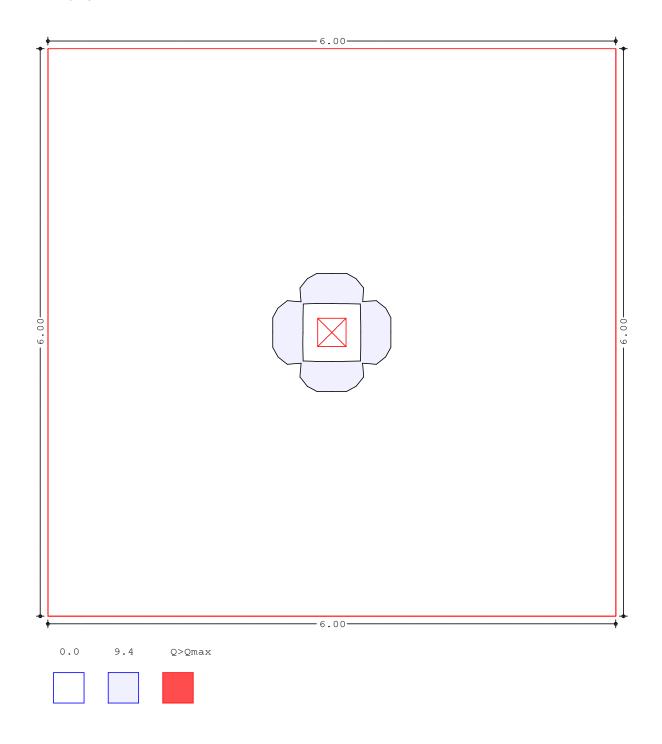
Nº	Сторона	Mx	Asx	Му	Asy
плиты		[кНм/м]	$[cm^2/m]$	[кНм/м]	$[cm^{2}/m]$
1	Нижняя	-15.80	2.26	-15.80	2.26
	Правая	-15.80	2.26	-15.80	2.26
	Верхняя	-15.80	2.26	-15.80	2.26
	Левая	-15.80	2.26	-15.80	2.26

 Позиция
 t200K
 Страница
 39

 Проект
 CTATИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Pазработчик
 CTATИКА/200
 Версия
 2025.000

Верхняя арматура над колоннами


Nō	Mx	Asx	Му	Asy
колонны	[кНм/м]	[CM ² /M]	[кНм/м]	$[CM^2/M]$
1	-52.88	7.97	-52.88	7.97

Определение поперечной арматуры

Поперечная арматура класса

A 400

Поперечная арматура Asw [$cm^2/m2$] M = 1 :40

 Позиция
 t200K
 Страница
 40

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

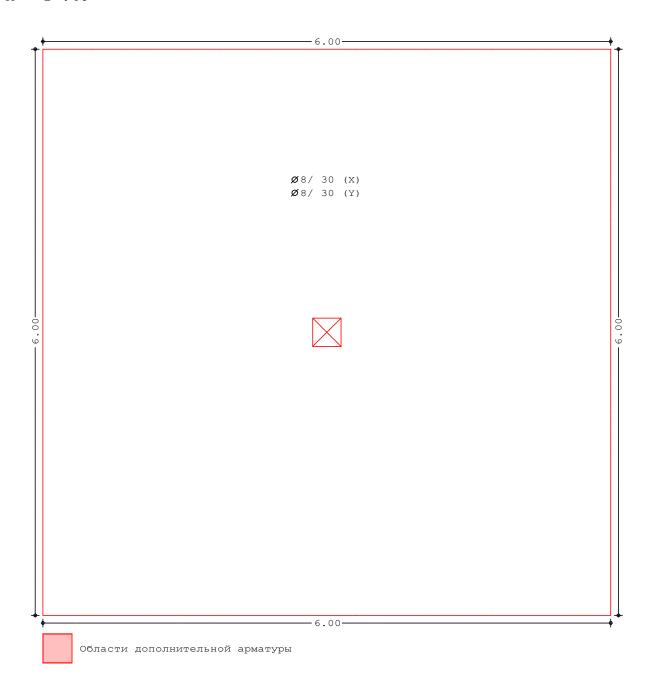
 Разраб.
 Разработчик
 СТАТИКА/200
 Версия
 2025.000

Поперечная арматура по сторонам плит

Nº	Сторона	а	1	Q	Qb	Qmax	Asw
плиты		[M]	[м]	[кН/м]	[кН/м]	[кН/м]	$[cm^2/m^2]$
1	Нижняя	0.00	6.00	13.0	130.2	717.8	0.00
	Правая	0.00	6.00	13.1	130.2	717.8	0.00
	Верхняя	0.00	6.00	13.0	130.2	717.8	0.00
	Левая	0.00	6.00	13.1	130.2	717.8	0.00

Поперечная арматура над колоннами

Nº	С	Q	Qmin	Qmax	Asw
	[M]	[кН/м]	[кН/м]	[кН/м]	$[CM^2/M^2]$
1	0.33	105.3	130.2	717.8	0.00

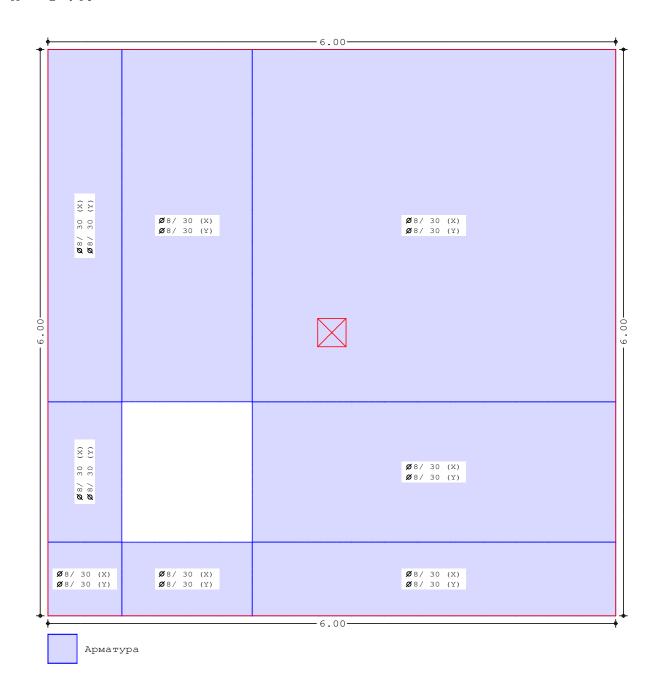

с - длина проекции наиболее опасного сечения
Qmin - несущая способность при отсутствии поперечной арматуры (СНиП 2.03.01-84*, условие 84)

Qmax - максимально допустимая поперечная сила

Конструирование

Подобранная нижняя арматура

M = 1 : 40



 Позиция
 t200К
 Страница
 41

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/200
 Версия
 2025.000

Подобранная верхняя арматура M = 1 : 40

Основная нижняя арматура

No	Н	Требуемая	Под	обранная	ī
плиты		As	Диаметр	Шаг	As
		[cm ² /m]	[MM]	[MM]	[см ² /м]
1	Χ	3.37	8	30	16.76
	Y	3.37	8	30	16.76

Н - направление

Верхняя арматура

	№ Положение		Н	Tpe6.	Подобранная		иная	
	плиті	ы	1		As	Диаметр	Шаг	As
L			[M]		$[cm^2/m]$	[MM]	[MM]	$[cm^{2}/m]$
	1	Снизу	0.8	Χ	1.68	8	30	16.76
				Y	1.75	8	30	16.76
L		Справа	3.8	Χ	1.92	8	30	16.76

ООО Техсофт, Москва

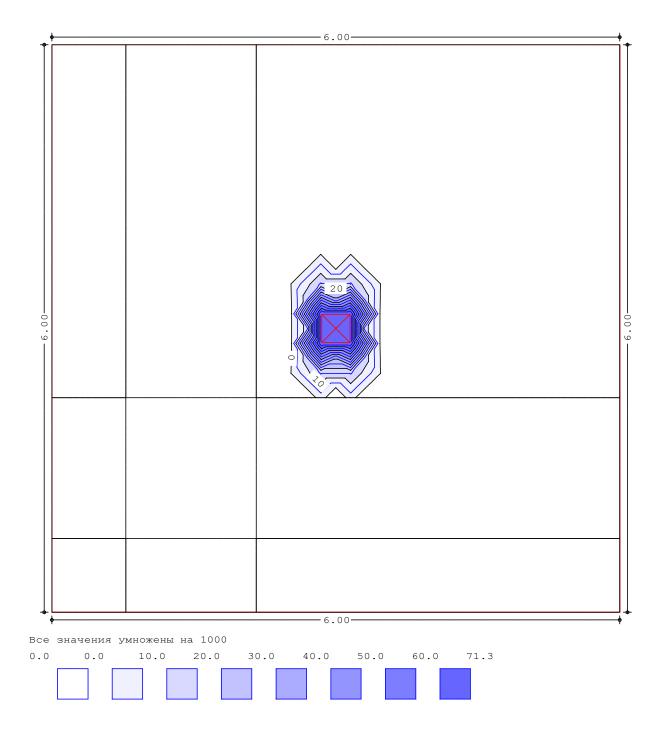
Позиция	t200K		Страниц	a 42
Проект	СТАТИКА тест в	сех модулей	Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/200	Версия	2025.000

	Y	1.68	8	30	16.76
Сверху 3.7	X	1.68	8	30	16.76
	Y	1.75	8	30	16.76
Слева 0.8	X	1.75	8	30	16.76
	Y	1.68	8	30	16.76
Угол (Н Л)	X	2.26	8	30	16.76
	Y	2.26	8	30	16.76
Угол (Н П)	X	2.26	8	30	16.76
	Y	2.26	8	30	16.76
Угол (В Л)	X	2.26	8	30	16.76
	Y	2.26	8	30	16.76
Угол (В П)	X	7.97	8	30	16.76
	Y	7.97	8	30	16.76

Н - направление

Обозначения : $(H\ \Pi) \ - \ \text{снизу-слева,} \qquad (H\ \Pi) \ - \ \text{снизу-справа}$ $(B\ \Pi) \ - \ \text{сверху-слева,} \qquad (B\ \Pi) \ - \ \text{сверху-справа}$

 Позиция
 t200K
 Страница
 43

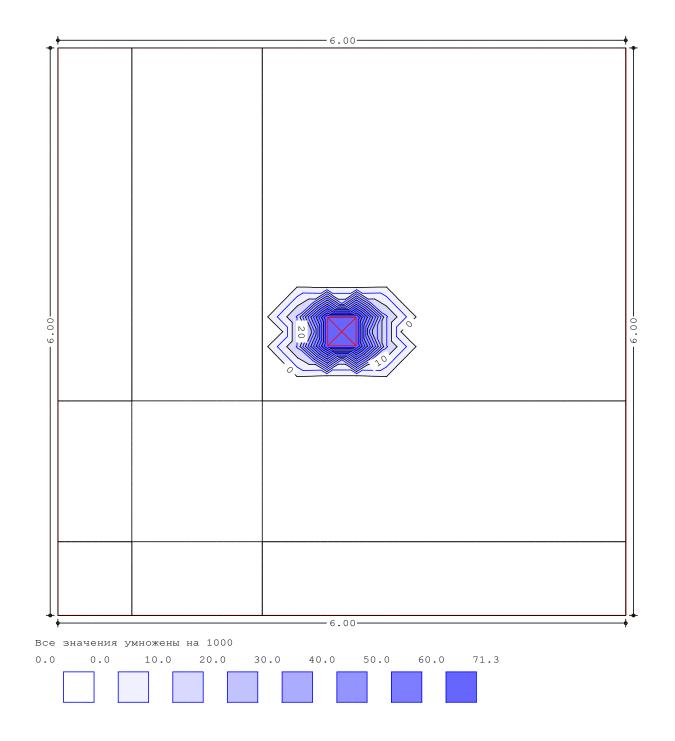

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/200
 Версия
 2025.000

Трещиностойкость

Предельно допустимая ширина раскрытия трещин: непродолжительное раскрытие $a_{\text{crc1}} = 0.40$ мм продолжительное раскрытие $a_{\text{crc2}} = 0.30$ мм

Ширина непродолжительного раскрытия трещин сверху по направл. X [мм] М = 1 :40

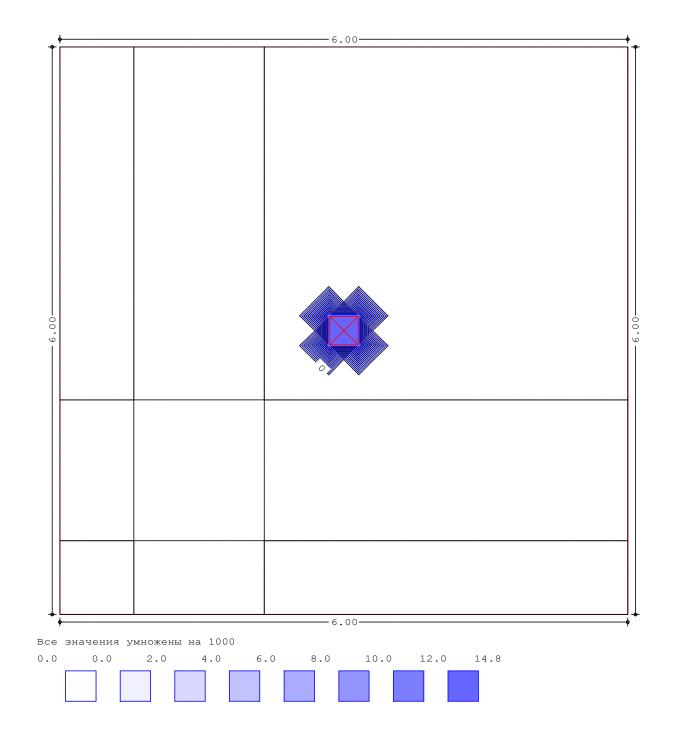


 Позиция
 t200К
 Страница
 44

 Проект
 CTATИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 CTATИКА/200
 Версия
 2025.000

Ширина непродолжительного раскрытия трещин сверху по направл. Y [мм] М = 1 :40

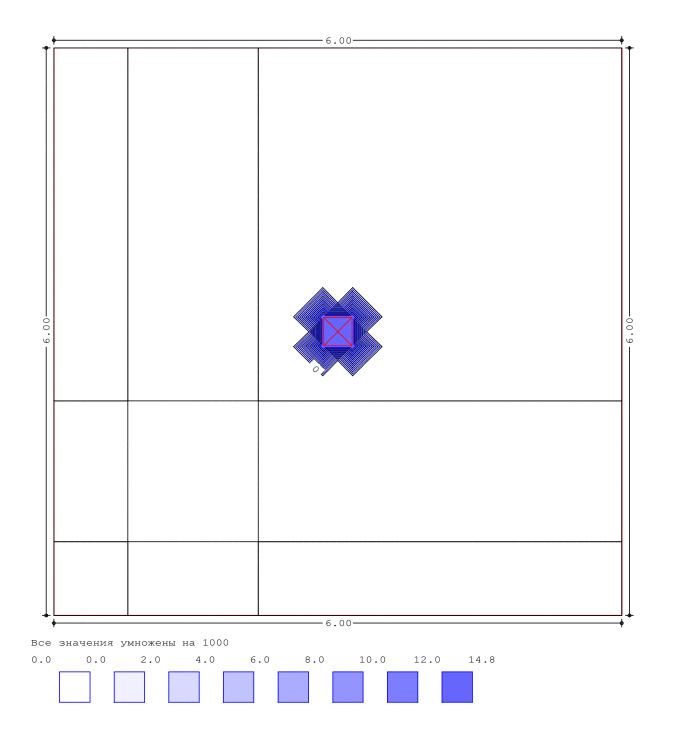


 Позиция
 t200К
 Страница
 45

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/200
 Версия
 2025.000

Ширина продолжительного раскрытия трещин сверху по направлению X [мм] M=1:40



 Позиция
 t200К
 Страница
 46

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/200
 Версия
 2025.000

Ширина продолжительного раскрытия трещин сверху по направлению Y [мм] M=1:40

Раскрытие трещин снизу

Γ	Nº	Н	М	Ml	Mcrc	acrc1	acrc2
	плиты		[кНм/м]	[кНм/м]	[кНм/м]	[MM]	[MM]
	1	Χ	19.8	9.5	21.5	0.000	0.000
		Y	19.8	9.5	21.5	0.000	0.000

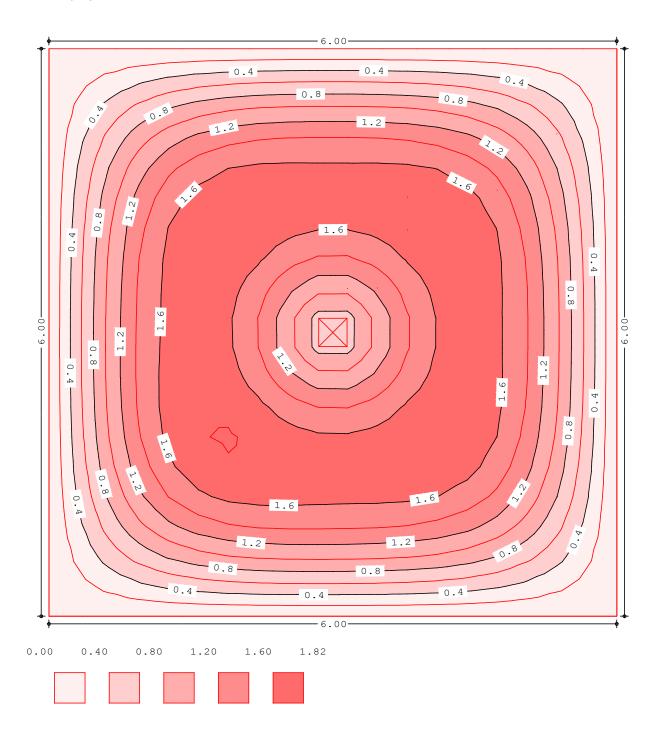
Раскрытие трещин сверху

Nº	Н	М	Ml	Mcrc	acrc1	acrc2
плиты		[кНм/м]	[кНм/м]	[кНм/м]	[MM]	[MM]
1	Χ	-44.8	-21.5	21.5	0.071	0.015
	Y	-44.8	-21.5	21.5	0.071	0.015

 Позиция
 t200К
 Страница
 47

 Проект
 CTATИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 CTATИКА/200
 Версия
 2025.000


Максимальная ширина раскрытия трещин:

непродолжительное раскрытие $a_{\text{crc1}} = 0.071$ мм продолжительное раскрытие $a_{\text{crc2}} = 0.015$ мм

Трещиностойкость обеспечена

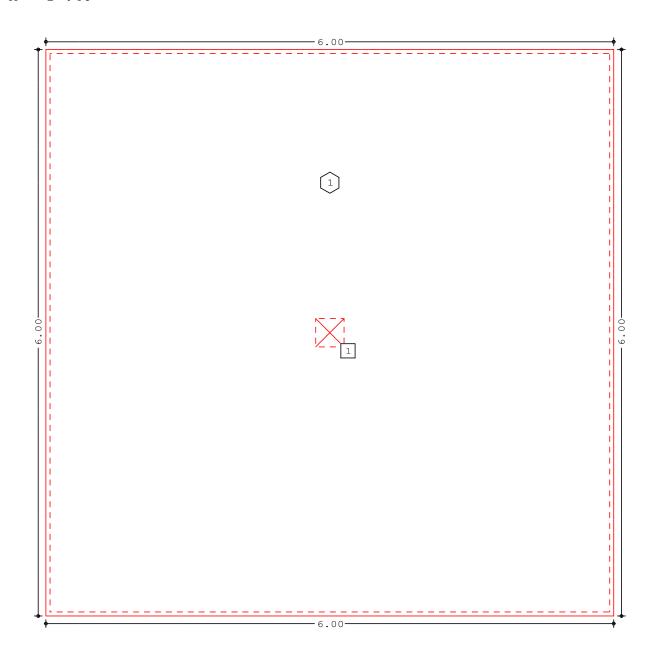
 $\frac{{\tt Расчёт \ по \ деформациям}}{{\tt Максимальные \ прогибы}} [{\tt мм}]$

M = 1 : 40

Прогибы

Nº	Допустимый	прогиб	Максимальный	прогиб
плиты	[MM]		[MM]	
1	20.00)	1.82	

Проверка по деформациям выполняется


Страница лата **28.10.2024** t200K Позиция Проект СТАТИКА тест всех модулей Разработчик **СТАТИКА/200** Версия 2025.000 Разраб.

Расчет выполнен модулем 200 программы СТАТИКА 2025 © 000 Техсофт

Поз. t201

Квадратная плита

 $\frac{\text{Расчетная схема}}{\text{M} = 1 : 40}$

Плиты

$N_{\bar{0}}$	Размеры		Толщина	Координаты	
	lx[M]	1у[м]	[CM]	x[M]	у[м]
1	6.00	6.00	20.0	0.00	0.00

Позиция t201 Страница 49
Проект СТАТИКА тест всех модулей Дата 28.10.2024
Разраб. Разработчик СТАТИКА/201 Версия 2025.000

Условия закрепления

Ŧ	Nº	Ширин	на опи	ирания	я[см]	Закрепл	іения	сторс	н[-,%]	_
	плиты	Н	П	В	Л	Н	П	В	Л	
	1	30.0	30.0	30.0	30.0	0	0	0	0	

Обозначения : Н - снизу, П - справа,

В - сверху, Л - слева

Опирание плиты : -1 - свободный край

0 - шарнирное опирание

100 - заделка

Колонны

$N_{\bar{0}}$	lx	ly	Х	У	П	В	M	Жёсткость
	[CM]	[CM]	[M]	[M]				
1	30.0	30.0	3.00	3.00	1	1	1	5.000e+06

х, у - координаты центра колонны, заданные относительно вершины (В) плиты (П)

Модель колонны (М):

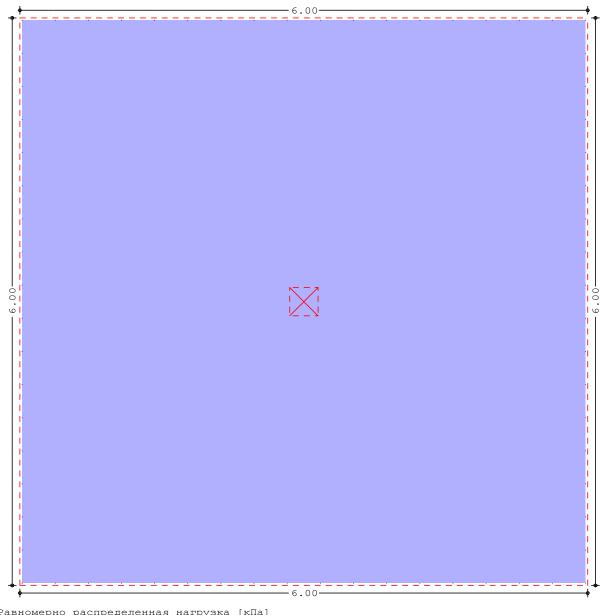
1 - упругое основание по всей площади колонны (жёсткость в к ${\rm H/M3}$)

2 - жёсткая точечная опора в центре колонны

3 - точечные пружины в центре колонны (жёсткости в кH/M и кHM соответственно)

Капители колонн

N ₀	Вид	lx	ly	h
колонны		[CM]	[CM]	[CM]
1	ппавн	50.0	50 0	30 0


Нагружение

Nº	Вид	Коэфф. сочет.	γf	Распределение	Р[кН]
				по пролётам	
1	постоянная		1.35	Заданное	180.00
2	постоянная	0.00 0.00 0.00	1.50	Неблагопр.	720.00

Р - суммарная нагрузка

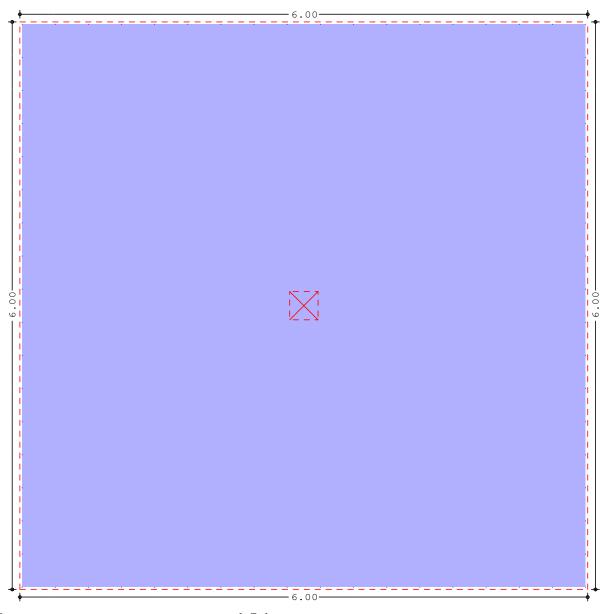
Страница Лата 28.10.2024 Позиция t201 Проект СТАТИКА тест всех модулей Разраб. Разработчик **СТАТИКА/201** Версия 2025.000

Нагрузка № 1 M = 1 : 40

Равномерно распределенная нагрузка [кПа]

Равномерно распределённая нагрузка

Nº	плиты	р	[кПа]
	1		5.00


 Позиция
 t201
 Страница
 51

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/201
 Версия
 2025.000

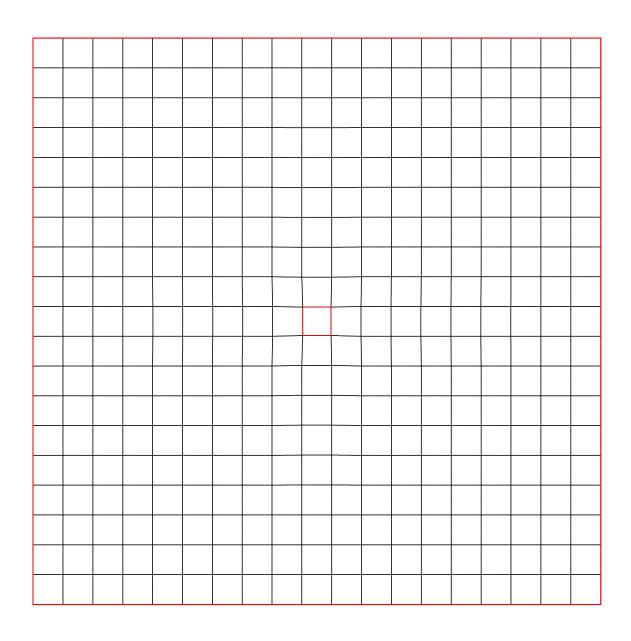
Нагрузка № 2 M = 1 : 40

0.00 0.00 0.00

Равномерно распределенная нагрузка [кПа]

20.00

Равномерно распределённая нагрузка


Nº	плиты	р	[кПа]
	1		20.00

Позиция **t201** Дата 28.10.2024 СТАТИКА тест всех модулей Проект Версия 2025.000

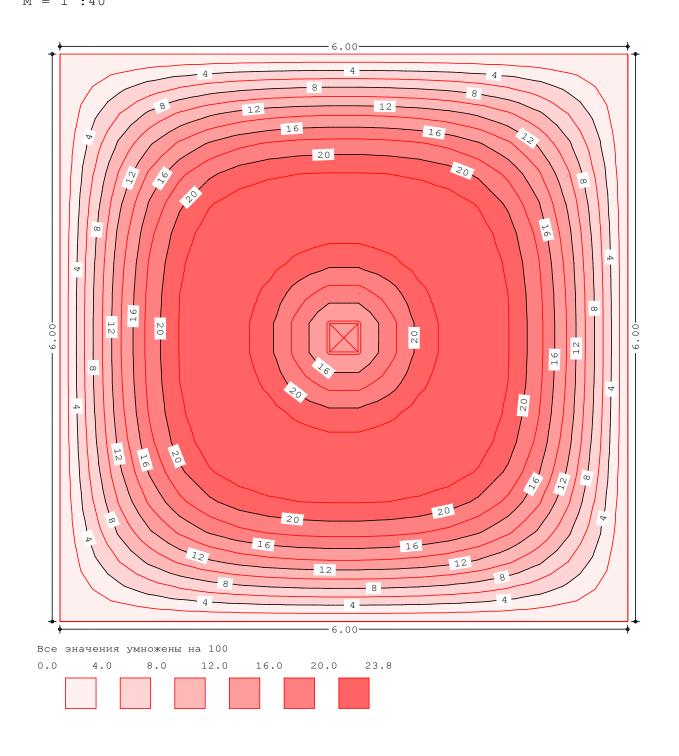
Разработчик **СТАТИКА/201** Внутренние усилия

по каждой нагрузке (расчёт методом конечных элементов)

КЭ-сетка M = 1 : 40

Характерный размер элемента сетки 1 = 0.30 M

 $E_{cm} = 31000$ v = 0.20 0.5Модуль упругости МΠа Коэффициент Пуассона


0.5 Коэффициент учета кручения

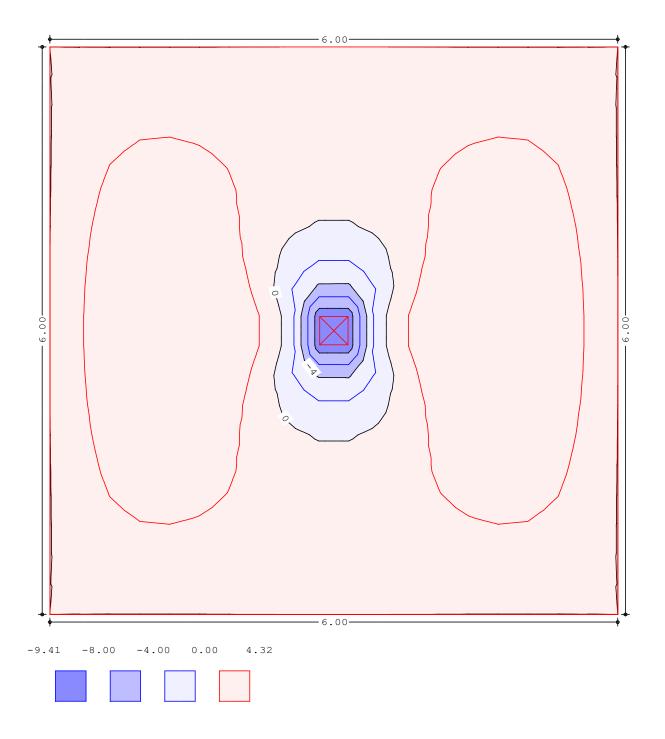
 Позиция
 t201
 Страница
 53

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/201
 Версия
 2025.000

<u>Нагрузка № 1</u> Перемещения [мм] М = 1 :40

Перемещения

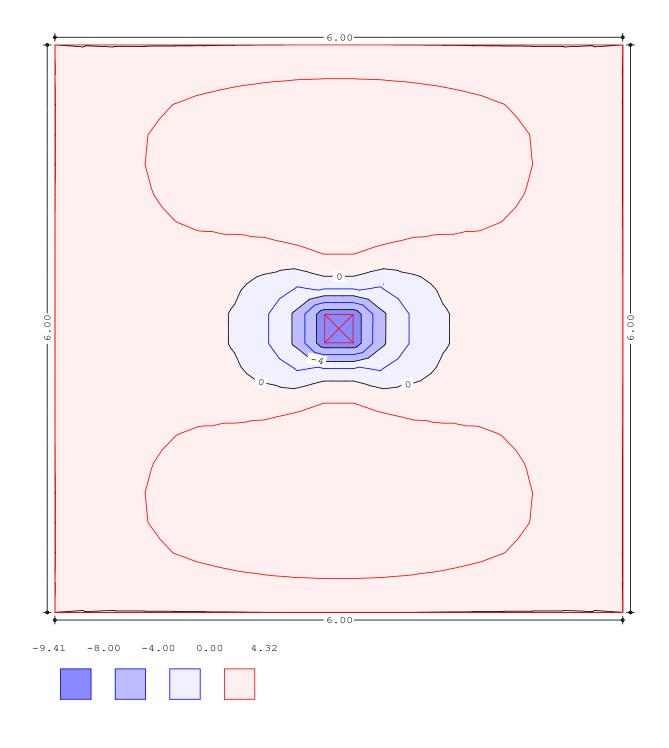

$N_{\bar{0}}$	плиты	W	[MM]
	1		0.24

 Позиция
 t201
 Страница
 54

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/201
 Версия
 2025.000

Моменты Мх М = 1 :40

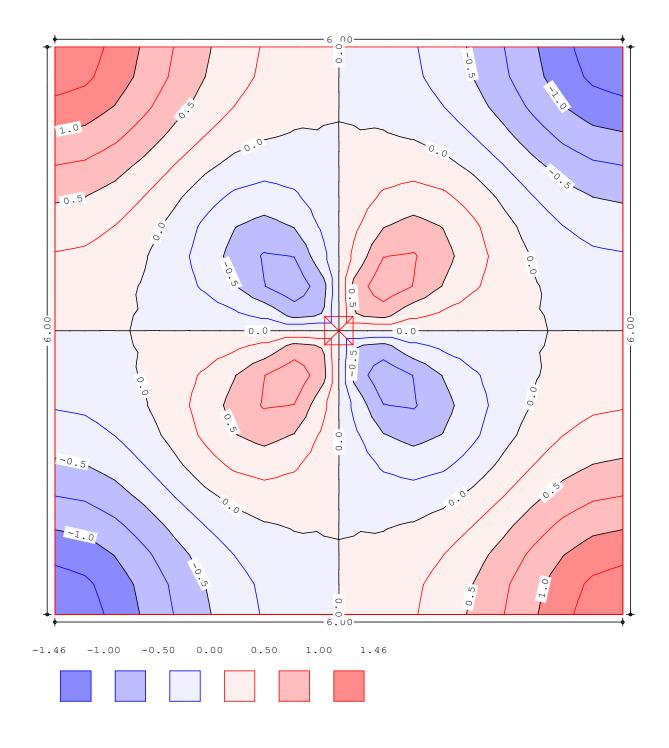


 Позиция
 t201
 Страница
 55

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/201
 Версия
 2025.000

Моменты Му М = 1 :40

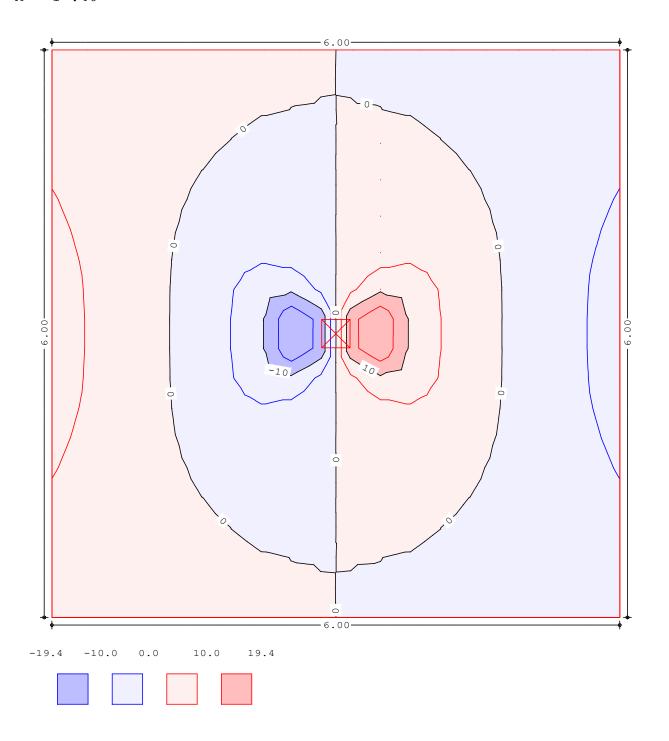


 Позиция
 t201
 Страница
 56

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/201
 Версия
 2025.000

Моменты Мху М = 1 :40

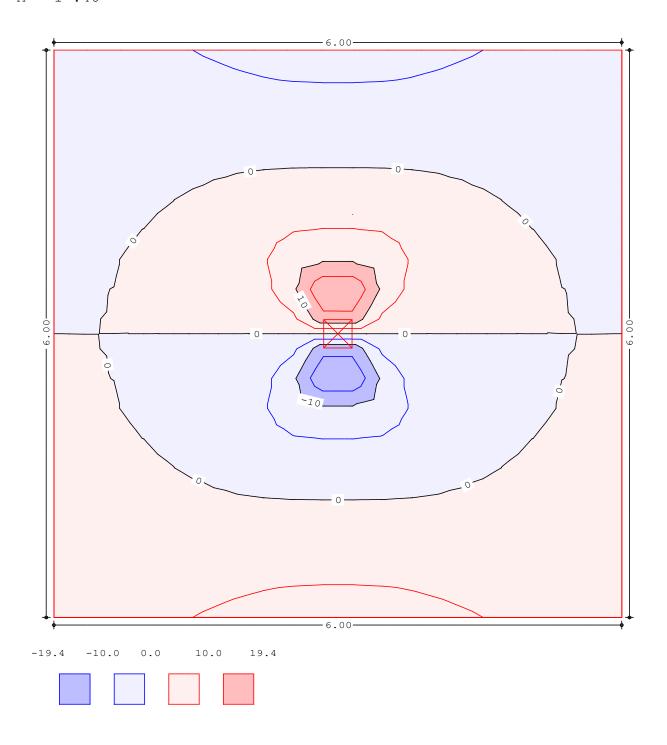


 Позиция
 t201
 Страница
 57

 Проект
 CTATИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 CTATИКА/201
 Версия
 2025.000

Поперечные силы Qx [кН/м] M = 1 : 40



 Позиция
 t201
 Страница
 58

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/201
 Версия
 2025.000

Поперечные силы Qy [кH/м] M = 1 :40

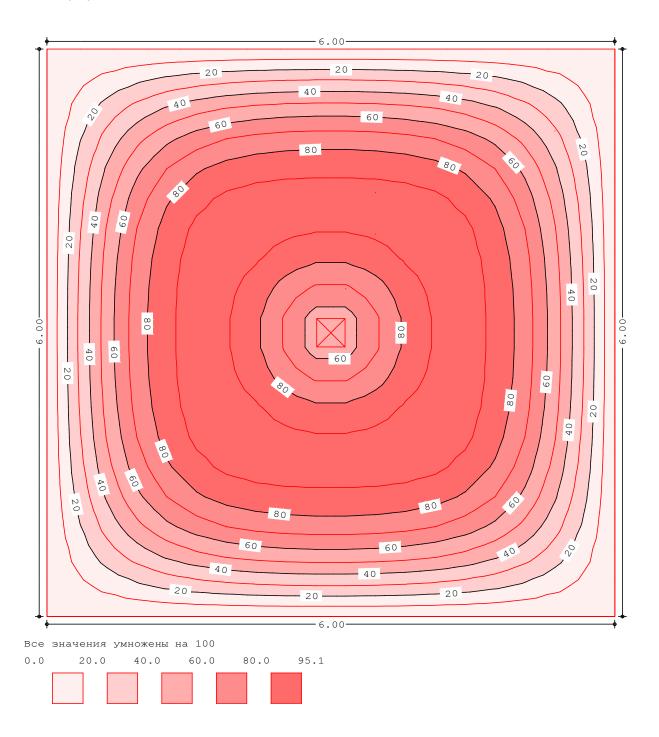
Опорные реакции по отрезкам

$N_{\tilde{0}}$	Сторона	a	1	q
плиты		[M]	[м]	[кН/м]
1	Нижняя	0.00	6.00	5.05
	Правая	0.00	6.00	5.05
	Верхняя	0.00	6.00	5.05
	Левая	0.00	6.00	5.05

Опорные реакции колонн

Nº	Q	Mx	МУ	
	[ĸH]	[кНм]	[кНм]	
1	58.83	0.00	-0.00	

 Позиция
 t201
 Страница
 59

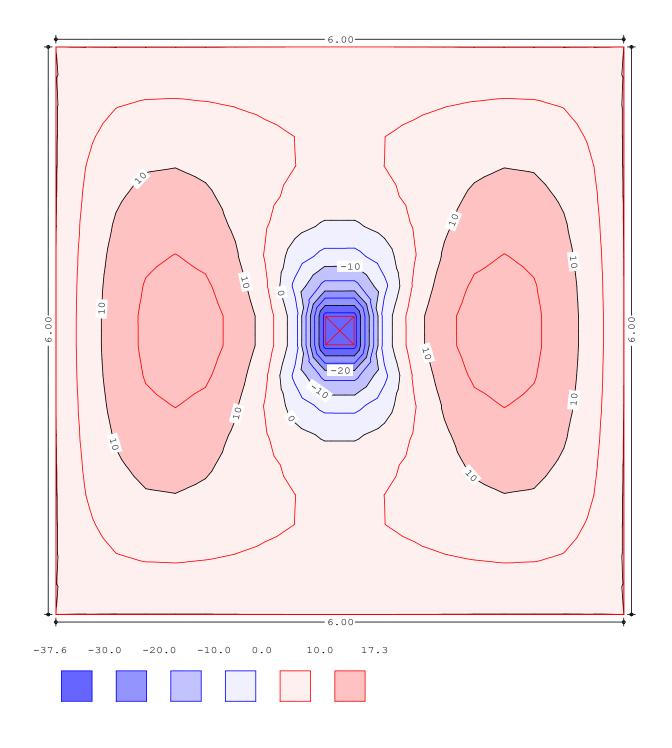

 Проект Разраб.
 СТАТИКА тест всех модулей Разработчик
 СТАТИКА/201
 Версия
 28.10.2024

Сумма всех опорных реакций

Q = 180.0 KH

Harpyзка № 2
Перемещения
M = 1 :40

0.00 0.00 0.00 [MM]

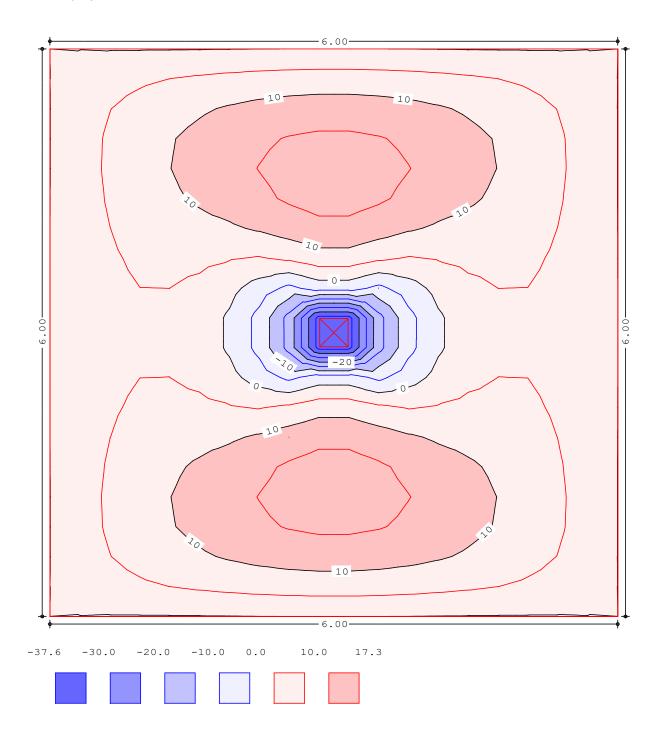

№ плиты	W [MM]	
1	0.95	

 Позиция
 t201
 Страница
 60

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/201
 Версия
 2025.000

Моменты Мх М = 1 :40

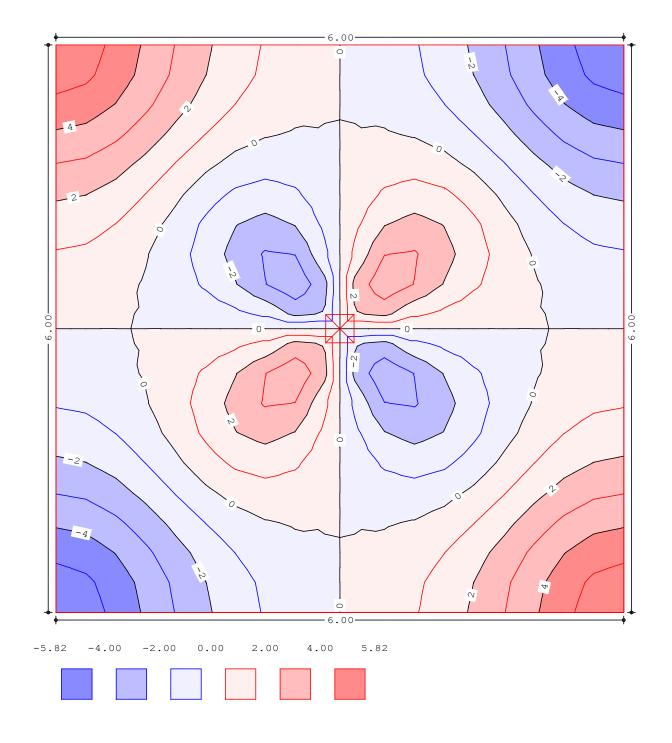


 Позиция
 t201
 Страница
 61

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/201
 Версия
 2025.000

Моменты Му М = 1 :40

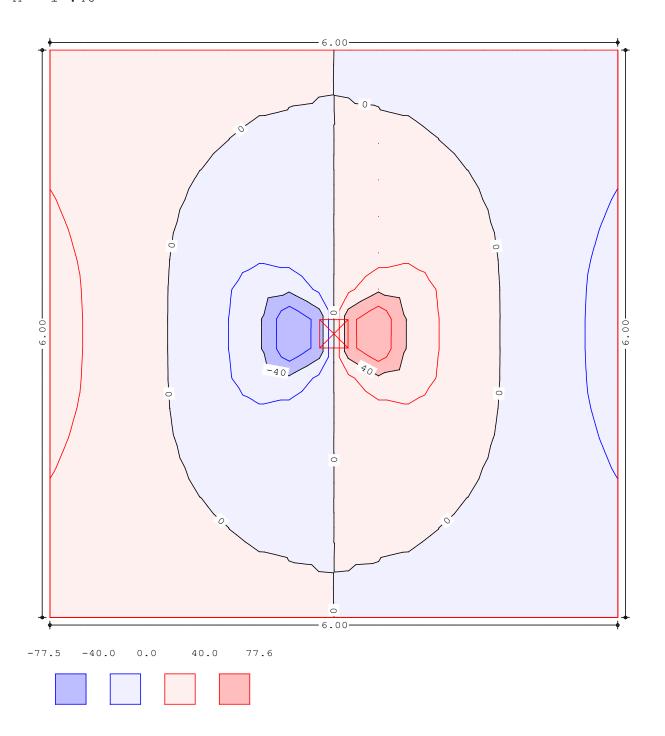


 Позиция
 t201
 Страница
 62

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/201
 Версия
 2025.000

Моменты Мху М = 1 :40

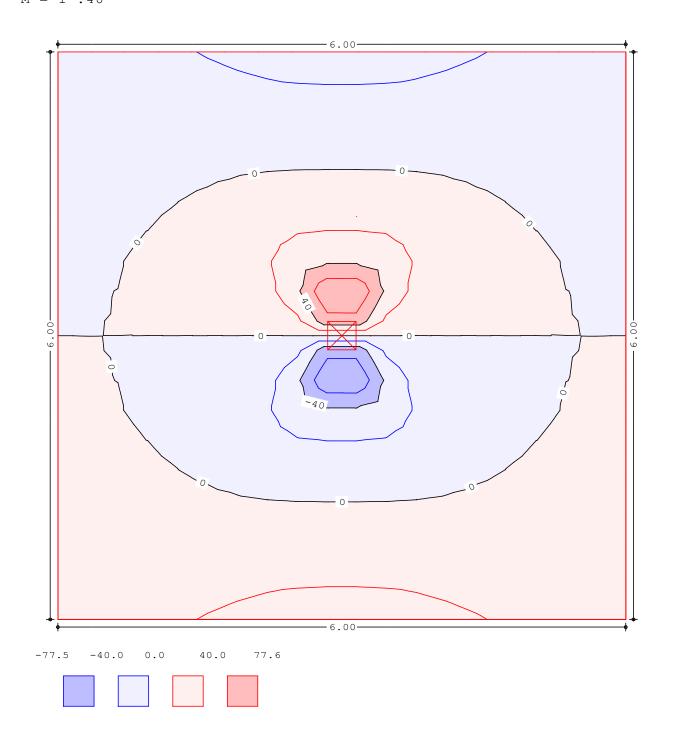


 Позиция
 t201
 Страница
 63

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/201
 Версия
 2025.000

Поперечные силы Qx [кН/м] M = 1 : 40



 Позиция
 t201
 Страница
 64

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

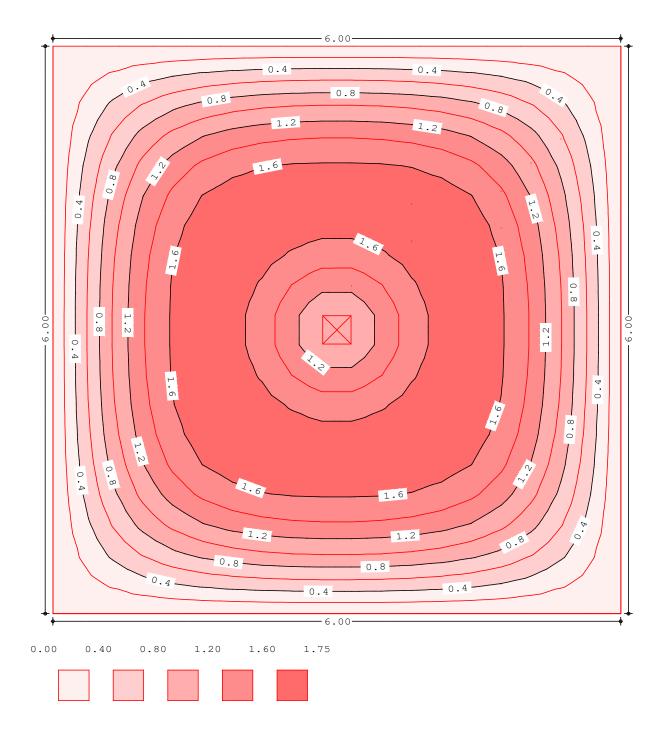
 Разраб.
 Разработчик
 СТАТИКА/201
 Версия
 2025.000

Поперечные силы Qy [кH/м] M = 1 :40

Опорные реакции по отрезкам

N^{ϱ}	Сторона	a	1	q
плиты		[M]	[м]	[кН/м]
1	Нижняя	0.00	6.00	20.19
	Правая	0.00	6.00	20.19
	Верхняя	0.00	6.00	20.19
	Левая	0.00	6.00	20.19

Опорные реакции колонн

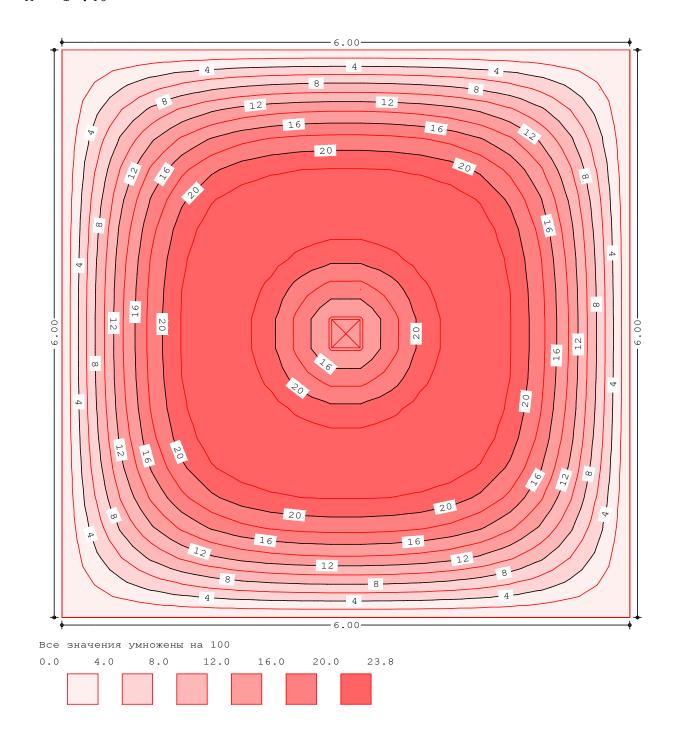

Nº	Q	Mx	Му	
	[ĸH]	[кНм]	[кНм]	
1	235.33	0.00	-0.00	

Позиция	t201		Страниц	a 65
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/201	Версия	2025.000

Сумма всех опорных реакций Q = 720.0 кН

<u>Расч. сочет. усилий</u> согласно п.6.4.3 MSZ EN 1990:2011. управления надежностью конструкции $K_{FI} = 0.00$ Коэффициент Сочетание воздейст. по формуле (6.10) EN 1990

Перемещения (максимальные значения) [мм] M = 1 : 40

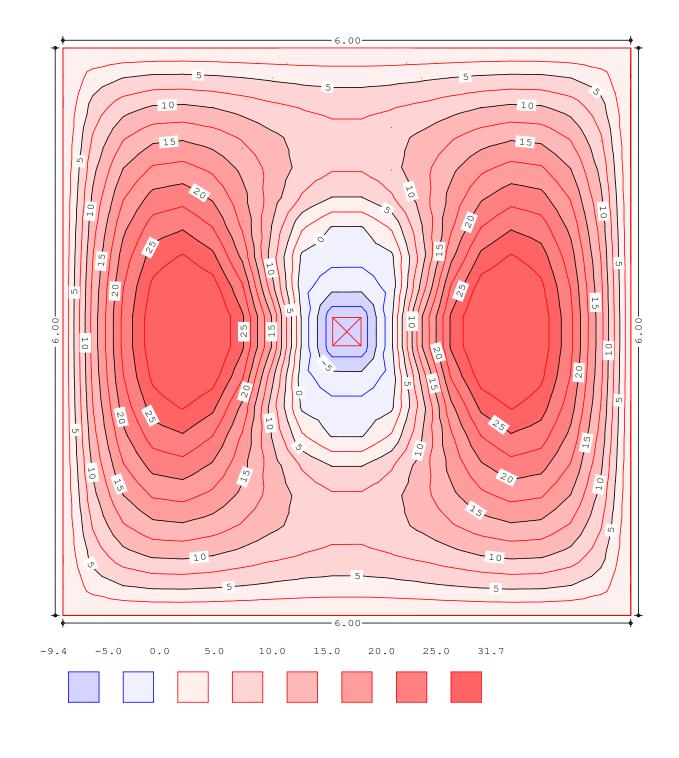


 Позиция
 t201
 Страница
 66

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/201
 Версия
 2025.000

Перемещения (минимальные значения) [мм] M = 1 : 40

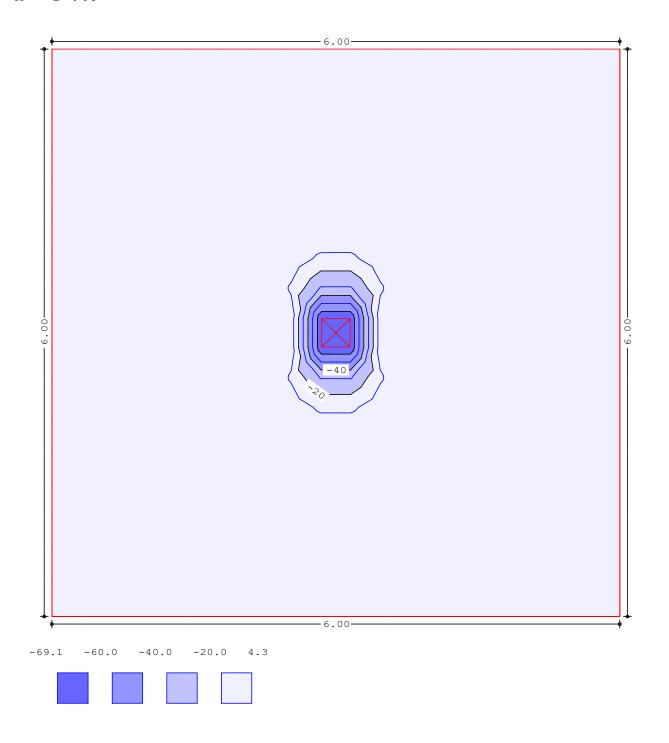

Перемещения	№ плиты	max w [мм]	min w [мм]
	1	1.75	0.00

 Позиция
 t201
 Страница
 67

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/201
 Версия
 2025.000

Моменты Мх (максимальные значения) [кНм/м] M = 1 : 40

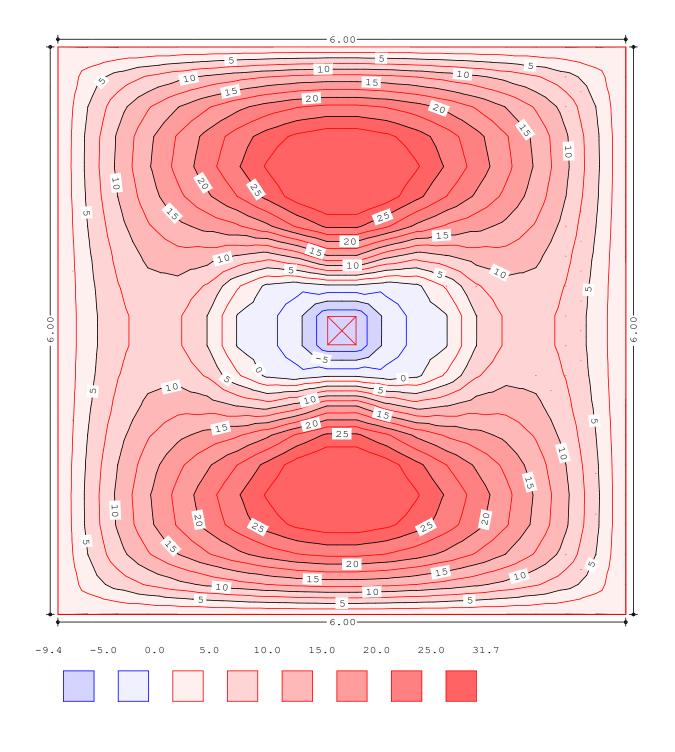


 Позиция
 t201
 Страница
 68

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/201
 Версия
 2025.000

Моменты Мх (минимальные значения) [кНм/м] М = 1 :40

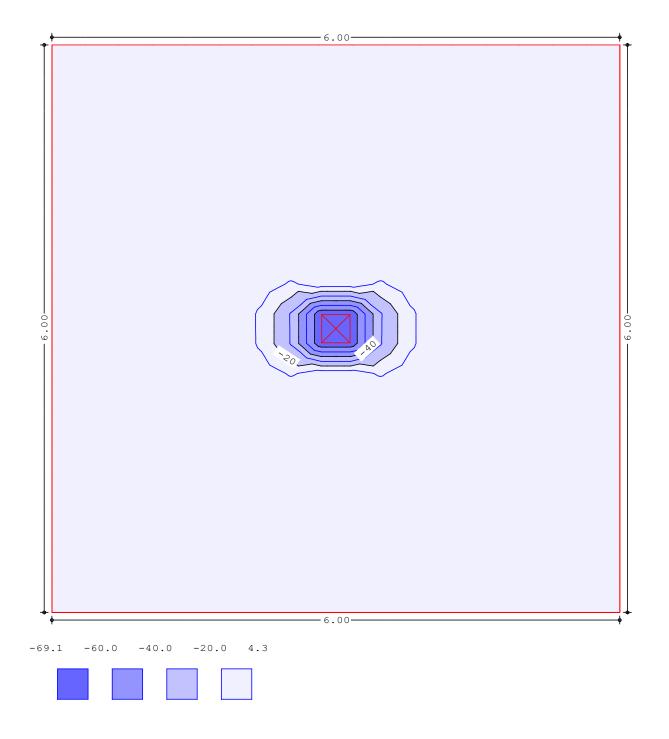


 Позиция
 t201
 Страница
 69

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/201
 Версия
 2025.000

Моменты Му (максимальные значения) [кНм/м] М = 1 :40

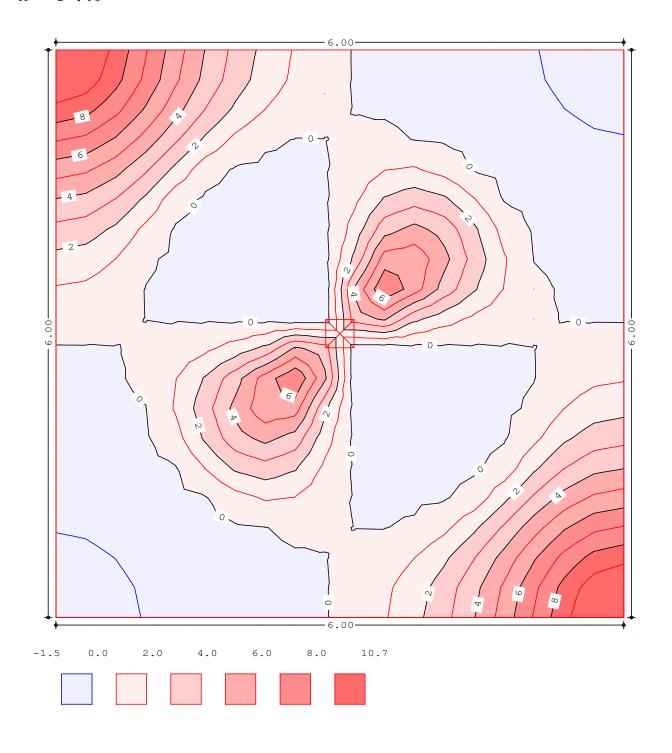


 Позиция
 t201
 Страница
 70

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/201
 Версия
 2025.000

Моменты Му (минимальные значения) [кНм/м] М = 1 :40

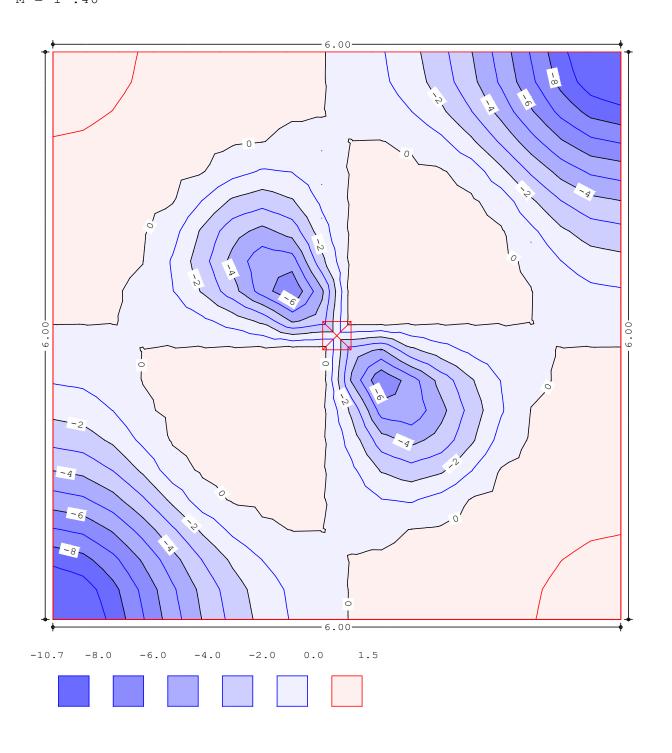


 Позиция
 t201
 Страница
 71

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/201
 Версия
 2025.000

Моменты Мху (максимальные значения) [кНм/м] M = 1 : 40

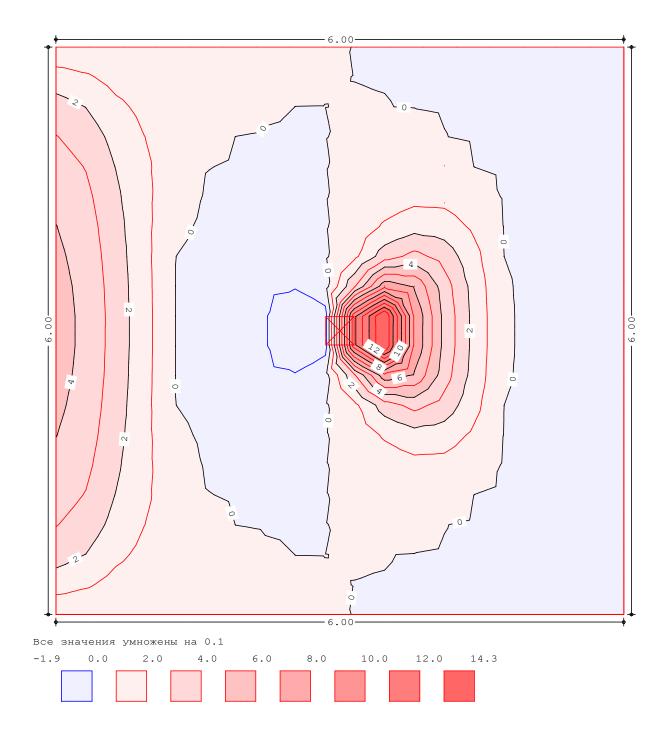


 Позиция
 t201
 Страница
 72

 Проект
 CTATИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Pазработчик
 CTATИКА/201
 Версия
 2025.000

Моменты Мху (минимальные значения) [кНм/м] М = 1 :40

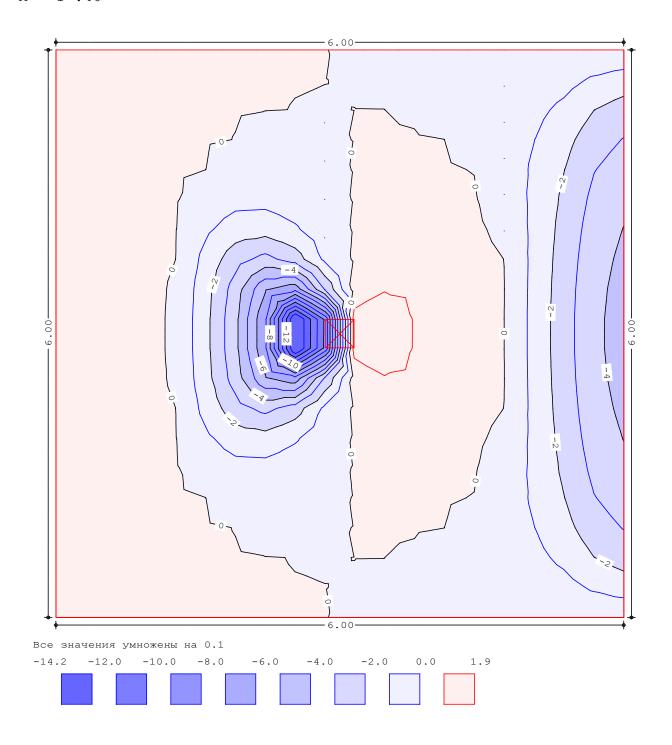


 Позиция
 t201
 Страница
 73

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/201
 Версия
 2025.000

Поперечные силы Qx (максимальные значения) [кН/м] М = 1 :40

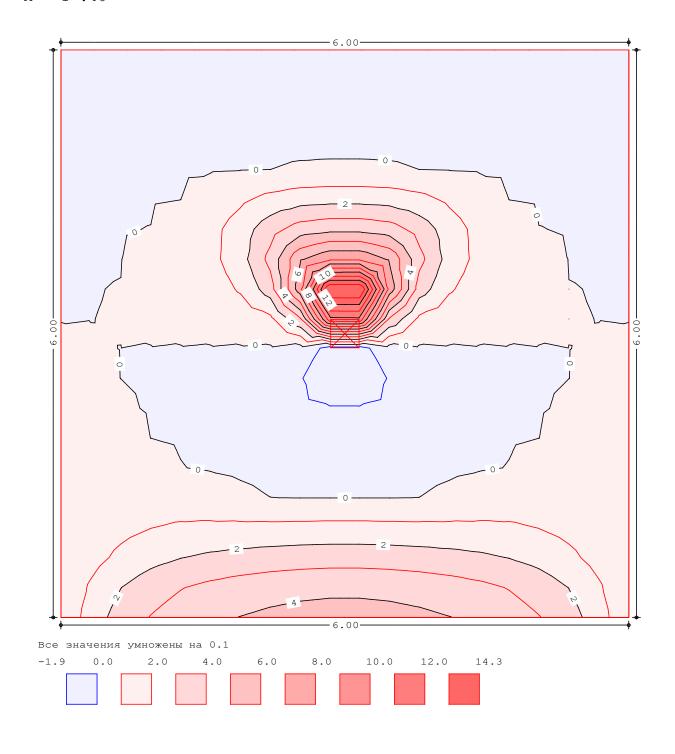


 Позиция
 t201
 Страница
 74

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/201
 Версия
 2025.000

Поперечные силы Qx (минимальные значения) [кН/м] М = 1 :40



 Позиция
 t201
 Страница
 75

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/201
 Версия
 2025.000

Поперечные силы Qy (максимальные значения) [кН/м] М = 1 :40

 Позиция
 t201
 Страница
 76

 проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/201
 Версия
 2025.000

Поперечные силы Qy (минимальные значения) [кН/м] М = 1 :40

Опорные реакции (по отрезкам)

Nº	Сторона	a	1	max q	min q
плиты		[M]	[M]	[кН/м]	[кН/м]
1	Нижняя	0.00	6.00	37.11	5.05
	Правая	0.00	6.00	37.11	5.05
	Верхняя	0.00	6.00	37.11	5.05
	Левая	0.00	6.00	37.11	5.05

Опорные реакции колонн

ſ	Nº	max Q	min Q	max Mx	min Mx	max My	min My
		[ĸH]	[ĸH]	[кНм]	[кНм]	[кНм]	[кНм]
ſ	1	432.42	58.83	0.00	0.00	-0.00	-0.00

 Позиция
 t201
 Страница
 77

 Проект
 CTATИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 CTATИКА/201
 Версия
 2025.000

Расчётные моменты

Существенные сочетания усилий

ĺ	$N_{\bar{0}}$	$N_{f \hat{o}}$	тнэриффеоХ	Нагружение	пролётов
	сочетания	нагрузки	[
	1	1	1.35	+	
١		2	1.50	+	

Расчётные моменты для определения нижней арматуры

Nº	Н	$N_{\bar{0}}$	M	Соответ	ствующие	моменты
плиты		сочет	.[кНм/м]	Mx	Му	Mxy
				[кНм/м]	[кНм/м]	[кНм/м]
1	Χ	1	32.13	31.75	7.89	0.38
	Y	1	32.13	7.89	31.75	0.38

Расчётные моменты для верхней арм. по сторонам плит

Nº	Сторона	Н	Nº	М	Соответс	гвующие	моменты
плиз	гы	С	οч.	[кНм/м]	M×	Му	Mxy
					[кНм/м]	[кНм/м]	[кНм/м]
1	пкнжин	Χ	1	-10.70	0.00	0.00	10.70
		Y	1	-10.70	0.00	0.00	10.70
	Правая	Χ	1	-10.70	0.00	0.00	-10.70
		Y	1	-10.70	0.00	0.00	-10.70
	Верхняя	Χ	1	-10.70	0.00	0.00	-10.70
		Y	1	-10.70	0.00	0.00	-10.70
	Левая	Χ	1	-10.70	0.00	0.00	10.70
		Y	1	-10.70	0.00	0.00	10.70

Расчётные моменты для верхней арм. над колоннами

Nº	Н	Nº	M	Соответс	ствующие	моменты
колонны		сочет.	[кНм/м]	Mx	Му	Mxy
				[кНм/м]	[кНм/м]	[кНм/м]
1	Χ	1	-72.54	-69.13	-69.13	3.40
	Y	1	-72.54	-69.13	-69.13	3.40

Расчёт по прочности согласно MSZ EN 1992-1-1: Проект. бетонных констр.

Бетон тяжёлый класса

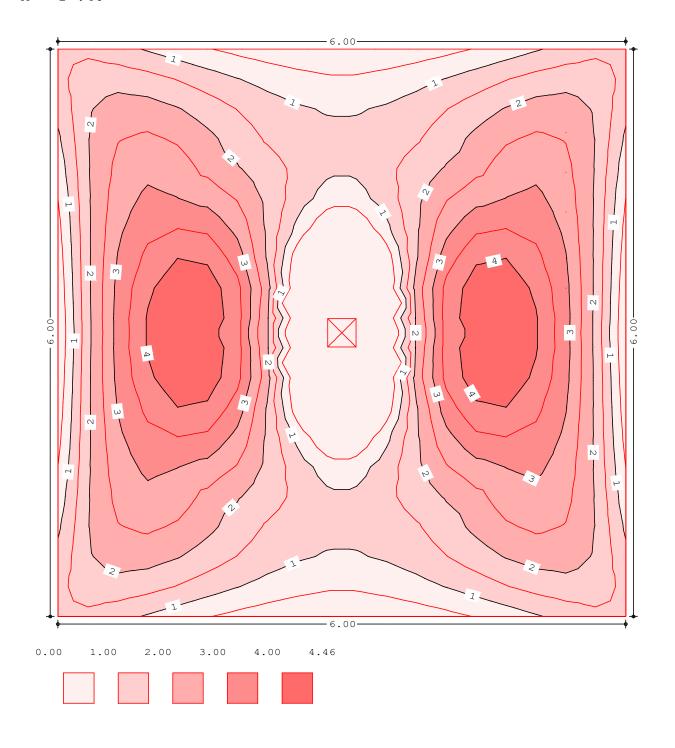
C 25/30

Определение продольной арматуры

Продольная арматура класса

s 500

Расстояния до ц.т. продольной арматуры

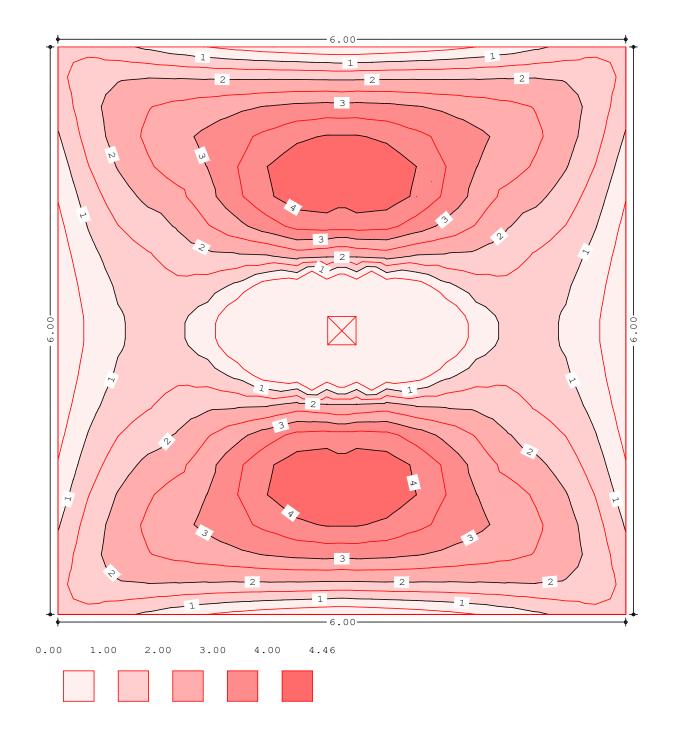

N ₀	Нижняя	арматура	Верхняя	арматура
плиты	ах[см]	ау[см]	ах[см]	ау[см]
1	3 5	3 5	3 5	3 5

 Позиция
 t201
 Страница
 78

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/201
 Версия
 2025.000

Нижняя арматура Asx $[cm^2/m]$ M = 1 :40

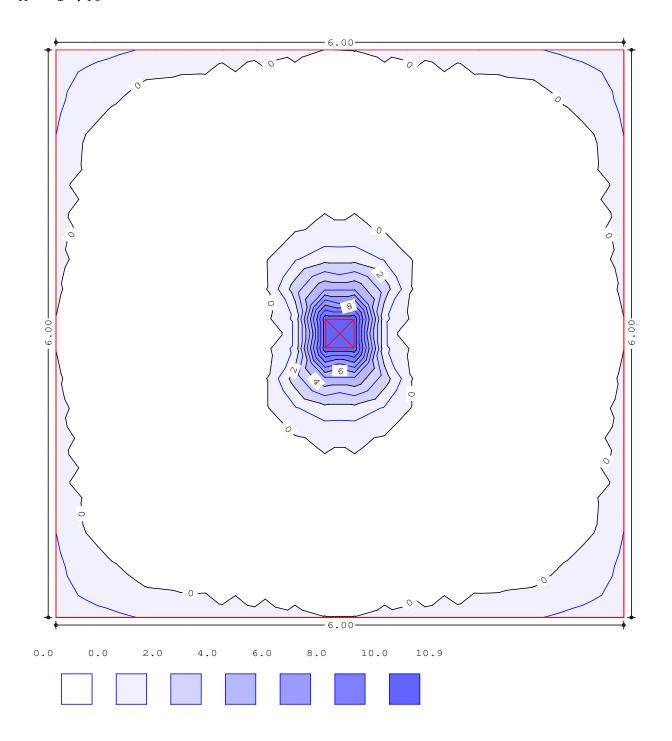


 Позиция
 t201
 Страница
 79

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/201
 Версия
 2025.000

Нижняя арматура Asy $[cm^2/m]$ M = 1 :40

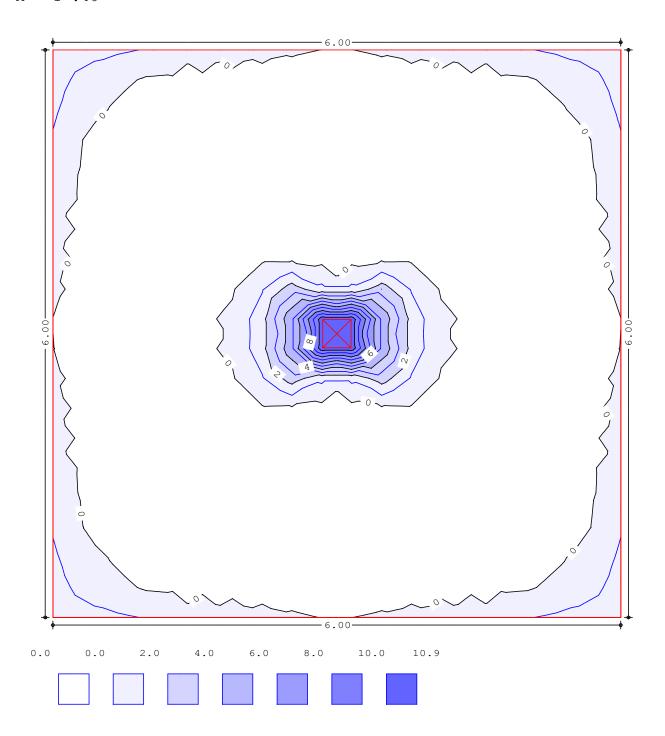


 Позиция
 t201
 Страница
 80

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/201
 Версия
 2025.000

Верхняя арматура $Asx[cm^2/m]$ M = 1 :40



 Позиция
 t201
 Страница
 81

 проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/201
 Версия
 2025.000

Верхняя арматура $Asy[cm^2/m]$ M = 1 :40

Нижняя арматура

Nº	Mx	Asx	Му	Asy
плиты	[кНм/м]	$[cm^2/m]$	[кНм/м]	$[cm^2/m]$
1	32.13	4.46	32.13	4.46

Верхняя арматура по сторонам плит

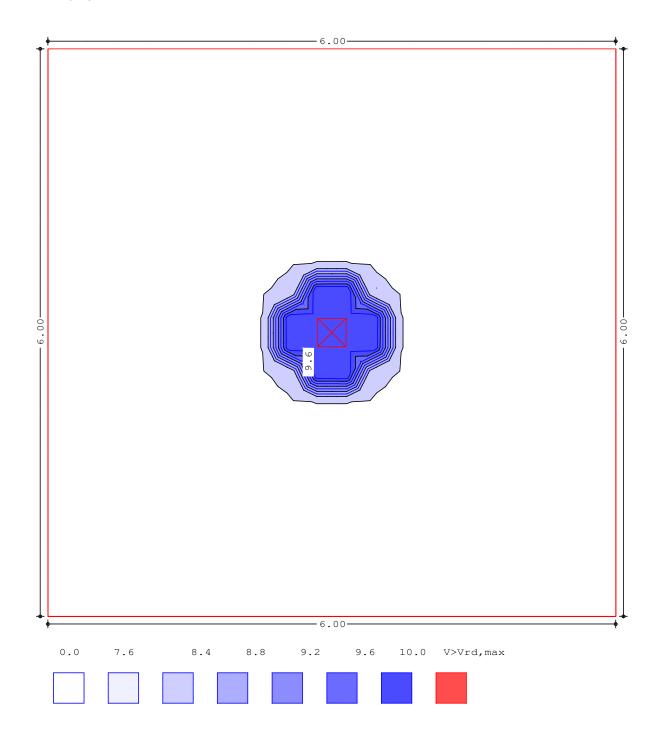
$N_{\bar{0}}$	Сторона	Mx	Asx	Му	Asy
плиты		[кНм/м]	$[cm^{2}/m]$	[кНм/м]	$[cm^2/m]$
1	Нижняя	-10.70	1.45	-10.70	1.45
	Правая	-10.70	1.45	-10.70	1.45
	Верхняя	-10.70	1.45	-10.70	1.45
	Левая	-10.70	1.45	-10.70	1.45

 Позиция проект
 t201
 Страница
 82

 СТАТИКА тест всех модулей Разраб.
 СТАТИКА/201
 Дата 28.10.2024

 Версия 2025.000
 2025.000

Верхняя арматура над колоннами


Nº	Mx	Asx	Му	Asy
колонны	[кНм/м]	$[cm^{2}/m]$	[кНм/м]	$[cm^2/m]$
1	-72.54	10.87	-72.54	10.87

Определение поперечной арматуры

Поперечная арматура класса

s 500

Поперечная арматура Asw $[cm^2/m2]$ M = 1 :40

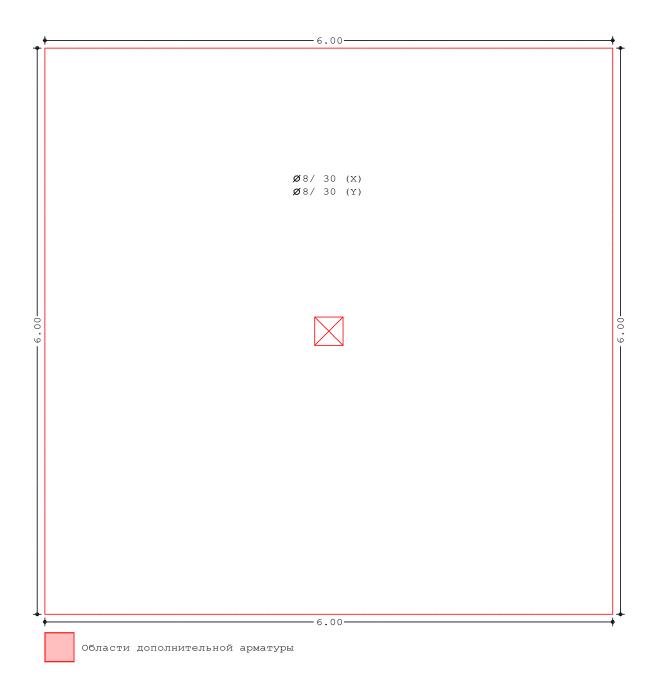
 Позиция
 t201
 Страница
 83

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/201
 Версия
 2025.000

Поперечная арматура по сторонам плит

Nº	Сторона	а	1	Vsd	Vrd,ct	Vrd, max	Asw
плиты		[M]	[M]	[кН/м]	[кН/м]	[кН/м]	$[cm^2/m^2]$
1	Нижняя	0.00	6.00	14.1	81.7	742.5	0.00
	Правая	0.00	6.00	14.1	81.7	742.5	0.00
	Верхняя	0.00	6.00	14.0	81.7	742.5	0.00
	Левая	0.00	6.00	14.0	81.7	742.5	0.00

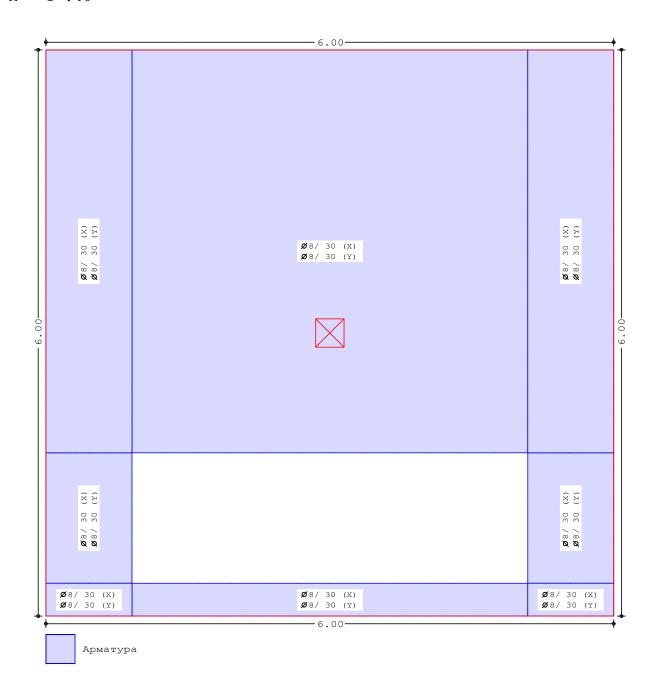

Поперечная арматура над колоннами

Nº	Vsd	Vrd,ct	Vrd,max	Asw
	[кН/м]	[кН/м]	[кН/м]	$[cm^{2}/m^{2}]$
1	137.8	100.7	451.9	10.01

Конструирование

Подобранная нижняя арматура

M = 1 : 40



 Позиция
 t201
 Страница
 84

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/201
 Версия
 2025.000

Подобранная верхняя арматура М = 1 :40

Основная нижняя арматура

Nº	Н	Требуемая	Под	обранная	
плиты		As	Диаметр	Шаг	As
		[CM ² /M]	[MM]	[MM]	[CM ² /M]
1	X	4.46	8	30	16.76
	Y	4.46	8	30	16.76

Н - направление

Верхняя арматура

$N_{\bar{0}}$	Положен	ние	Н	Tpe6.	Пол	цобран	ная
плит	ы	1		As	Диаметр	Шаг	As
		[M]		[cm ² /m]	[MM]	[MM]	$[cm^2/m]$
1	Снизу	0.3	X	1.00	8	30	16.76
			Y	1.04	8	30	16.76
	Справа	0.9	X	1.37	8	30	16.76
			Y	1.35	8	30	16.76

ООО Техсофт, Москва

Позиция	t201		Страниц	a 85
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/201	Версия	2025.000

Сверху 4.3	Χ	10.87	8	30	16.76
	Y	10.87	8	30	16.76
Слева 0.9	Χ	1.37	8	30	16.76
	Y	1.35	8	30	16.76
Угол (Н Л)	X	1.45	8	30	16.76
	Y	1.45	8	30	16.76
Угол (Н П)	X	1.45	8	30	16.76
	Y	1.45	8	30	16.76
Угол (В Л)	X	1.45	8	30	16.76
	Y	1.45	8	30	16.76
Угол (В П)	X	1.45	8	30	16.76
	Y	1.45	8	30	16.76

Н - направление

Обозначения :

(Н Л) - снизу-слева, (Н П) - снизу-справа (В Л) - сверху-слева, (В П) - сверху-справа

Трещиностойкость

Предел. допустимая ширина раскр. трещин 0.40

MM

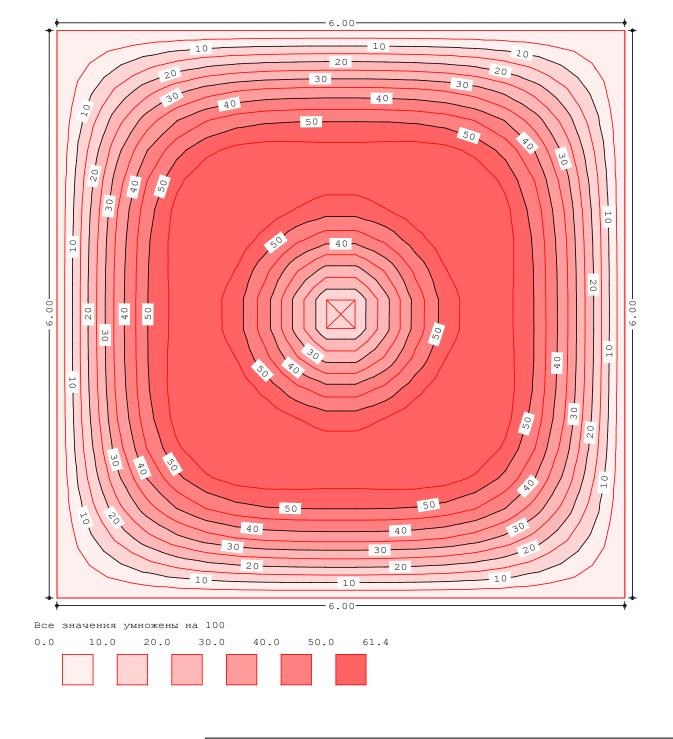
Раскрытие трещин снизу

$N_{\bar{0}}$	Направление	M	Mcrc	acrc
плиты		[кНм/м]	[кНм/м]	[MM]
1	Χ	3.1	17.9	0.000
	Y	4.4	17.9	0.000

Раскрытие трещин сверху

N ₀	Направление	M	Mcrc	acrc
плиты		[кНм/м]	[кНм/м]	[MM]
1	Χ	2.2	0.0	0.000
	Y	2.5	0.0	0.000

Максимальная ширина раскрытия трещин 0.000 Трещиностойкость обеспечена


MM

 Позиция
 t201
 Страница
 86

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

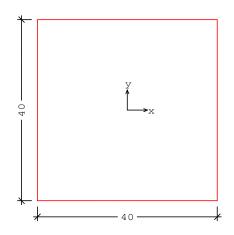
 Разраб.
 Разработчик
 СТАТИКА/201
 Версия
 2025.000

 $\frac{\text{Расчёт по деформациям}}{\text{Максимальные прогибы [мм]}}$ М = 1 :40

Прогибы

Nº	Допустимый прогиб	Максимальный прогиб
плиты	[MM]	[MM]
1	20.00	0.61

Проверка по деформациям выполняется


Расчет выполнен модулем 201 программы СТАТИКА 2025 © 000 Техсофт

	Позиция	t270		Страница	a 87
l	Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
l	Разраб.	Разработчик	СТАТИКА/270	Версия	2025.000

Поз. t270

Проектирование капителей и банкеток

Расчетная	схема	Размеры	сечения	колонны	ы	Cx	=	4 0	СМ
						сЛ	=	40	CM
		Толщина	плиты			h _n	=	25	СМ
		Рабочая	высота	сечения	плиты	h_{0x}	=	22.0	CM

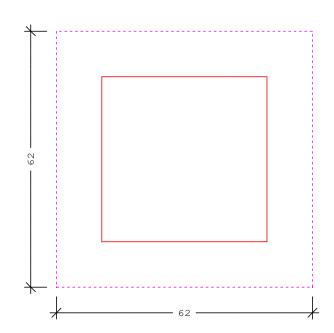
Нагрузка

Продавливающая сила

F = 500.0 KH

22.0

h_{0y}


CM

Расчет

Согласно СП 63.13330.2018 Бетон.и железобетон.кон. и Отчету ГУП "НИИЖБ" к договору №709 от 01.10.2002

Бетон В 25 (тяжелый) $\gamma_{b} = 0.900$ Коэффициент условий работы 0.945 МПа Сопротивление бетона $\gamma_b R_{bt}$

Расчетный контур

Проверка прочности по контуру на расстоянии 11.0 см от грани колонны

Позиция	t270		Страниц	a 88
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/270	Версия	2025.000

Расчетный периметр

u = 248.0

CM

см2

Моменты сопротивления расчетного контура

= 5125 см2 W_{\times}

Предельные усилия h_0

в бетоне

Fb,ult M_{bx} ,ult M_{by}, ult [CM] [KH] [кНм] [кНм] 515.6 106.6 106.6 22.0

Условие прочности

 $F / F_{ult} + M_x / M_{x,ult} + M_v / M_{v,ult} =$

0.9698 + 0.0000+ 0.0000 **0.970** <= 1

По расчету на продавливание капитель не требуется

Расчет выполнен модулем 270 программы СТАТИКА 2025 © 000 Техсофт

Поз. t271 Расчет на продавливание стеной

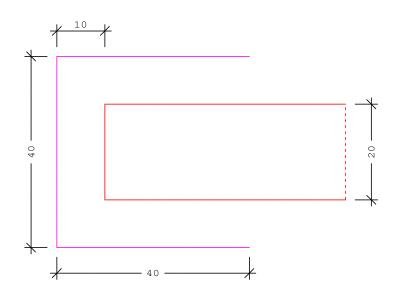
Расчетная схема Продавливание плиты краем стены

> 20 Толщина стены d СМ Рабочая высота сечения плиты h_0 = 20.0СМ

Нагрузка Принимается по усилиям вдоль расчетного контура

> Продавливающая сила F = 200.0

Согласно СП 63.13330.2018 Бетон.и железобетон.кон. Расчет


и Отчету ГУП "НИИЖБ" к договору №709 от 01.10.2002

Бетон В 25 (тяжелый) Арматура **A4**00

Коэффициент условий работы 0.900 γ_b

 $\gamma_b R_{bt}$ Сопротивление бетона 0.945 МΠа R_{sw} = 280МΠа арматуры

Расчетный контур

Длина расчетного контура

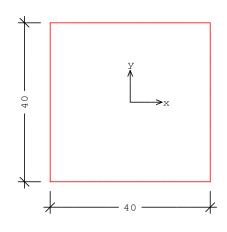
u = 120.0 СМ

	Позиция	t271		Страниц	a 89
l	Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
l	Разраб.	Разработчик	СТАТИКА/271	Версия	2025.000

Моменты инерции и сопротивления расчетного контура I = 37333 см3 W = 1867 см2

Предельные усилия в бетоне

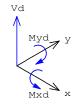
 $F_{b,ult} = 226.8$ kH $M_{b,ult} = 35.3$ kH


Условие прочности $F/F_{b,ult}+ M/M_{b,ult}= 0.882 + 0.000 = 0.882 <= 1$

По расчету на продавливание арматура не требуется

Расчет выполнен модулем 271 программы СТАТИКА 2025 © 000 Техсофт

Поз. t272 Проектирование капителей и банкеток (MSZ EN 1992)


Расчетная схема	Размеры сечения колонны	c_x	=	40.0	CM
		СА	=	40.0	СМ
	Высота плиты	hπ	=	25.0	СМ
	Средняя рабочая высота плиты	d	=	22.0	CM
	Коэфф.продольного армирования	ρ_{x}	=	0.50	용
		ρ_{y}	=	0.50	용

Усилия

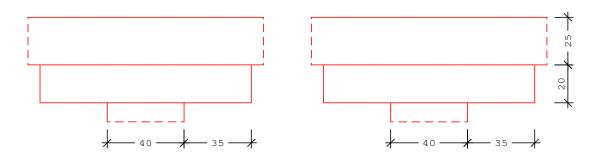
K	V _d	M _{xd}	Myd
	[ĸH]	[кНм]	[кНм]
1	800.0	10.0	10.0

Положительные направления силы и моментов

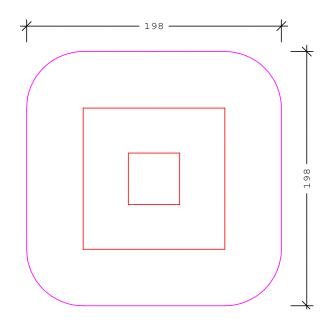
 Позиция
 t272
 Страница
 90

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/272
 Версия
 2025.000


<u>Расчет</u> согласно MSZ EN 1992-1-1, 6.4

Бетон С25/30


Размеры капители Ширина b = 35.0 см Высота h = 20.0 см

Cooтнoшение b <= 2h

Сечения в плоскостях осей х и у

Контрольный контур

Поперечное усилие (рис. 6.19) $\tau=1.72$ кH/м Коэффициент учета моментов $\beta=1+\tau u\ /\ V_d=1.015$ - Расчетное напряжение $v_{\rm Ed}=\beta V_{\rm d}/u{\rm d}=0.515$ МПа Расчетное сопротивление $v_{\rm Rd,c}=0.544$ МПа Условие прочности $v_{\rm Ed}\ /\ v_{\rm Rd,c}=0.947<=1$

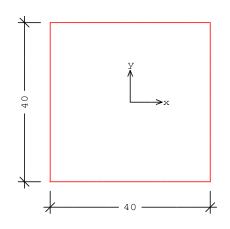
u = 716.3

CM

Прочность плиты обеспечена

Контрольный периметр

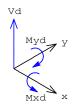
Расчет выполнен модулем 272 программы СТАТИКА 2025 © 000 Техсофт


 Позиция
 t273
 Страница
 91

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/273
 Версия
 2025.000

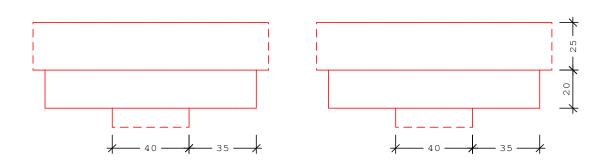
Поз. t273 Проектирование капителей и банкеток (ТКП EN 1992)


Расчетная схема Разме	ры сечения	колонны		c ^x		40.0	CM CM
Высот	а плиты			hπ	=	25.0	СМ
Средн	яя рабочая	высота г	ІЛИТЫ	d	=	22.0	СМ
Коэфф	.продольноі	го армирс	вания	ρ_{x}	=	0.50	응
	_			ρ_{V}	=	0.50	용

Усилия

K	V _d	M _{xd}	Myd
	[ĸH]	[кНм]	[кНм]
1	800.0	10.0	10.0

Положительные направления силы и моментов



Расчет согласно ТКП EN 1992-1-1, 6.4

Бетон С25/30

Размеры капители Ширина b = 35.0 см Высота h = 20.0 см Соотношение b <= 2h

Сечения в плоскостях осей х и у



 Позиция
 t273
 Страница
 92

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/273
 Версия
 2025.000

Контрольный контур

Контрольный периметр u=716.3 см Поперечное усилие (рис.6.19) $\tau=1.72$ кН/м Коэффициент учета моментов $\beta=1+\tau u\ /\ V_d=1.015 -$ Расчетное напряжение $v_{\rm Ed}=\beta V_{\rm d}/u{\rm d}=0.515$ МПа Расчетное сопротивление $v_{\rm Rd,c}=0.544$ МПа Условие прочности $v_{\rm Ed}\ /\ v_{\rm Rd,c}=0.947<=1$

Прочность плиты обеспечена

Расчет выполнен модулем 273 программы СТАТИКА 2025 © 000 Техсофт

Поз. t300_1 Однопролётная балка

Расчётная схема

M = 1 : 50

 Позиция
 t300_1
 Страница
 93

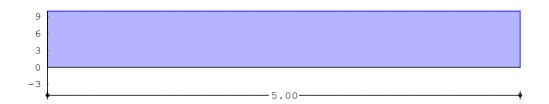
 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/300
 Версия
 2025.000

M = 1 : 50

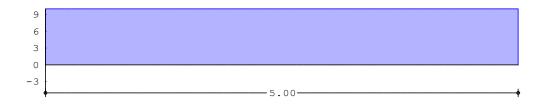
Воздействия

Nº	Тип воздейст	вия О	писание	
1	Постоянное			
		Собственный	вес ж/б і	конструкций
2	Длительное			
	Bec	складируемых	материало	в и изделий

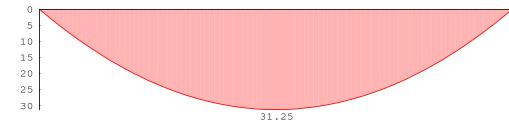

Характеристики воздействий

Nº	γf	k _l	учет	группа	знак	распред
			C O	несоч.		по прол
1	1.10					
2	1.05					неблаг.

учет C - кратковр. нагрузка учитывают в сейсм. РСН учет O - кратковр. нагрузка учитывают в особом РСН


 $\frac{\text{Нагружение}}{\text{Нагружение}}$ 1 M = 1 :40

постоянные нагрузки $\gamma_{\,\mathrm{f}}$ = 1.10


	Ν.	Пролёт	а	S	рл/Р	рп/М
		опора	[M]	[M]	[кН/м,	кН,кНм]
Равномерн.	1	1			10.00	

Нагружение 2 М = 1 :40 длит. нагрузки равномерного нагружения $\gamma_{\,\mathrm{f}}$ = 1.05

	Ν.	Пролёт	а	s	рл/Р	рп/М
		опора	[M]	[M]	[кН/м,к	Н,кНм]
Равномерн.	1	1			10.00	

Позиция t300_1 94 Страница Проект СТАТИКА тест всех модулей 28.10.2024 Дата Разраб. Разработчик **СТАТИКА/300** Версия 2025.000 Усилия в сечении по линейно упругой теории Нагружение моменты Мупр [кНм] M = 1 : 400 5

Нагружение 1 поперечные силы Qупр [кН]

M = 1 :40

25.00

21
14
7
0
-7
-14
-21

Нагружение	1	Пролёт	Х	m	ах Мупр	min Мупр	тах Оупр	min Qупр
			[M]		[кНм]	[кНм]	[ĸH]	[кН]
		1	0.00		0.00	0.00	25.00	25.00
			0.15	0	3.64	3.64	23.50	23.50
			0.65	h0	14.14	14.14	18.50	18.50
			1.25		23.44	23.44	12.50	12.50
			2.50	*	31.25	31.25	0.00	0.00
			3.75		23.44	23.44	-12.50	-12.50
			4.35	h0	14.14	14.14	-18.50	-18.50
			4.85	0	3.64	3.64	-23.50	-23.50
			5.00		0.00	0.00	-25.00	-25.00

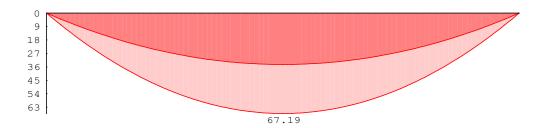
Нагружение

2

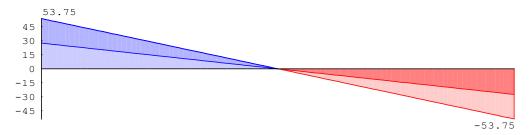
M = 1 :40

огибающая моментов Мупр [кНм]

Нагружение М = 1 :40	2	огибающая поперечных сил Qупр [кН]
		25.00
		14
		7 0
		-7 - -14 -
		-21
		-25.00


Нагружение 2

Пролёт	X	max	Мупр	min Мупр	max Qупр	min Qупр
	[M]		[кНм]	[кНм]	[ĸH]	[KH]
1	0.00		0.00	0.00	25.00	25.00
	0.15	0	3.64	3.64	23.50	23.50
	0.65	h0	14.14	14.14	18.50	18.50
	1.25		23.44	23.44	12.50	12.50
	2.50	*	31.25	31.25	0.00	0.00
	3.75		23.44	23.44	-12.50	-12.50
	4.35	h0	14.14	14.14	-18.50	-18.50
	4.85	0	3.64	3.64	-23.50	-23.50
	5.00		0.00	0.00	-25.00	-25.00


Реакции опор

Нагружение	опора	max	min
		[ĸH]	[ĸH]
1	A	25.00	25.00
	В	25.00	25.00
2	A	25.00	25.00
	В	25.00	25.00

<u>РСУ</u> Момент М [кНм] М = 1 :40 Сочетания усилий согласно СП 20.13330.2016 основные сочетания усилий

Попер. сила Q [кН] основные сочетания усилий М = 1 :40

Пролёт	Х	max	Мрсу	min Mpc	y max Qp	cy min Qpcy
	[M]		[кНм]	[кНм] [ĸ	H] [KH]
1	0.00		0.00	0.0	0 53.	75 27.50
	0.15	0	7.82	4.0	50.	53 25.85
	0.65	h0	30.40	15.5	5 39.	77 20.35
	1.25		50.39	25.7	8 26.	88 13.75
	2.50	*	67.19	34.3	7 0.	0.00
	3.75		50.39	25.7	8 -13.	75 -26.87
	4.35	h0	30.40	15.5	5 -20.	35 -39.77
	4.85	0	7.82	4.0	0 -25.	85 -50.52
	5.00		0.00	0.0	0 -27.	50 -53.75

Сочетания реакций в опорах

~				
Сочетание	<u> </u>	опора	max	min
			[ĸH]	[ĸH]
основные	РСУ	А	53.75	27.50
		В	53.75	27.50

Позиция t300_1 28.10.2024 СТАТИКА тест всех модулей Проект Дата Разраб. Разработчик **СТАТИКА/300** Версия 2025.000

Расчёт по прочности По СП 63.13330.2018 с использованием трехлинейной диаграммы состояния бетона и условия (8.56) СП 63.13330.2018 для расчета поперечной арматуры.

Бетон В 25 (тяжелый)

Арматурная сталь : продольная/хомуты А500/А400.

Защитный слой

Пролёт	аз н	аз в	аз б	ан	ав	
	[MM]	[MM]	[MM]	[CM]	[CM]	
1	23	20	15	2.9		

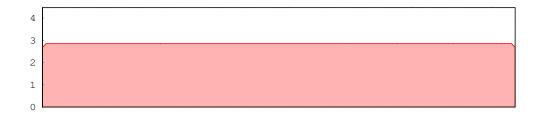
Пролёт 1

X	max M	min M	Ash(I)	Ass(I)	Аѕн	Аsв
[м]	[кНм]	[кНм]	[cm2]	[см2]	[CM2]	[см2]
0.00	0.0	0.0	1.41	0.00	1.41	0.00
0.15 0	7.8	4.0	1.41	0.00	1.41	0.00
1.25	50.4	25.8	2.55	0.00	2.55	0.00
2.50 *	67.2	34.4	3.43	0.00	3.60	0.00
3.75	50.4	25.8	2.55	0.00	2.55	0.00
4.85 0	7.8	4.0	1.41	0.00	1.41	0.00
5.00	0.0	0.0	1.41	0.00	1.41	0.00


X	С	Q	Qb	Qsw	Asw/s	Asw/s
					расч.	макс.
[м]	[CM]	[ĸH]	[ĸH]	[ĸH]	[см2/м]	[cm2/m]
0.00						
0.15 c	141.3	20.1	74.2			
0.57 h	10 141.3	11.1	74.2			
1.25	125.0	0.0	83.9			
2.50	27.3	5.9	370.9			
3.75	125.0	0.0	83.9			
4.43 h	10 141.3	0.0	74.2			
4.85 c	141.3	0.0	74.2			
5.00						

Выделенные результаты получены при продолжительном действии нагрузок с коэффициентом $\gamma_b = 0.90$

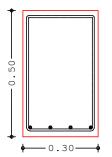
Констр. арматуры


As [CM2] M = 1 : 40

Продольная арматура

Asw/s [cm2/m]M = 1 :40

Поперечная арматура

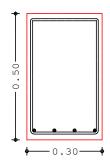


 Позиция
 t300_1
 Страница
 97

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/300
 Версия
 2025.000

Пролет 1 M = 1 :15 схема армирования сечения с координатой x = 1.25


Нижняя арматура 4012Хомут 08

Пролет 1 M = 1 :15 схема армирования сечения с координатой x = 2.50

Нижняя арматура 4012Хомут 08

Пролет 1 M = 1 :15 схема армирования сечения с координатой х = 3.75

Нижняя арматура $4\emptyset12$ Хомут $\emptyset8$

Продольн. арм.

пролёт	тип	кол.	ds	ряд	Asl	a	1
опора			[MM]		[см2]	[M]	[м]
1	Н	4	12	1	4.52	-0.20	5.40

Длины приведены с учетом анкеровки

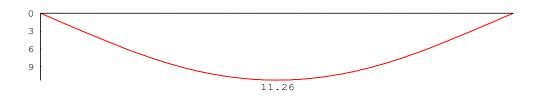
Хомуты

Пролёт	кол.	срез.	ds	s	Asw/s	а	1
			[MM]	[CM]	[см2/м]	[M]	[M]
1	24	2	8	23	4.47	0.00	5.17

Тип арматуры	d	длина	кол.	вес
	[MM]	[м]		[ĸH]
стержневая арматура	12	21.60		0.19
хомуты	8		2.4	

 Позиция Проект
 t300_1
 Страница
 98

 СТАТИКА тест всех модулей Разработчик
 СТАТИКА/300
 дата дерия дер


Трещиностойкость

Предельно допустимая ширина раскрытия трещин принимается из условия обеспечения сохранности арматуры acrc1=0.40мM acrc2=0.30мM

Нормальные трещины

	Образование			Продолжит	ельные	Непрод.	
Про-	- x		M	Mcrc	M	acrc2	acrc1
лет	[M]		[кНм]	[кНм]	[кНм]	[MM]	[MM]
1	0.00		0.0	36.3			
	0.15	0	7.3	36.3			
	1.25		46.9	36.3	46.9	0.13	0.13
	2.50	*	62.5	36.3	62.5	0.23	0.23
	3.75		46.9	36.3	46.9	0.13	0.13
	4.85	0	7.3	36.3			
	5.00		0.0	36.3			

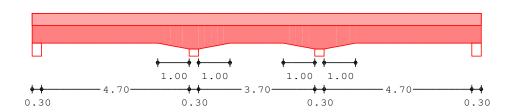
Прогибы [мм] М = 1 :40

Прогибы

Пролет	X	M	Мдл.	100/r	W
	[M]	[кНм]	[кНм]	[1/м]	[MM]
1	0.00	0.0	0.0	0.00	0.00
	1.25	46.9	46.9	0.33	7.92
	2.50 *	62.5	62.5	0.44	11.26
	3.75	46.9	46.9	0.33	7.92
	5.00	0.0	0.0	0.00	0.00

Расчет выполнен модулем 300 программы СТАТИКА 2025 © 000 Техсофт

Поз. t300_3


Трехпролетная балка

Расчётная схема

M = 1 : 120

M = 1 : 120

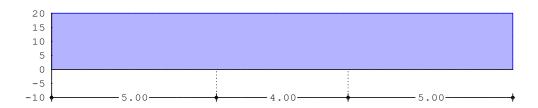
 Позиция
 t300_3
 Страница
 99

 проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/300
 Версия
 2025.000

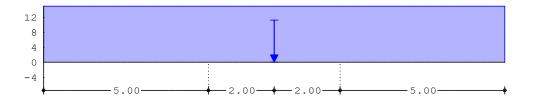
Воздействия

Nº	Тип воздействия	Описание
1	Постоянное	Собственный вес ж/б конструкций
2	Кратковременное	
	Равномерно	распределенная нагрузка - жилые помещения


Характеристики воздействий

$N_{\bar{0}}$	γf	k_1	уч	ет	группа	знак	распред
			С	0	несоч.		по прол
1	1.10						
2	1.30	0.35	+	+			неблаг.

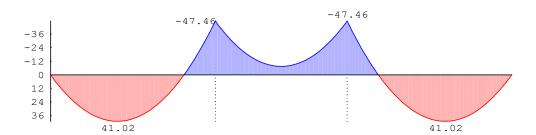
учет С - кратковр. нагрузка учитывают в сейсм. РСН учет О - кратковр. нагрузка учитывают в особом РСН


<u>Нагружение</u> Нагружение 1 М = 1 :115

постоянные нагрузки $\gamma_{\rm f}$ = 1.10

	Ν.	Пролёт	а	S	рл/Р	рп/М
		опора	[м]	[M]	[кН/м,к	Н, кНм]
Равномерн.	1	1-3			20.00	

Нагружение 2 M = 1 :115 кратковременные нагрузки γ_{f} = 1.30

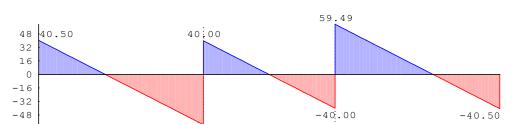


	Ν.	Пролёт	a	s	рл/Р	рп/М
		опора	[M]	[M]	[кН/м, н	кн,кнм]
Равномерн.	1	1-3			15.00	
Сосредот.	1	2	2.00		100.00	

Усилия в сечении

по линейно упругой теории

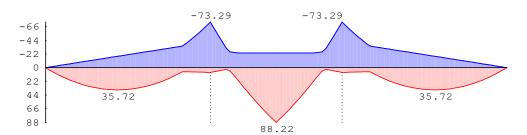
Нагружение 1 М = 1 :115 моменты Мупр [кНм]



 Позиция
 t300_3
 Страница
 100

 проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

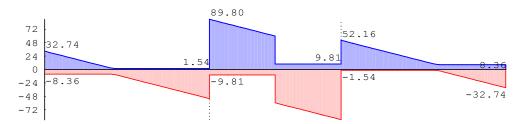
 Разраб.
 Разработчик
 СТАТИКА/300
 Версия
 2025.000


Нагружение 1 М = 1 :115 поперечные силы Дупр [кН]

Нагружение 1

Пролёт	X	m	_	min Мупр	тах Оупр	-
	[м]		[кНм]	[кНм]	[ĸH]	[KH]
1	0.00		0.00	0.00	40.51	40.51
	0.15	0	5.85	5.85	37.51	37.51
	0.65	h0	22.10	22.10	27.51	27.51
	1.25		34.96	34.96	15.51	15.51
	2.03	*	41.02	41.02	0.00	0.00
	2.50		38.72	38.72	-9.49	-9.49
	3.75		11.23	11.23	-34.49	-34.49
	4.25	h0	-8.47	-8.47	-44.49	-44.49
	4.85	0	-38.77	-38.77	-56.49	-56.49
	5.00		-47.47	-47.47	-59.49	-59.49
2	0.00		-47.47	-47.47	40.00	40.00
	0.15	0	-41.69	-41.69	37.00	37.00
	0.75	h0	-23.11	-23.11	25.00	25.00
	1.00		-17.48	-17.48	20.00	20.00
	2.00		-7.47	-7.47	0.00	0.00
	3.00		-17.48	-17.48	-20.00	-20.00
	3.25	h0	-23.11	-23.11	-25.00	-25.00
	3.85	0	-41.69	-41.69	-37.00	-37.00
	4.00		-47.47	-47.47	-40.00	-40.00
3	0.00		-47.47	-47.47	59.49	59.49
	0.15	0	-38.77	-38.77	56.49	56.49
	0.75	h0	-8.47	-8.47	44.49	44.49
	1.25		11.23	11.23	34.49	34.49
	2.50		38.72	38.72	9.49	9.49
	2.97	*	41.02	41.02	-0.00	-0.00
	3.75		34.96	34.96	-15.51	-15.51
	4.35	h0	22.10	22.10	-27.51	-27.51
	4.85	0	5.85	5.85	-37.51	-37.51
	5.00		0.00	0.00	-40.51	-40.51

Нагружение 2 М = 1 :115 огибающая моментов Мупр [кНм]



 Позиция
 t300_3
 Страница
 101

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/300
 Версия
 2025.000

Нагружение 2 М = 1 :115 огибающая поперечных сил Дупр [кН]

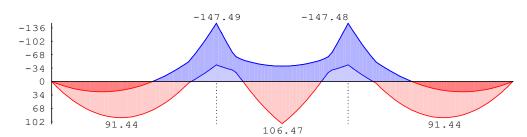
Нагружение 2

Пролёт	X		ar Miran	min Мупр	marr Orren	min Our
uboner	х [м]	111	ах мупр [кНм]	[кНм]	max Qynp [кН]	min Qупр [кН]
1	0.00		0.00	-0.00	32.74	-8.36
1 +		_				
		0	4.74	-1.25	30.49	-8.36
	0.65	h0	18.11	-5.43	22.99	-8.36
	1.25		29.17	-10.44	13.99	-8.36
	2.18	*	35.72	-18.24	1.54	-9.90
	2.50		34.93	-20.89	1.54	-14.66
	3.75		17.27	-31.33	1.54	-33.41
	4.25	h0	6.55	-38.40	1.54	-40.91
	4.85	0	7.48	-65.64	1.54	-49.91
	5.00		7.71	-73.30	1.54	-52.16
2	0.00		7.71	-73.30	89.81	-9.81
	0.15	0	6.24	-60.00	87.56	-9.81
	0.75	h0	14.42	-24.24	78.56	-9.81
	1.00		30.71	-23.81	74.81	-9.81
	2.00	*	88.22	-23.81	59.81	-9.81
	3.00		30.71	-23.81	9.81	-74.81
	3.25	h0	14.42	-24.24	9.81	-78.56
	3.85	0	6.24	-60.00	9.81	-87.56
	4.00		7.71	-73.30	9.81	-89.81
3	0.00		7.71	-73.30	52.16	-1.54
	0.15	0	7.48	-65.64	49.91	-1.54
	0.75	h0	6.55	-38.40	40.91	-1.54
	1.25		17.27	-31.33	33.41	-1.54
	2.50		34.93	-20.89	14.66	-1.54
	2.82	*	35.72	-18.24	9.90	-1.54
	3.75		29.17	-10.44	8.36	-13.99
	4.35	h0	18.11	-5.43	8.36	-22.99
	4.85	0	4.74	-1.25	8.36	-30.49
	5.00	-	0.00	-0.00	8.36	-32.74

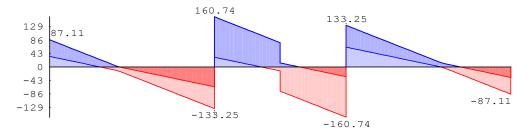
Реакции опор

Нагружение	опора	max	min
		[ĸH]	[кН]
1	A	40.51	40.51
	В	99.49	99.49
	C	99.49	99.49
	D	40.51	40.51
2	A	32.74	-8.36
	В	141.97	-11.35
	C	141.97	-11.35
	D	32.74	-8.36

РСУ


Сочетания усилий согласно СП 20.13330.2016

 Позиция
 t300_3
 Страница
 102


 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/300
 Версия
 2025.000

Момент M [кНм] М = 1 :115 основные сочетания усилий

Попер. сила Q [кН] основные сочетания усилий М = 1 :115

Пролёт	Х	m	ax Mpcy	min Mpcy	max Qpcy	min Qpcy
	[м]		[кНм]	[кНм]	[ĸH]	[кН]
1	0.00		0.00	0.00	87.12	33.69
	0.15	0	12.60	4.81	80.89	30.39
	0.65	h0	47.86	17.25	60.14	19.39
	1.25		76.37	24.88	35.24	6.19
	2.10	*	91.44	22.26	0.89	-13.38
	2.50		88.00	15.43	-8.44	-29.50
	3.75		34.80	-28.38	-35.94	-81.38
	4.25	h0	-0.80	-59.23	-46.94	-102.13
	4.85	0	-32.93	-127.98	-60.14	-127.03
	5.00		-42.20	-147.50	-63.44	-133.25
2	0.00		-42.20	-147.50	160.75	31.25
	0.15	0	-37.76	-123.86	154.52	27.95
	0.75	h0	-6.74	-56.81	129.62	14.75
	1.00		20.69	-50.19	119.25	9.25
	2.00	*	106.47	-39.17	77.75	-12.75
	3.00		20.69	-50.19	-9.25	-119.25
	3.25	h0	-6.74	-56.81	-14.75	-129.62
	3.85	0	-37.76	-123.86	-27.95	-154.52
	4.00		-42.20	-147.50	-31.25	-160.75
3	0.00		-42.20	-147.50	133.25	63.44
	0.15	0	-32.93	-127.98	127.03	60.14
	0.75	h0	-0.80	-59.23	102.13	46.94
	1.25		34.80	-28.38	81.38	35.94
	2.50		88.00	15.43	29.50	8.44
	2.90	*	91.44	22.26	13.38	-0.89
	3.75		76.37	24.88	-6.19	-35.24
	4.35	h0	47.86	17.25	-19.39	-60.14
	4.85	0	12.60	4.81	-30.39	-80.89
	5.00		0.00	0.00	-33.69	-87.12

Сочетания реакций в опорах

Сочетание	опора	max	min
		[ĸH]	[кН]
основные РСУ	А	87.12	33.69
	В	294.00	94.69
	С	294.00	94.69
	D	87.12	33.69

Страница лата **28.10.2024** Позиция **t300_3** СТАТИКА тест всех модулей Проект Разраб. Разработчик **СТАТИКА/300** Версия 2025.000

Расчёт по прочности По СП 63.13330.2018 с использованием трехлинейной диаграммы состояния бетона и условия (8.56) $C\Pi$ 63.13330.2018 для расчета поперечной арматуры.

Бетон В 25 (тяжелый)

Арматурная сталь : продольная/хомуты А500/А400.

Защитный слой

Пролёт	аз н	аз в	аз б	ан	ав	
	[MM]	[MM]	[MM]	[CM]	[CM]	
1	23	23	15	2.9	2.9	
2	23	23	15	2.9	2.9	
3	23	23	15	2.9	2.9	

Пролёт 1

Х	max M	min M	Ash(I)	Ass(I)	Аѕн	Аsв
[M]	[кНм]	[кНм]	[см2]	[cm2]	[см2]	[см2]
0.00	0.0	0.0	1.41	0.00	1.41	0.00
0.15 o	12.6	4.8	1.41	0.00	1.41	0.00
1.25	76.4	24.9	3.76	0.00	3.76	0.00
2.10 *	91.4	22.3	4.51	0.00	4.51	0.00
2.50	88.0	15.4	4.34	0.00	4.34	0.00
3.75	34.8	-28.4	1.72	1.49	1.72	1.49
4.85 0	-32.9	-128.0	0.00	5.42	0.00	5.42
5.00	-42.2	-147.5	0.00	6.30	0.00	6.30

Х	С	Q	Qb	Qsw	Asw/s	Asw/s
					расч.	макс.
[M]	[CM]	[ĸH]	[ĸH]	[ĸH]	[см2/м]	[см2/м]
0.00						
0.15 c	141.3	22.3	74.2			
0.57 h	10 141.3	4.9	74.2			
1.25	87.8	0.0	119.3			
2.50	96.1	23.3	109.6			
3.75	141.3	0.0	74.2			
4.28 h	10 154.2	0.0	80.9			
4.85 c	171.3	0.0	89.9			
5.00						

Пролёт 2

Х	max M	min M	Ash(I)	Ass(I)	Аѕн	Аѕв
[M]	[кНм]	[кНм]	[см2]	[см2]	[см2]	[см2]
0.00	-42.2	-147.5	0.00	6.30	0.00	6.30
0.15 0	-37.8	-123.9	0.00	5.24	0.00	5.24
1.00	20.7	-50.2	1.46	2.45	1.46	2.45
2.00 *	106.5	-39.2	5.26	1.96	5.26	1.96
3.00	20.7	-50.2	1.46	2.45	1.46	2.45
3.85 0	-37.8	-123.9	0.00	5.24	0.00	5.24
4.00	-42.2	-147.5	0.00	6.30	0.00	6.30

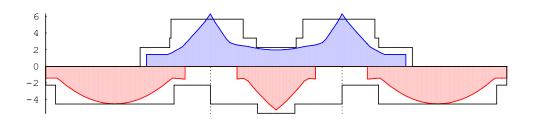
Х		С	Q	Qb	Qsw	Asw/s	Asw/s
						расч.	макс.
[м]		[CM]	[ĸH]	[ĸH]	[ĸH]	[см2/м]	[см2/м]
0.00							
0.15	0	171.3	83.4	89.9			
0.72	h0	154.2	7.0	80.9			
1.00		145.8	2.7	76.5			
2.00		57.3	101.5	183.0			
3.00		145.8	0.0	76.5			
3.28	h0	154.2	0.0	80.9			
3.85	0	171.3	0.0	89.9			
4.00							

Пролёт 3

X	max M	min M	Ash(I)	Ass(I)	Аѕн	Аsв
[M]	[кНм]	[кНм]	[cm2]	[CM2]	[см2]	[см2]
0.00	-42.2	-147.5	0.00	6.30	0.00	6.30
0.15 0	-32.9	-128.0	0.00	5.42	0.00	5.42
1.25	34.8	-28.4	1.72	1.49	1.72	1.49
2.50	88.0	15.4	4.34	0.00	4.34	0.00
2.90 *	91.4	22.3	4.51	0.00	4.51	0.00
3.75	76.4	24.9	3.76	0.00	3.76	0.00

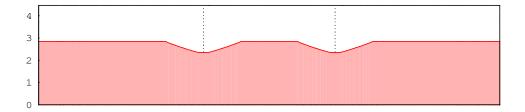
 Позиция
 t300_3
 Страница
 104

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

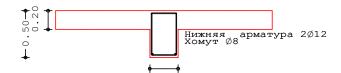

 Разраб.
 Разработчик
 СТАТИКА/300
 Версия
 2025.000

4.85 0	12.6	4.8	1.41	0.00	1.41	0.00
5.00	0.0	0.0	1.41	0.00	1.41	0.00

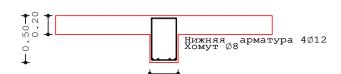
Х	С	Q	Qb	Qsw	Asw/s	Asw/s
					расч.	макс.
[M]	[CM]	[ĸH]	[ĸH]	[ĸH]	[см2/м]	[см2/м]
0.00						
0.15 0	171.3	55.9	89.9			
0.72 h0	154.2	39.3	80.9			
1.25	141.3	22.7	74.2			
2.50	96.8	0.0	108.8			
3.75	87.3	14.2	120.1			
4.43 h0	141.3	0.0	74.2			
4.85 0	141.3	0.0	74.2			
5.00						


Констр. арматуры

As [CM2]M = 1 :115 Продольная арматура



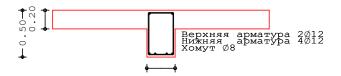
Asw/s [cm2/m]M = 1 :115


Поперечная арматура

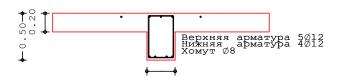
Пролет 1 M = 1 :40 схема армирования сечения с координатой x = 0.00

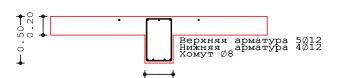
Пролет 1 M = 1 :40 схема армирования сечения с координатой х = 1.25

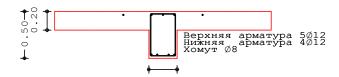
 Позиция
 t300_3
 Страница
 105


 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

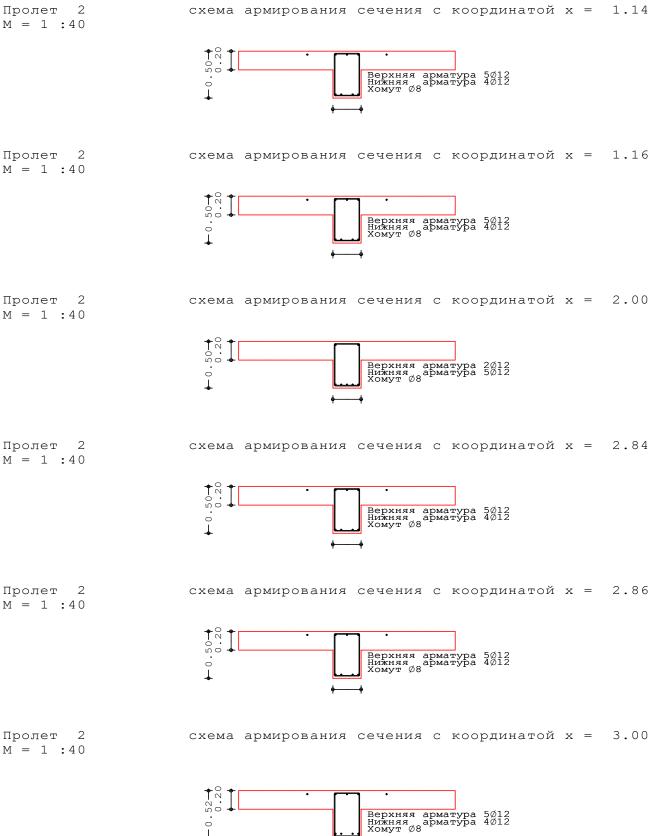
 Разраб.
 Разработчик
 СТАТИКА/300
 Версия
 2025.000


Пролет 1 схема армирования сечения с координатой x = 2 . M = 1 : 40


Пролет 1 схема армирования сечения с координатой x = 3.06 M = 1 :40


Пролет 1 схема армирования сечения с координатой x = 3.75 M = 1 : 40

Пролет 1 схема армирования сечения с координатой x = 3.84 M = 1 :40


Пролет 1 схема армирования сечения с координатой x = 3.86 M = 1 :40

Пролет 2 схема армирования сечения с координатой x = 1.00 M = 1 : 40

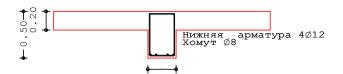
t300_3 Позиция 106 Страница СТАТИКА тест всех модулей 28.10.2024 Проект Дата Разработчик **СТАТИКА/300** Версия 2025.000 Разраб. Пролет 2 схема армирования сечения с координатой х = M = 1 : 40

t300_3 Позиция 107 Страница СТАТИКА тест всех модулей 28.10.2024 Проект Дата Разработчик **СТАТИКА/300** Версия 2025.000 Разраб. Пролет 3 схема армирования сечения с координатой х = 0.15 M = 1 : 40Верхняя арматура 5Ø12 Нижняя арматура 4Ø12 Хомут Ø8 Пролет 3 схема армирования сечения с координатой х = 1.14 M = 1 : 4050 Верхняя арматура 5Ø12 Нижняя арматура 4Ø12 Хомут Ø8 . • Пролет 3 схема армирования сечения с координатой х = 1.16

Пролет 3

Пролет 3 схема армирования сечения с координатой x=1.94 М = 1 :40

схема армирования сечения с координатой х = 1.25


Пролет 3 схема армирования сечения с координатой x = 2.50 M = 1 :40

 Позиция
 t300_3
 Страница
 108

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/300
 Версия
 2025.000

Пролет 3 M = 1 :40 схема армирования сечения с координатой x = 3.75

Продольн. арм.

пролёт	тип	кол.	ds	ряд	Asl	a	1
опора			[MM]		[см2]	[м]	[м]
2	Н	2	12	1	2.26	-5.20	14.40
1	Н	2	12	1	4.52	0.11	3.99
2	Н	2	12	1	4.52	-0.20	4.40
2	Н	1	12	1	5.65	1.16	1.68
3	Н	2	12	1	4.52	0.90	3.99
В	В	2	12	1	2.26	2.67	8.66
В	В	1	12	1	3.39	3.55	3.17
В	В	2	12	1	5.65	3.61	2.60
C	В	1	12	1	3.39	2.29	3.08
С	В	2	12	1	5.65	2.60	2.59

Длины приведены с учетом анкеровки

Хомуты

Пролёт	кол.	срез.	ds	s	Asw/s	a	1
			[MM]	[CM]	[см2/м]	[M]	[м]
1	24	2	8	23	4.47	0.00	5.17
2	18	2	8	23	4.47	0.18	4.05
3	22	2	8	23	4.47	0.23	4.95

Тип арматуры	d	длина	кол.	вес
	[MM]	[M]		[ĸH]
стержневая арматура	12	89.22		0.78
хомуты	8		65	

Трещиностойкость

Предельно допустимая ширина раскрытия трещин принимается из условия обеспечения сохранности арматуры acrc1=0.40мM acrc2=0.30мM

Нормальные трещины

			Образ	ование	Продолжит	ельные	Непрод.
Про-	- X		M	Mcrc	M	acrc2	acrc1
лет	[м]		[кНм]	[кНм]	[кНм]	[MM]	[MM]
1	0.00		0.0	52.9			
	0.15	0	10.6	52.9			
	1.25		64.1	55.3	45.2	0.01	0.10
	2.10	*	76.6	55.3	53.5	0.06	0.17
	2.50		73.7	55.3	50.9	0.05	0.15
	3.06		60.1	55.4	40.7	0.00	0.08
	3.75		28.5	55.4			
	3.84		23.2	53.1			
	3.86		22.0	53.2			
	4.85	0	-104.4	219.6			
	5.00		-120.8	219.6			
2	0.00		-120.8	219.6			
	0.15	0	-101.7	219.6			
	1.00		13.2	57.6			
	1.14		24.8	55.6			
	1.16		26.4	55.5			
	2.00	*	80.8	56.6	23.4	0.00	0.14
	2.84		26.4	55.5			
	2.86		24.8	55.6			
	3.00			57.7			
	3.85	0	-101.7				
	4.00		-120.8				
3	0.00		-120.8	219.6			
•							

Позиция	t300_3		Страниц	a 109
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/300	Версия	2025.000

0.15 o	-104.4	219.6			
1.14	22.0	55.5			
1.16	23.2	55.4			
1.25	28.5	55.4			
1.94	60.2	55.4	40.7	0.00	0.08
2.50	73.7	55.3	50.9	0.05	0.15
2.90 *	76.6	55.3	53.5	0.06	0.17
3.75	64.1	55.3	45.2	0.01	0.10
4.85 0	10.6	52.9			
5.00	0.0	52.9			

Прогибы


Пролет	X	M	Мдл.	100/r	W
	[м]	[кНм]	[кНм]	[1/м]	[MM]
1	0.00	0.0	0.0	0.00	0.00
	0.00	0.0	0.0	0.00	0.00
	1.25	64.2	45.2	0.34	0.00
	2.31 *	75.8	52.7	0.41	0.00
	2.50	73.7	51.0	0.39	0.00
	3.06	60.1	40.7	0.32	0.00
	3.06	60.1	40.7	0.32	0.00
	3.75	28.5	17.3	0.03	0.00
	3.84	23.2	13.4	0.03	0.00
	3.86	22.0	12.5	0.02	0.00
	5.00	-71.3	-55.8	-0.05	0.00
2	0.00	-89.2	-62.1	-0.06	0.00
	1.00	13.2	-6.8	0.01	0.00
	1.14	24.8	-1.0	0.01	0.00
	1.16	26.4	-0.2	0.01	0.00
	2.00 *	0.0	0.0	-0.00	0.00
	2.84	0.0	0.0	-0.00	0.00
	2.86	0.0	0.0	-0.00	0.00
	3.00	0.0	0.0	-0.00	0.00
	4.00	0.0	0.0	-0.00	0.00
3	0.00	0.0	0.0	-0.00	0.00
	1.14	0.0	0.0	-0.00	0.00
	1.16	0.0	0.0	-0.00	0.00
	1.25	0.0	0.0	-0.00	0.00
	1.94	0.0	0.0	-0.00	0.00
	1.94	0.0	0.0	-0.00	0.00
	2.50	0.0	0.0	-0.00	0.00
	2.69 *	0.0	0.0	-0.00	0.00
	3.75	0.0	0.0	-0.00	0.00
	5.00	0.0	0.0	-0.00	0.00

Расчет выполнен модулем 300 программы СТАТИКА 2025 © 000 Техсофт

Поз. t301_1 Однопролетная балка

Расчётная схема

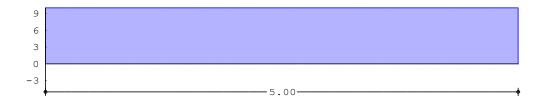
M = 1 : 50

Позиция t301_1 110 Страница СТАТИКА тест всех модулей Проект 28.10.2024 Дата Разработчик **СТАТИКА/301** Версия 2025.000 Разраб.

M = 1 : 50

Размеры

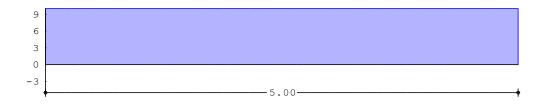
Пролёт	1	Х	b	h	I
	[M]	[M]	[CM]	[CM]	[см4]
1	5.00		30.0	50.0	312500


Опоры

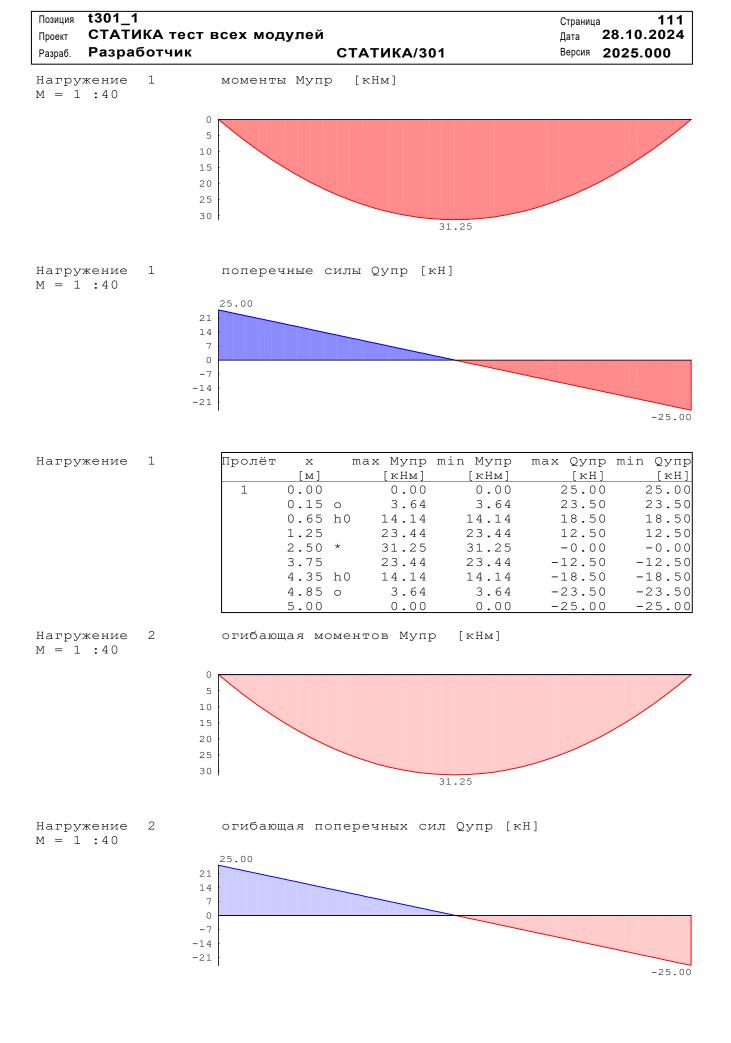
Опора	t [CM]	Опора	t [CM]
A	30.0	В	30.0

Модуль упругости бетона $E=30000.0\ M\Pi a$

Нагружение Нагружение М = 1 :40 1


постоянные нагрузки $\gamma f = 1.10$

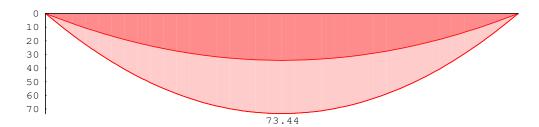
	Ν.	Пролёт	а	S	рл/Р	рп/М
		опора	[M]	[M]	[кН/м ,	кН,кНм]
Равномерн.	1	1			10.00	


Нагружение 2 M = 1 : 40

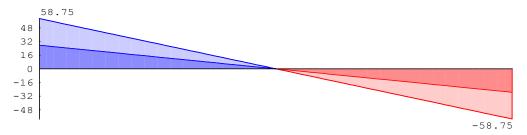
Ветровая № 0, среднее значение γ f = 1.25

	Ν.	Пролёт	a	S	рл/Р	рп/М
		опора	[M]	[M]	[кН/м,к	Н,кНм]
Равномерн.	1	1			10.00	

Усилия в сечении по линейно упругой теории


Нагружение 2

Пролёт	X	max	Мупр	min Мупр	max Qупр	min Qупр
	[M]		[кНм]	[кНм]	[ĸH]	[кН]
1	0.00		0.00	0.00	25.00	0.00
	0.15	0	3.64	0.00	23.50	0.00
	0.65	h0	14.14	0.00	18.50	0.00
	1.25		23.44	0.00	12.50	0.00
	2.50	*	31.25	0.00	0.00	-0.00
	3.75		23.44	0.00	0.00	-12.50
	4.35	h0	14.14	0.00	0.00	-18.50
	4.85	0	3.64	0.00	0.00	-23.50
	5.00		0.00	0.00	0.00	-25.00


Реакции опор

Нагружение	опора	max	min
		[KH]	[ĸH]
1	A	25.00	25.00
	В	25.00	25.00
2	A	25.00	0.00
	В	25.00	0.00

<u>РСУ</u> Момент М [кНм] М = 1 :40 Сочетания усилий согласно СНиП 2.01.07-85 основные сочетания усилий

Попер. сила Q [кН] основные сочетания усилий М = 1 :40

Пролёт	Х	max	Мрсу	min Mpcy	max Qpc	y min Qpcy
	[M]		[кНм]	[кНм]	[кН	[KH]
1	0.00		0.00	0.00	58.7	5 27.50
	0.15	0	8.55	4.00	55.2	2 25.85
	0.65	h0	33.17	15.53	43.4	7 20.35
	1.25		55.08	25.78	29.3	7 13.75
	2.50	*	73.44	34.37	-0.0	0 -0.00
	3.75		55.08	25.78	-13.7	5 -29.38
	4.35	h0	33.17	15.53	-20.3	5 -43.47
	4.85	0	8.55	4.00	-25.8	5 -55.22
	5.00		0.00	0.00	-27.5	0 -58.75

Сочетания реакций в опорах

Сочетание		опора	max	min
			[ĸH]	[KH]
основные	РСУ	A	58.75	27.50
		В	58.75	27.50

Позиция **t301_1** Страница **113** Дата **28.10.2024** СТАТИКА тест всех модулей Проект Разработчик **СТАТИКА/301** Версия 2025.000

Существенные РСУ

N	наг.коэф.	наг.коэф.наг.коэф.наг.коэф.наг.коэф.
1	1 1.10	
2	1 1.10	2 1.25

Расчёт по прочности По СП 52-101-03 с использованием трехлинейной диаграммы состояния бетона и условия (3.2-56) СП 52-101-03 для расчета поперечной арматуры.

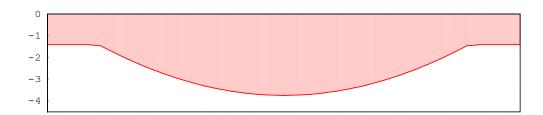
Бетон В 25 (тяжелый)

Арматурная сталь : продольная/хомуты A500/A240.

Защитный слой

Пролёт	аз н	аз в	аз б	ан	ав
	[MM]	[MM]	[MM]	[CM]	[CM]
1	23	20	15	2.9	

Пролёт 1


X	max M	min M	Ash(I)	Ass(I)	Аѕн	Аѕв
[M]	[кНм]	[кНм]	[см2]	[см2]	[cm2]	[см2]
0.00	0.0	0.0	1.41	0.00	1.41	0.00
0.15 0	8.5	4.0	1.41	0.00	1.41	0.00
1.25	55.1	25.8	2.79	0.00	2.79	0.00
2.50 *	73.4	34.4	3.76	0.00	3.76	0.00
3.75	55.1	25.8	2.79	0.00	2.79	0.00
4.85 0	8.5	4.0	1.41	0.00	1.41	0.00
5.00	0.0	0.0	1.41	0.00	1.41	0.00

Х	С	Q	Qb	Qsw	Asw/s	Asw/s
					расч.	макс.
[M]	[CM]	[ĸH]	[ĸH]	[ĸH]	[см2/м]	[см2/м]
0.00						
0.15 0	141.3	22.0	66.8			
0.62 h	0 141.3	11.0	66.8			
1.25	125.0	0.0	75.5			
2.50	27.3	3.0	333.8			
3.75	125.0	0.0	75.5			
4.38 h	0 141.3	0.0	66.8			
4.85 0	141.3	0.0	66.8			
5.00						

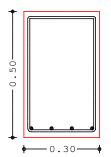
Констр. арматуры

As [CM2] M = 1 : 40

Продольная арматура

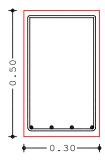
Asw/s [cm2/m]M = 1 :40

Поперечная арматура

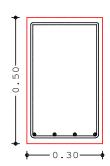


 Позиция
 t301_1
 Страница
 114

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024


 Разраб.
 Разработчик
 СТАТИКА/301
 Версия
 2025.000

Пролет 1 M = 1 :15 схема армирования сечения с координатой x = 1.25


Нижняя арматура $4\emptyset12$ Хомут $\emptyset8$

Пролет 1 M = 1 :15 схема армирования сечения с координатой x = 2.50

Нижняя арматура $4\emptyset12$ Хомут $\emptyset8$

Пролет 1 M = 1 :15 схема армирования сечения с координатой x = 3.75

Нижняя арматура $4\emptyset12$ Хомут $\emptyset8$

Продольн. арм.

пролёт	тип	кол.	ds	ряд	Asl	a	1
			ОПО	opa		[MM]]
1	Н	4	12	1	4.52	-0.20	5.40

Длины приведены с учетом анкеровки

Хомуты

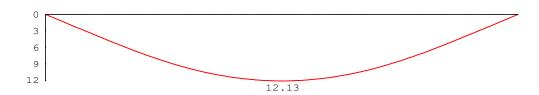
Пролёт	кол.	срез.	ds	S	Asw/s	a	1
			[MM]	[CM]	[см2/м]	[M]	[M]
1	24	2	8	23	4.47	0.00	5.17

Тип арматуры	d	длина	кол.	вес
	[MM]	[м]		[ĸH]
стержневая арматура	12	21.60		0.19
хомуты	8		24	

 Позиция
 t301_1
 Страница
 115

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/301
 Версия
 2025.000


Трещиностойкость

Предельно допустимая ширина раскрытия трещин принимается из условия обеспечения сохранности арматуры acrc1=0.40мM acrc2=0.30мM

Нормальные трещины

			Образ	ование	Продолжит	ельные	Непрод.
Про-	X		M	Mcrc	M	acrc2	acrc1
лет	[M]		[кНм]	[кНм]	[кНм]	[MM]	[MM]
1 (0.00		0.0	36.3			
	0.15	0	7.3	36.3			
	1.25		46.9	36.3	35.2	0.04	0.10
1 2	2.50	*	62.5	36.3	46.9	0.13	0.20
	3.75		46.9	36.3	35.2	0.04	0.10
4	4.85	0	7.3	36.3			
ļ	5.00		0.0	36.3			

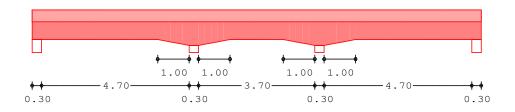
Прогибы [мм] М = 1 :40

Прогибы

Пролет	X	М	Мдл.	100/r	W
11000101	[M]	[кНм]	[кНм]	[1/m]	[MM]
1	0.00	0.0	0.0	0.00	0 00
	1.25	46.9	35.2	0.36	8.49
	2.50 *	62.5	46.9	0.49	12.13
	3.75	46.9	35.2	0.36	8.49
	5.00	0.0	0.0	0.00	0.00

Расчет выполнен модулем 301 программы СТАТИКА 2025 © 000 Техсофт

Поз. t301_3


Трехпролетная балка

Расчётная схема

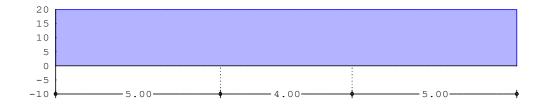
M = 1 : 120

M = 1 : 120

Позиция **t301_3** 116 Страница Проект СТАТИКА тест всех модулей 28.10.2024 Дата Версия 2025.000 Разраб. Разработчик **СТАТИКА/301**

Размеры

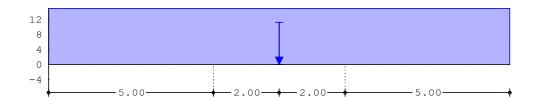
Пролёт	1	Х	bf	hf	b	h	I
	[M]	[M]	[CM]	[CM]	[CM]	[CM]	[см4]
1	5.00	0.00	230.0	20.0	30.0	50.0	691288
		3.85	230.0	20.0	30.0	50.0	691288
		5.00	230.0	20.0	30.0	60.0	1169885
2	4.00	0.00	230.0	20.0	30.0	60.0	1169885
		1.15	230.0	20.0	30.0	50.0	691288
		2.85	230.0	20.0	30.0	50.0	691288
		4.00	230.0	20.0	30.0	60.0	1169885
3	5.00	0.00	230.0	20.0	30.0	60.0	1169885
		1.15	230.0	20.0	30.0	50.0	691288
		5.00	230.0	20.0	30.0	50.0	691288


Опоры

Опора	t [CM]	Опора	t [см]
A	30.0	В	30.0
С	30.0	D	30.0

Модуль упругости бетона $E=30000.0~\mathrm{MHa}$

Нагружение Нагружение 1 M = 1 : 115

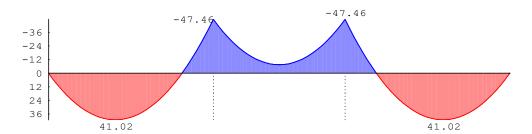

постоянные нагрузки $\gamma f = 1.10$

	Ν.	Пролёт	a	s	рл/Р	рп/М
		опора	[M]	[M]	[кН/м,к	Н,кНм]
Равномерн.	1	1-3			20.00	

Нагружение M = 1 : 115

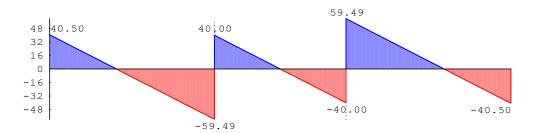
Ветровая № 0, среднее значение $\gamma f = 1.25$

	Ν.	Пролёт	а	S	рл/Р	рп/М
		опора	[м]	[M]	[кН/м , к	н,кнм]
Равномерн.	1	1-3			15.00	
Сосредот.	1	2	2.00		100.00	


Усилия в сечении по линейно упругой теории

 Позиция
 t301_3
 Страница
 117

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

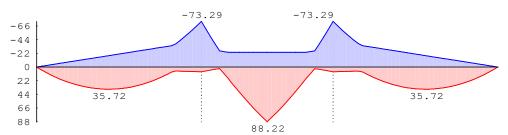

 Разраб.
 Разработчик
 СТАТИКА/301
 Версия
 2025.000

Нагружение 1 М = 1 :115 моменты Мупр [кНм]

Нагружение 1 M = 1 :115

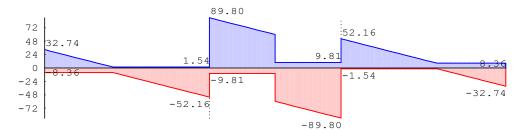
поперечные силы Дупр [кН]

Нагружение 1


Пролёт	X	m	_	min Mynp		min Qyπp
	[M]		[кНм]	[кНм]	[KH]	[KH]
1	0.00		0.00	0.00	40.51	40.51
		0	5.85	5.85	37.51	37.51
	0.65	h0	22.10	22.10	27.51	27.51
	1.25		35.01	35.01	15.51	15.51
	2.03	*	41.02	41.02	-0.00	-0.00
	2.50		38.77	38.77	-9.49	-9.49
	3.75		11.27	11.27	-34.49	-34.49
	4.25	h0	-8.47	-8.47	-44.49	-44.49
	4.85	0	-38.77	-38.77	-56.49	-56.49
	5.00		-47.47	-47.47	-59.49	-59.49
2	0.00		-47.47	-47.47	40.00	40.00
	0.15	0	-41.69	-41.69	37.00	37.00
	0.75	h0	-23.09	-23.09	25.00	25.00
	1.00		-17.47	-17.47	20.00	20.00
	1.80	*	-7.87	-7.87	4.00	4.00
	2.00		-7.47	-7.47	0.00	0.00
	3.00		-17.47	-17.47	-20.00	-20.00
	3.25	h0	-23.09	-23.09	-25.00	-25.00
	3.85	0	-41.69	-41.69	-37.00	-37.00
	4.00		-47.47	-47.47	-40.00	-40.00
3	0.00		-47.47	-47.47	59.49	59.49
	0.15	0	-38.77	-38.77	56.49	56.49
	0.75	h0	-8.47	-8.47	44.49	44.49
	1.25		11.27	11.27	34.49	34.49
	2.50		38.77	38.77	9.49	9.49
	2.97	*	41.02	41.02	0.00	0.00
	3.75		35.01	35.01	-15.51	-15.51
	4.35	h0	22.10	22.10	-27.51	-27.51
	4.85	0	5.85	5.85	-37.51	-37.51
	5.00		0.00	0.00	-40.51	-40.51
				2.00		= =

 Позиция
 t301_3
 Страница
 118

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024


 Разраб.
 Разработчик
 СТАТИКА/301
 Версия
 2025.000

Нагружение 2 огибающая моментов Мупр [кНм] M = 1:115

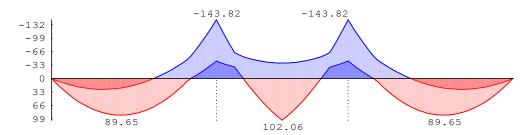
Нагружение 2 оги М = 1 :115

огибающая поперечных сил Qупр [кН]

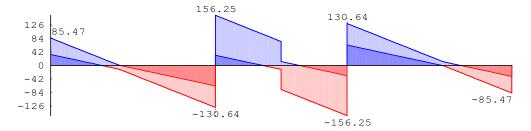
Нагружение 2

Пролёт	X	m	nay Mymn	min Мупр	may Ovun	min Qупр
iiposic i	[M]	11	[KHM]	[KHM]	max gynp	[KH]
1	0.00		0.00	-0.00	32.74	-8.36
_		0	4.74	-1.25	30.49	-8.36
	0.65	h0	18.11	-5.43	22.99	-8.36
	1.25	110	29.20	-10.44	13.99	-8.36
	2.18	*	35.72	-18.24	1.54	-9.90
	2.50		34.97	-20.89	1.54	-14.66
	3.75		17.30	-31.33	1.54	-33.41
	4.25	h0	6.55	-38.40	1.54	-40.91
	4.85	0	7.48	-65.64	1.54	-49.91
	5.00	O	7.40	-73.30	1.54	-52.16
2	0.00		7.71	-73.30	89.81	-9.81
	0.15	0	6.24	-60.00	87.56	-9.81
	0.75	h0	14.35	-24.16	78.56	-9.81
	1.00	110	30.72	-23.81	74.81	-9.81
	2.00	*	88.22	-23.81	59.81	-9.81
	3.00		30.72	-23.81	9.81	-74.81
	3.25	h0	14.35	-24.16	9.81	-74.51 -78.56
	3.85	0	6.24	-60.00	9.81	-87 . 56
	4.00	O	7.71	-73.30	9.81	-89.81
3	0.00		7.71	-73.30 -73.30	52.16	-09.01 -1.54
3		_		-73.30 -65.64	49.91	-1.54
	0.15	0 h0	7.48 6.55	-38.40	49.91	
	0.75	110				-1.54
	1.25		17.30	-31.33	33.41	-1.54
	2.50	*	34.97	-20.89	14.66	-1.54
	2.82	^	35.72	-18.24	9.90	-1.54
	3.75	1- 0	29.20	-10.44	8.36	-13.99
	4.35	h0	18.11	-5.43	8.36	-22.99
	4.85	0	4.74	-1.25	8.36	-30.49
	5.00		0.00	-0.00	8.36	-32.74

Реакции опор


Нагружение	опора	max	min
		[ĸH]	[ĸH]
1	А	40.51	40.51
	В	99.49	99.49
	С	99.49	99.49
	D	40.51	40.51
2	А	32.74	-8.36
	В	141.97	-11.35
	С	141.97	-11.35

 Позиция Проект
 t301_3
 Страница
 119


 Проект Разраб.
 Pазработчик
 СТАТИКА/301
 Версия дата 28.10.2024

D 32.74 -8.36

<u>РСУ</u> Момент М [кНм] М = 1 :115 Сочетания усилий согласно СНиП 2.01.07-85 основные сочетания усилий

Попер. сила Q [кН] основные сочетания усилий М = 1 :115

Пролёт	X	m	nay Mncsz	min Mpcy	may Opcy	min Qpcy
Tiboner	х [м]	11	[KHM]	[KHM]	max Qpcy [kH]	[KH]
1	0.00		0.00	0.00	85.48	34.11
	0.15	0	12.36	4.87	79.37	30.81
	0.65	h0	46.86	17.48	58.99	19.81
	1.25	110	75.01	25.45	34.54	6.61
		*				
	2.10	^	89.65	23.15	0.34	-12.37
	2.50		86.35	16.53	-8.52	-28.77
	3.75		34.02	-26.77	-36.02	-79.70
	4.25	h0	-1.16	-57.37	-47.02	-100.08
	4.85	0	-33.30	-124.70	-60.22	-124.53
	5.00		-42.58	-143.84	45.27	-50.26
2	0.00		-42.58	-143.84	47.47	-48.64
	0.15	0	-38.07	-120.86	150.15	28.44
	0.75	h0	-7.35	-55.86	125.70	15.24
	1.00		19.19	-48.98	115.51	9.74
	2.00	*	102.06	-37.98	74.76	-12.26
	3.00		19.19	-48.98	-9.74	-115.51
	3.25	h0	-7.33	-55.88	-15.24	-125.70
	3.85	0	-38.07	-120.86	-28.44	-150.15
	4.00		-42.58	-143.84	48.64	-47.47
3	0.00		-42.58	-143.84	50.26	-45.27
	0.15	0	-33.30	-124.70	124.53	60.22
	0.75	h0	-1.16	-57.36	100.08	47.02
	1.25		34.02	-26.77	79.70	36.02
	2.50		86.35	16.53	28.77	8.52
	2.90	*	89.65	23.15	12.37	-0.34
	3.75		75.01	25.45	-6.61	-34.54
	4.35	h0	46.86	17.48	-19.81	-58.99
	4.85	0	12.36	4.87	-30.81	-79.37
	5.00		0.00	0.00	-34.11	-85.48

Сочетания реакций в опорах

Сочетание	опора	max	min
		[KH]	[кН]
основные РСУ	А	85.48	34.11
	В	286.90	95.26

ООО Техсофт, Москва

Позиция t301_3 120 Страница СТАТИКА тест всех модулей 28.10.2024 Проект Дата Разработчик **СТАТИКА/301** Версия 2025.000 Разраб. С 286.90 95.26 D 85.48 34.11 Существенные РСУ наг.коэф.наг.коэф.наг.коэф.наг.коэф. 1 1 1.10 2 1 1.10 2 1.25 3 1 1.10 2 1.25 4 1 1.10 2 1.25 5 1 1.10 2 1.25 6 1 1.10 2 1.25 7 1 1.10 Нагруженные пролеты РСУ нагружение **** * * * * * 2 2 * * * * * 3 2 2 4 5 2 2 6 7 2 СП 52-101-03 с использованием Расчёт по прочности По трехлинейной диаграммы состояния бетона и условия (3.2 - 56)СП 52-101-03 для расчета поперечной арматуры. Бетон В 25 (тяжелый) Арматурная сталь : продольная/хомуты A500/A240. Защитный слой Пролёт аз б аз н аз в ан ав [MM] [CM] [CM] [MM] [MM] 1 23 23 15 2.9 2.9 2 23 23 15 2.9 2.9 3 23 23 15 Пролёт 1 max M min M Ash(I) Asb(I) Аѕн Аѕв [M] [кНм] [кНм] [см2] [см2] [CM2] [CM2] 0.00 0.0 0.0 1.41 0.00 1.41 0.00 1.41 0.15 o 12.4 4.9 1.41 0.00 0.00 1.25 75.0 25.5 3.69 0.00 3.69 0.00 2.10 * 89.7 23.2 4.42 0.00 4.42 0.00 2.50 86.4 16.5 4.26 0.00 4.26 0.00 3.75 34.0 -26.8 1.67 1.41 1.67 1.41 4.85 0 -33.3 -124.70.00 5.31 0.00 5.31 5.00 0.00 6.18 -42.6 -143.86.18 0.00

Х	С	Q	Qb	Qsw	Asw/s	Asw/s
					расч.	макс.
[м]	[CM]	[ĸH]	[ĸH]	[ĸH]	[см2/м]	[см2/м]
0.00						
0.15 0	141.3	21.8	66.8			
0.62 h0	141.3	2.9	66.8			
1.25	86.3	0.0	109.3			
2.50	94.9	0.0	99.4			
3.75	141.3	0.0	66.8			
4.28 h0	154.2	0.0	72.8			
4.85 0	171.3	0.0	80.9			
5.00						

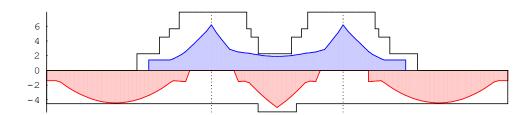
Пролёт 2 max M min M Ash(I) Asb(I) Аѕн Asв [M] [кНм] [кНм] [см2] [см2] [CM2] [CM2] 0.00 -42.6 -143.80.00 6.18 0.00 6.18 5.13 5.13 0.00 0.00 0.15 o -38.1 -120.92.39 2.39 1.00 19.2 -49.0 1.46 1.46 102.1 5.04 2.00 * -38.0 1.91 5.04 1.91 3.00 19.2 -49.01.46 2.39 1.46 2.39 3.85 o -38.1 -120.9 5.13 5.13 0.00 0.00 4.00 -42.6 -143.80.00 6.18 0.00 6.18

 Позиция
 t301_3
 Страница
 121

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

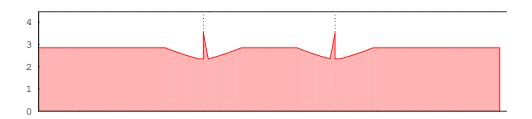
 Разраб.
 Разработчик
 СТАТИКА/301
 Версия
 2025.000

X	С	Q	Qb	Qsw	Asw/s	Asw/s
					расч.	макс.
[M]	[CM]	[KH]	[ĸH]	[ĸH]	[см2/м]	[cm2/m]
0.00						
0.15 0	171.3	80.3	80.9			
0.72 h	154.2	6.5	72.8			
1.00	145.8	2.2	68.9			
2.00	55.7	0.0	169.3			
3.00	145.8	0.0	68.9			
3.28 h	154.2	0.0	72.8			
3.85 0	171.3	0.0	80.9			
4.00						


Пролёт 3

X	max M	min M	Ash(I)	Ass(I)	Аѕн	Аsв
[M]	[кНм]	[кНм]	[см2]	[см2]	[CM2]	[см2]
0.00	-42.6	-143.8	0.00	6.18	0.00	6.18
0.15 0	-33.3	-124.7	0.00	5.31	0.00	5.31
1.25	34.0	-26.8	1.67	1.41	1.67	1.41
2.50	86.4	16.5	4.26	0.00	4.26	0.00
2.90 *	89.7	23.2	4.42	0.00	4.42	0.00
3.75	75.0	25.5	3.69	0.00	3.69	0.00
4.85 0	12.4	4.9	1.41	0.00	1.41	0.00
5.00	0.0	0.0	1.41	0.00	1.41	0.00

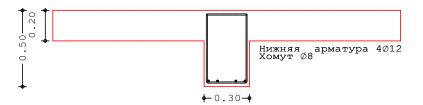
X		С	Q	Qb	Qsw	Asw/s	Asw/s
						расч.	макс.
[M]		[CM]	[ĸH]	[ĸH]	[ĸH]	[см2/м]	[cm2/m]
0.00							
0.15	0	171.3	54.7	80.9			
0.72	h0	154.2	38.4	72.8			
1.25		141.3	22.1	66.8			
2.50		94.9	0.0	99.4			
3.75		86.3	0.0	109.3			
4.38	h0	141.3	0.0	66.8			
4.85	0	141.3	0.0	66.8			
5.00							


Констр. арматуры

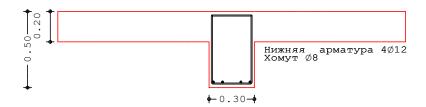
As [CM2]M = 1 :115 Продольная арматура

Asw/s [cm2/m]M = 1 :115

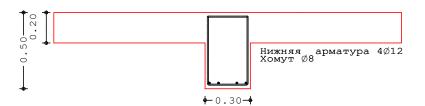
Поперечная арматура

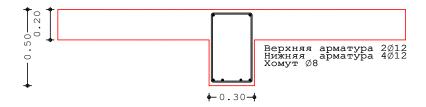


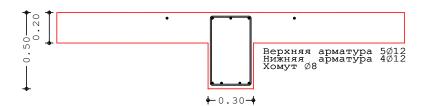
 Позиция
 1301_3
 Страница
 122


 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/301
 Версия
 2025.000

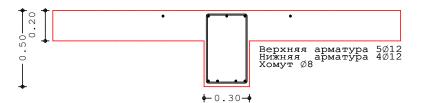

Пролет 1 M = 1 :25 схема армирования сечения с координатой x = 0.00


Пролет 1 M = 1 :25 схема армирования сечения с координатой x = 1.25

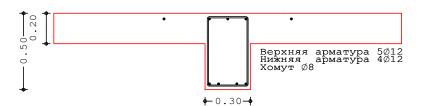

Пролет 1 M = 1 :25 схема армирования сечения с координатой x = 2.50

Пролет 1 M = 1 :25 схема армирования сечения с координатой х = 3.10

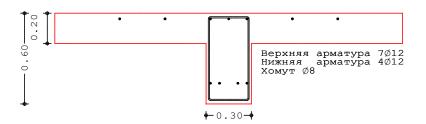
Пролет 1 M = 1 :25 схема армирования сечения с координатой x = 3.75

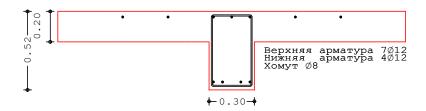


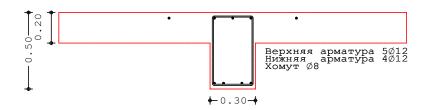
 Позиция
 t301_3
 Страница
 123


 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/301
 Версия
 2025.000

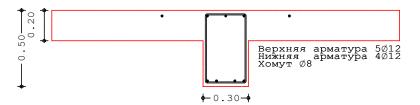

Пролет 1 M = 1 :25 схема армирования сечения с координатой x = 3.84


Пролет 1 M = 1 :25 схема армирования сечения с координатой х = 3.86

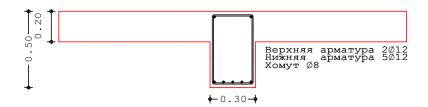

Пролет 1 M = 1 :25 схема армирования сечения с координатой x = 4.85

Пролет 2 M = 1 :25 схема армирования сечения с координатой х = 1.00

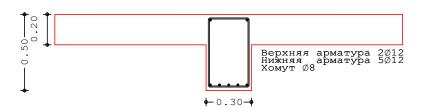
Пролет 2 M = 1 :25 схема армирования сечения с координатой х = 1.14

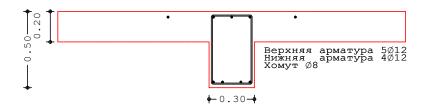


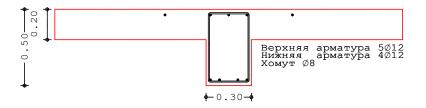
 Позиция
 t301_3
 Страница
 124


 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/301
 Версия
 2025.000


Пролет 2 схема армирования сечения с координатой x = 1.1 M = 1 : 25


Пролет 2 схема армирования сечения с координатой x = 1.57 M = 1 :25


Пролет 2 схема армирования сечения с координатой x = 2.00 M = 1 :25

Пролет 2 схема армирования сечения с координатой x = 2.84 M = 1 :25

Пролет 2 схема армирования сечения с координатой x = 2.86 M = 1 :25

Позиция t301_3 125 СТАТИКА тест всех модулей 28.10.2024 Проект Дата Разработчик **СТАТИКА/301** Версия 2025.000 Разраб.

схема армирования сечения с координатой х =

←0.30**→**

←0.30**→**

схема армирования сечения с координатой х =

3.00

M = 1 : 25Верхняя арматура 7012 Нижняя арматура 4012 Хомут 08

Пролет

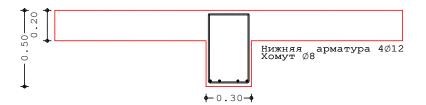
Пролет 3

2

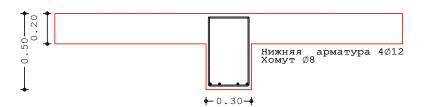
Пролет 3 схема армирования сечения с координатой х = 1.14 M = 1 : 25Верхняя арматура 4012 Нижняя арматура 4012 Хомут 08

Пролет 3 схема армирования сечения с координатой х = 1.16 M = 1 : 25Верхняя арматура 4012 Нижняя арматура 4012 Хомут 08 **←**0.30**→**

Пролет 3 схема армирования сечения с координатой х = M = 1 : 25-0.50 Верхняя арматура 4012 Нижняя арматура 4012 Хомут 08


M = 1 : 25Верхняя арматура 2012 Нижняя арматура 4012 Хомут 08**←**0.30**→**

 Позиция
 t301_3
 Страница
 126


 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/301
 Версия
 2025.000

Пролет 3 M = 1 :25 схема армирования сечения с координатой x = 2.50

Пролет 3 M = 1 :25 схема армирования сечения с координатой x = 3.75

Продольн. арм.

пролёт	тип	кол.	ds	ряд	Asl	а	1
			ОПО	ора		[MM]]
2	Н	4	12	1	4.52	-5.20	14.40
2	Н	1	12	1	5.65	1.14	1.73
1	В	2	12	1	2.26	2.54	8.92
1	В	2	12	1	4.52	3.23	3.45
1	В	1	12	1	5.65	3.53	2.90
1	В	2	12	1	7.92	3.82	2.45
***	В	2	12	1	4.52	2.19	3.43
**	В	1	12	1	5.65	2.52	2.76
**	В	2	12	1	7.92	2.73	2.45

Длины приведены с учетом анкеровки

Хомуты

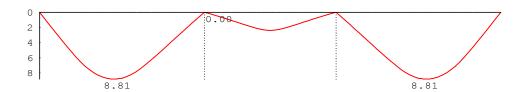
Пролёт	кол.	срез.	ds	s	Asw/s	а	1
			[MM]	[CM]	[см2/м]	[M]	[м]
1	24	2	8	23	4.47	0.00	5.17
2	18	2	8	23	4.47	0.18	4.05
3	23	2	8	23	4.47	0.23	5.18

Тип арматуры	d	длина	кол.	вес
	[MM]	[M]		[KH]
стержневая арматура	12	106.40		0.93
хомуты	8		65	

Трещиностойкость

Предельно допустимая ширина раскрытия трещин принимается из условия обеспечения сохранности арматуры acrc1=0.40мM acrc2=0.30мM

Нормальные трещины


			Образ	Образование		Продолжительные		
Про-	- x		M	Mcrc	M	acrc2	acrc1	
лет	[M]		[кНм]	[кНм]	[кНм]	[MM]	[MM]	
1	0.00		0.0	55.3				
	0.15	0	10.6	55.3				
	1.25		64.2	55.3	49.6	0.04	0.11	
	2.10	*	76.6	55.3	58.8	0.10	0.18	
	2.50		73.7	55.3	56.3	0.08	0.16	
	3.10		58.8	55.4	44.1	0.00	0.07	
	3.75		28.6	55.6				
	3.84		23.2	55.6				
	3.86		22.0	55.7				
	4.85	0	-104.4	221.5				

ООО Техсофт, Москва

Позиция	t301_3		Страниц	a 127
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/301	Версия	2025.000

	5.00		-120.8	221.5			
2	0.00		-120.8	221.5			
	0.15	0	-101.7	221.5			
	1.00		13.3	57.8			
	1.14		24.8	55.7			
	1.16		26.4	55.6			
	2.00	*	80.8	56.6	36.6	0.00	0.14
	2.84		26.4	55.6			
	2.86		24.8	55.7			
	3.00		13.3	57.8			
	3.85	0	-101.7	221.5			
	4.00		-120.8	221.5			
3	0.00		-120.8	221.5			
	0.15	0	-104.4	221.5			
	1.14		22.0	55.7			
	1.16		23.2	55.5			
	1.25		28.6	55.5			
	1.90		58.9	55.4	44.2	0.00	0.07
	2.50		73.7	55.3	56.3	0.08	0.16
	2.90	*	76.6	55.3	58.8	0.10	0.18
	3.75		64.2	55.3	49.6	0.04	0.11
	4.85	0	10.6	55.3			
	5.00		0.0	55.3			

Прогибы [мм] М = 1 :115

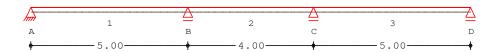
Прогибы

Пролет	X	M	Мдл.	100/r	W
	[M]	[кНм]	[кНм]	[1/м]	[MM]
1	0.00	0.0	0.0	0.00	0.00
	0.00	0.0	0.0	0.00	0.00
	1.25	64.2	49.6	0.38	6.57
	2.33 *	75.6	57.8	0.45	8.81
	2.50	73.7	56.3	0.43	8.70
	3.10	58.8	44.1	0.26	7.30
	3.10	58.8	44.1	0.26	7.30
	3.75	28.6	19.9	0.03	4.89
	3.84	23.1	15.6	0.03	4.54
	3.86	21.9	14.6	0.02	4.46
	5.00	-71.3	-59.4	-0.05	0.00
2	0.00 *	-71.3	-59.4	-0.05	0.00
	1.00	13.3	-2.1	0.01	1.32
	1.14	24.8	5.0	0.02	1.52
	1.16	26.4	5.9	0.02	1.54
	2.00	80.8	36.6	0.38	2.39
	2.84	26.4	5.9	0.02	1.54
	2.86	24.8	5.0	0.02	1.52
	3.00	13.3	-2.1	0.01	1.32
	4.00	-71.3	-59.4	-0.05	0.00
3	0.00	-71.3	-59.4	-0.05	0.00
	1.14	21.9	14.6	0.02	4.46
	1.16	23.1	15.6	0.03	4.54
	1.25	28.6	19.9	0.03	4.89
	1.90	58.7	44.1	0.26	7.30
	1.90	58.8	44.1	0.27	7.31
	2.50	73.7	56.3	0.43	8.70
	2.67 *	75.6	57.8	0.45	8.81
	3.75	64.2	49.6	0.38	6.57
	5.00	0.0	0.0	0.00	0.00

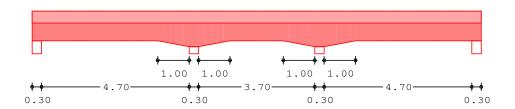
t301_3 Позиция СТАТИКА тест всех модулей Проект

128 Страница 28.10.2024 Дата

Разраб. Разработчик **СТАТИКА/301** Версия 2025.000


Расчет выполнен модулем 301 программы СТАТИКА 2025 © 000 Техсофт

Поз. t304


Трехпролетная балка

Расчётная схема

M = 1 : 120

M = 1 : 120

Размеры

Пролёт	1	Х	b _f	hf	b	h	I
	[M]	[M]	[CM]	[CM]	[CM]	[CM]	[см4]
1	5.00	0.00	155.0	20.0	30.0	50.0	606771
		3.85	155.0	20.0	30.0	50.0	606771
		5.00	84.0	20.0	30.0	60.0	846000
2	4.00	0.00	84.0	20.0	30.0	60.0	846000
		1.15	126.0	20.0	30.0	50.0	565974
		2.85	126.0	20.0	30.0	50.0	565974
		4.00	84.0	20.0	30.0	60.0	846000
3	5.00	0.00	84.0	20.0	30.0	60.0	846000
		1.15	155.0	20.0	30.0	50.0	606771
		5.00	155.0	20.0	30.0	50.0	606771

Опоры

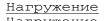
Опора	t [CM]	Опора	t	[см]
А	30.0	В		30.0
l c	30.0	D		30.0

Модуль упругости бетона Е =31000.0 МПа

Воздействия

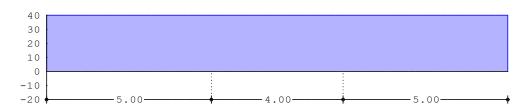
Nº	Тип воздействия	Описание				
1	Постоянное	Постоянное	воздействие			
		постоя	- эоннг			
2	Переменное	Категория А:	жилые здания			
		переменное	Категория-А			

Характеристики


$N_{\tilde{0}}$	$\gamma_{ m F}$	Ψ_0	ψ_1	ψ_2	группа	знак	распред
		ξ			несоч.		по прол
1	1.35	0.85					
2	1.50	0.70	0.50	0.30			заданн.

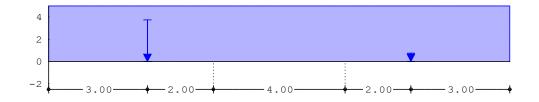
Коэффициент Сочетание воздейст. по формуле (6.10) EN 1990

управления надежностью конструкции


 $K_{FI} = 1.00$

Позиция **t304** 129 Страница Проект СТАТИКА тест всех модулей Дата 28.10.2024 Разраб. Разработчик **СТАТИКА/304** Версия 2025.000

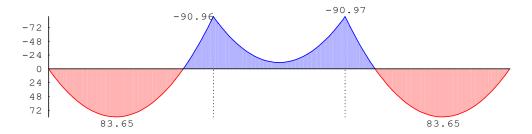
Нагружение 1 постоянное - γ_f = 1.35


M = 1 : 115

	Ν.	Пролёт	а	s	рл/Р	p _п /M
		опора	[M]	[M]	[кН/м,к]	н,кнм]
Равномерн.	1	1-3			40.00	

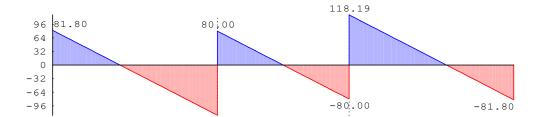
Нагружение 2 M = 1 : 115

переменное Категория-А $\gamma_{\rm f}$ = 1.50


	Ν.	Пролёт	а	S	рл/Р	рп/М
		опора	[м]	[м]	[кН/м,к	Н,кНм]
Равномерн.	1	1-3			5.00	
Сосредот.	1	1	3.00		100.00	
	2	3	2.00		20.00	

Усилия в сечении

по линейно упругой теории


Нагружение 1 M = 1 : 115

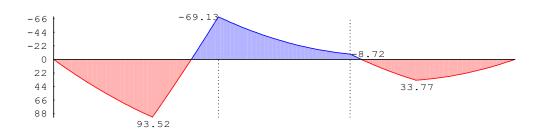
моменты $M_{yпp}$ [кНм]

Нагружение 1 M = 1 : 115

поперечные силы $Q_{y\pi p}$ [кН]

 Позиция
 t304
 Страница
 130

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024


 Разраб.
 Разработчик
 СТАТИКА/304
 Версия
 2025.000

Нагружение	1
------------	---

Пролёт	X	n	nax M _{vun}	min M _{ynp}	max Q _{упр}	min Q _{yπp}
	[M]		[кНм]	[кНм]	[KH]	[KH]
1	0.00		0.00	0.00	81.81	81.81
	0.15	0	11.82	11.82	75.81	75.81
	0.62	h0	42.93	42.93	57.05	57.05
	1.00		61.74	61.74	41.81	41.81
	2.00		83.57	83.57	1.81	1.81
	2.05	*	83.65	83.65	-0.00	-0.00
	3.00		65.40	65.40	-38.19	-38.19
	4.00		7.17	7.17	-78.19	-78.19
	4.28	h0	-16.37	-16.37	-89.43	-89.43
	4.85	0	-73.69	-73.69	-112.19	-112.19
	5.00		-90.97	-90.97	-118.19	-118.19
2	0.00		-90.97	-90.97	80.00	80.00
	0.15	0	-79.42	-79.42	74.00	74.00
	0.72	h0	-43.84	-43.84	51.24	51.24
	1.00		-31.00	-31.00	40.00	40.00
	2.00		-10.97	-10.97	0.00	0.00
	3.00		-31.00	-31.00	-40.00	-40.00
	3.28	h0	-43.84	-43.84	-51.24	-51.24
	3.85	0	-79.42	-79.42	-74.00	-74.00
	4.00		-90.97	-90.97	-80.00	-80.00
3	0.00		-90.97	-90.97	118.19	118.19
	0.15	0	-73.69	-73.69	112.19	112.19
	0.72	h0	-16.37	-16.37	89.43	89.43
	1.00		7.17	7.17	78.19	78.19
	2.00		65.40	65.40	38.19	38.19
	2.95	*	83.65	83.65	-0.00	-0.00
	3.00		83.57	83.57	-1.81	-1.81
	4.00		61.74	61.74	-41.81	-41.81
	4.38	h0	42.93	42.93	-57.05	-57.05
	4.85	0	11.82	11.82	-75.81	-75.81
	5.00		0.00	0.00	-81.81	-81.81

Нагружение 2 М = 1 :115

моменты $M_{y\pi p}$ [кНм]

Нагружение 2 М = 1 :115

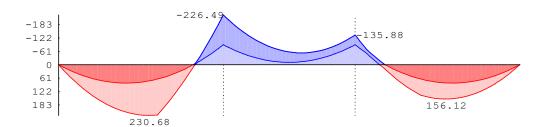
поперечные силы $Q_{y\pi p}$ [кН]

Нагружение 2

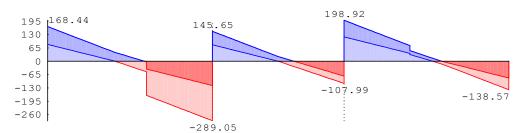
Пролёт	X	max	Мупр	min $M_{y\pi p}$	max Q _{yπp}	min Q _{ynp}
	[M]		[кНм]	[кНм]	[ĸH]	[ĸH]
1	0.00		0.00	0.00	38.67	38.67
	0.15	0	5.74	5.74	37.92	37.92
	0.62	h0	22.98	22.98	35.58	35.58
	1.00		36.16	36.16	33.67	33.67
	2.00		67.34	67.34	28.67	28.67

ООО Техсофт, Москва

Позиция	t304		Страниц	a 131
Проект	СТАТИКА тест вс	ех модулей	Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/304	Версия	2025.000
	_			


	3.00 *	93.52	93.52	23.67	23.67
	4.00	14.68	14.68	-81.33	-81.33
	4.28 h0	-8.37	-8.37	-82.73	-82.73
	4.85 0	-56.24	-56.24	-85.58	-85.58
		-69.14	-69.14		
2	5.00			-86.33	-86.33
	0.00	-69.14	-69.14	25.11	25.11
	0.15 0	-65.43	-65.43	24.36	24.36
	0.72 h0	-52.38	-52.38	21.51	21.51
	1.00	-46.54	-46.54	20.11	20.11
	2.00	-28.93	-28.93	15.11	15.11
	3.00	-16.33	-16.33	10.11	10.11
	3.28 h0	-13.69	-13.69	8.70	8.70
	3.85 o	-9.54	-9.54	5.86	5.86
	4.00	-8.72	-8.72	5.11	5.11
3	0.00	-8.72	-8.72	26.24	26.24
	0.15 o	-4.84	-4.84	25.49	25.49
	0.72 h0	8.85	8.85	22.65	22.65
	1.00	15.02	15.02	21.24	21.24
	2.00 *	33.77	33.77	-3.76	-3.76
	3.00	27.51	27.51	-8.76	-8.76
	4.00	16.25	16.25	-13.76	-13.76
	4.38 h0	10.65	10.65	-15.66	-15.66
	4.85 0	2.76	2.76	-18.01	-18.01
	5.00	0.00	0.00	-18.76	-18.76
	- • • •				

Реакции опор


Нагружение	опора	max	min
		[ĸH]	[кН]
1	А	81.81	81.81
	В	198.19	198.19
	C	198.19	198.19
	D	81.81	81.81
2	A	38.67	38.67
	В	111.43	111.43
	С	21.14	21.14
	D	18.76	18.76

РСУ

Момент М [кНм] М = 1 :115 Сочетания усилий согласно п.6.4.3 ТКП EN 1990-2011 Основы проектирования несущих конструкций. основные сочетания усилий

Попер. сила Q [кН] основные сочетания усилий М = 1 :115

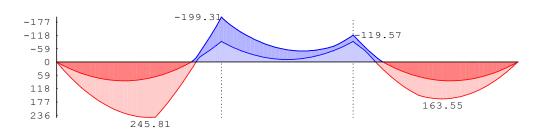
 Позиция
 1304
 Страниц
 132

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/304
 Версия
 2025.000

Основные сочетания усилий

Пролёт	X	m	ax M _{pcy}	min M _{pcy}	max Q _{pcy}	
	[M]		[кНм]	[кНм]	[KH]	[KH]
1	0.00		0.00	0.00	168.45	81.81
	0.15		24.58	11.82	159.22	75.81
	0.62	h0	92.49	42.97	130.38	57.05
	1.00		137.59	61.74	106.95	41.81
	2.00		213.83	83.57	45.45	1.81
	2.74	*	230.68	74.02	9.71	-37.47
	3.00		228.59	65.42		-51.56
	4.00		31.71	7.17	-78.19	-227.55
	4.28	h0	-16.33	-34.59	-89.43	-244.84
	4.85	0	-73.69	-183.85	-112.19	
	5.00		-90.97	-226.52	-118.19	
2	0.00		-90.97	-226.52	145.66	80.00
	0.15	0	-79.42	-205.36	136.43	74.00
	0.72	h0	-43.79	-137.69	101.44	51.24
	1.00		-31.00	-111.66	84.16	40.00
	2.00		-10.97	-58.20	22.66	0.00
	3.00		-31.00	-66.34	-24.84	-54.00
	3.28	h0	-43.79	-79.64	-38.19	-69.17
	3.85	0	-79.42	-121.53	-65.22	-99.90
	4.00		-90.97	-135.89	-72.34	-108.00
3	0.00		-90.97	-135.89	198.93	118.19
	0.15	0	-73.69	-106.74	189.70	112.19
	0.72	h0	-3.04	-22.05	154.71	89.43
	1.00		32.21	7.17	137.43	78.19
	2.00		138.97	65.42	75.93	38.19
	2.75	*	156.12	82.79	11.24	-2.91
	3.00		154.08	83.57	-1.81	-15.57
	4.00		107.72	61.74	-41.81	-77.07
	4.38	h0	73.99	42.97	-57.05	-100.50
	4.85	0	20.09	11.82	-75.81	-129.35
	5.00	-	0.00	0.00	-81.81	-138.57

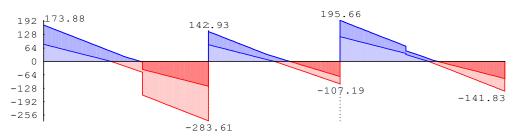

Сочетания реакций в опорах

Сочетание	опора	max	min
		[ĸH]	[KH]
основные РСУ	A	168.45	81.81
	В	434.71	198.19
	С	299.27	198.19
	D	138.57	81.81
особые РСУ	A	120.48	81.81
	В	309.63	198.19
	С	219.33	198.19
	D	100.56	81.81

Перераспр. моментов

B C -----12.0% 12.0%

Момент M [кНм] М = 1 :115 Результаты после перераспределения моментов. основные сочетания усилий



 Позиция
 t304
 Страница
 133

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/304
 Версия
 2025.000

Попер. сила Q [кН] основные сочетания усилий М = 1 :115

Основные сочетания усилий

T			or M	min M		
Пролёт	X	m		min M _{pcy}	max Q _{pcy}	
1	[M]		[кНм]	[кHм]	[KH]	[KH]
	0.00		0.00	0.00	173.88	81.81
	0.15	0	25.39	11.82	164.66	75.81
	0.56	h0	88.26	39.76	139.20	59.25
	1.00		143.03	61.74	112.38	41.81
	2.00		224.70	83.57	50.88	1.81
	2.83	*	245.81	71.41	5.52	-42.24
	3.00		244.90	65.42	-2.69	-51.56
	4.00		53.45	7.17	-78.19	-222.13
	4.28	h0	-11.81	-29.52	-89.55	-239.58
	4.85	0	-73.69	-158.06	-112.19	-274.36
	5.00		-90.97	-199.34	-118.19	-283.62
2	0.00		-90.97	-199.34	142.94	80.00
	0.15	0	-79.42	-178.59	133.71	74.00
	0.72	h0	-43.95	-122.62	98.88	51.36
	1.00		-31.00	-100.81	81.42	40.00
	2.00		-10.97	-54.36	22.66	0.00
	3.00		-31.00	-55.49	-24.84	-53.18
	3.28	h0	-43.95	-64.43	-38.33	-68.52
	3.85	0	-79.42	-104.82	-65.22	-99.07
	4.00		-90.97	-119.58	-72.34	-107.19
3	0.00		-90.97	-119.58	195.67	118.19
	0.15	0	-73.69	-96.35	186.44	112.19
	0.72	h0	4.75	-19.64	151.63	89.55
	1.00		45.26	7.17	134.18	78.19
	2.00		148.75	65.42	72.67	38.19
	2.69	*	163.55	82.29	13.45	-0.39
	3.00		160.61	83.57	-1.81	-18.83
	4.00		110.98	61.74	-41.81	-80.33
	4.43	h0	70.40	39.88	-59.17	-107.02
	4.85	0	20.58	11.82	-75.81	-132.61
	5.00	-	0.00	0.00	-81.81	-141.83

Сочетания реакций в опорах

Сочетание	опора	max	min
		[ĸH]	[кН]
основные РСУ	A	173.88	81.81
	В	426.56	198.19
	С	298.73	198.19
	D	141.83	81.81
особые РСУ	A	120.48	81.81
	В	309.63	198.19
	С	219.33	198.19
	D	100.56	81.81

Позиция t304 134 Страница 28.10.2024 СТАТИКА тест всех модулей Проект Дата Разраб. Разработчик **СТАТИКА/304** Версия 2025.000

Расчёт по прочности Согласно ТКП EN 1992-1-1:

Проект. ж/б конструкций fyk=400МПа

Бетон C25/30, хомуты S400 верхняя S500 нижняя S500

fyk=500MПа ftk=525MПа fyk=500MПа ftk=525MПа

Защитный слой

Пролёт	а _{з, н}	а _{з,в}	a _{s,6}	а _н	а _в	
	[MM]	[MM]	[MM]	[CM]	[CM]	
1	28	28	15	3.6	3.4	
2	28	28	15		3.4	
3	28	28	15	3.4	3.4	

Пролёт 1

X	max M	min M	A _{s H} (I)	A _{sB} (I)	А _{зн}	A _{sв}
[м]	[кНм]	[кНм]	[см2]	[cm2]	[см2]	[см2]
0.00	0.0	0.0	2.82	0.00	2.82	0.00
0.15 0	25.4	11.8	2.82	0.00	2.82	0.00
1.00	143.0	61.7	6.92	0.00	6.92	0.00
2.00	224.7	83.6	10.94	0.00	10.94	0.00
2.83 *	245.8	71.4	11.99	0.00	11.99	0.00
3.00	244.9	65.4	11.94	0.00	11.94	0.00
3.84	88.3	19.2	4.25	0.00	4.25	0.00
3.86	84.0	17.8	4.06	0.00	4.06	0.00
4.00	53.5	7.2	2.89	0.00	2.89	0.00
4.09	33.3	0.0	2.72	0.00	2.72	4.79
4.85 0	-73.7	-158.1	0.00	6.50	0.00	6.50
5.00	-91.0	-199.3	0.00	8.41	0.00	8.41

X	V _{ed}	V _{rdc}	V _{rds}	V _{rdmax}	A _{sw} /s
[M]	[кH]	[ĸH]	[ĸH]	[ĸH]	[cm2/m]
0.00					
0.15 o	164.7	67.4	164.7	410.2	3.64
0.56 h0	139.2	67.4	139.2	410.0	3.64
1.00	112.4	77.1	114.8	405.4	3.03
2.00	50.9	77.1			3.00
3.00	51.6	77.1			3.00
3.84	212.3	77.1	212.3	405.9	5.60
3.86	213.5	77.2	213.5	406.8	5.62
4.00	222.1	73.3	222.1	421.7	5.64
4.09	227.6	67.5	227.7	427.0	5.71
4.28 h0	239.6	73.2	239.6	432.6	5.93
4.85 0	274.4	77.0	274.4	475.6	4.77
5.00					

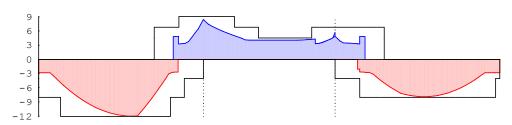
Пролёт 2

х max M min M A _{SH} (I) A _{SB} (I) A _{SH} [м] [кНм] [кНм] [см2] [см2] [см2] 0.00 -91.0 -199.3 0.00 8.41 0.00 0.15 0 -79.4 -178.6 0.00 7.43 0.00 1.00 -31.0 -100.8 0.00 4.84 0.00	
0.00 -91.0 -199.3 0.00 8.41 0.00 0.15 0 -79.4 -178.6 0.00 7.43 0.00 1.00 -31.0 -100.8 0.00 4.84 0.00	A _{sв}
0.15 o -79.4 -178.6 0.00 7.43 0.00 1.00 -31.0 -100.8 0.00 4.84 0.00	[см2]
1.00 -31.0 -100.8 0.00 4.84 0.00	8.41
	7.43
1	4.84
1.14 -25.8 -91.4 0.00 4.52 0.00	4.52
1.16 -25.1 -90.2 0.00 4.46 0.00	4.46
2.00 -11.0 -54.4 0.00 4.04 0.00	4.04
2.84 -25.1 -52.1 0.00 4.04 0.00	4.04
2.86 -25.8 -52.5 0.00 4.05 0.00	4.05
3.00 -31.0 -55.5 0.00 4.11 0.00	4.11
3.85 0 -79.4 -104.8 0.00 4.23 0.00	4.23
4.00 -90.9 -119.5 0.00 4.85 0.00	5.68

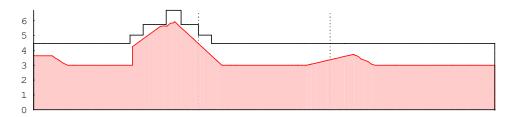
X	V _{ed}	V _{rdc}	Vrds	V _{rdmax}	A _{sw} /s
[M]	[KH]	[KH]	[KH]	[KH]	[см2/м]
0.00					
0.15 0	133.7	77.0	133.7	472.0	4.16
0.72 h0	98.9	73.2	118.6	423.5	3.00
1.00	81.4	64.8	113.3	404.4	3.00
1.14	72.8	63.9	109.9	392.2	3.00
1.16	71.6	63.8	109.7	391.3	3.00
2.00	22.7	55.7			3.00
2.84	44.6	55.7			3.00
2.86	45.6	55.8			3.00

Позиция	t304		Страниц	a 135
Проект	СТАТИКА тест в	ех модулей	Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/304	Версия	2025.000
	,			

3.00	53.2	56.6			3.00
3.28 h0	68.5	58.1	121.8	434.5	3.00
3.85 0	99.1	70.0	133.5	476.4	3.29
4.00					


Пролёт 3

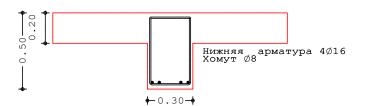
X	max M	min M	A _{s H} (I)	A _{sB} (I)	А _{sн}	A _{sв}
[M]	[кНм]	[кНм]	[см2]	[см2]	[см2]	[см2]
-0.00	-91.0	-119.6	0.00	4.85	0.00	5.68
0.00	-91.0	-119.6	0.00	4.85	0.00	4.85
0.15 0	-73.7	-96.4	0.00	3.88	0.00	3.88
0.91	32.8	-0.1	2.72	4.79	2.72	4.79
0.91	33.1	0.1	2.72	0.00	2.72	0.00
1.00	45.3	7.2	2.76	0.00	2.76	0.00
1.14	63.5	17.8	3.08	0.00	3.08	0.00
1.16	66.0	19.2	3.16	0.00	3.16	0.00
2.00	148.7	65.4	7.17	0.00	7.17	0.00
2.69 *	163.6	82.3	7.89	0.00	7.89	0.00
3.00	160.6	83.6	7.74	0.00	7.74	0.00
4.00	111.0	61.7	5.33	0.00	5.33	0.00
4.85 0	20.6	11.8	2.82	0.00	2.82	0.00
5.00	0.0	0.0	2.82	0.00	2.82	0.00


Х	V _{ed}	V _{rdc}	V _{rds}	V _{rdmax}	A _{sw} /s
[M]	[KH]	[KH]	[ĸH]	[ĸH]	[см2/м]
-0.00					
0.00					
0.15 o	186.4	70.0	186.4	483.8	3.45
0.72 h0	151.6	66.5	151.6	434.5	3.74
0.91	139.8	67.6	139.8	428.4	3.49
0.91	139.7	67.6	139.7	428.4	3.49
1.00	134.2	68.5	134.2	425.6	3.37
1.14	125.6	67.6	125.6	412.9	3.26
1.16	124.3	67.5	124.3	411.9	3.23
2.00	72.7	67.5	115.3	411.6	3.00
3.00	18.8	67.5			3.00
4.00	80.3	67.5	115.3	411.3	3.00
4.43 h0	107.0	67.5	115.3	411.6	3.00
4.85 0	132.6	67.5	132.6	411.9	3.00
5.00					

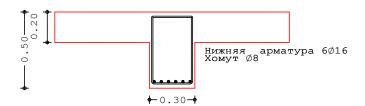
Констр. арматуры

Продольная арматура A_s [см2] M=1:115

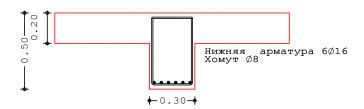
Поперечная арматура A_{sw}/s [см2/м] M = 1 : 115

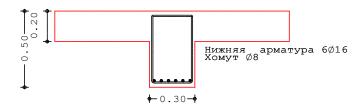


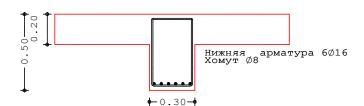
 Позиция
 t304
 Страница
 136


 Проект
 CTATИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 CTATИКА/304
 Версия
 2025.000


Пролет 1 M = 1 :25 схема армирования сечения с координатой x = 0.00


Пролет 1 M = 1 :25 схема армирования сечения с координатой х = 1.00


Пролет 1 M = 1 :25 схема армирования сечения с координатой x = 2.00

Пролет 1 M = 1 :25 схема армирования сечения с координатой х = 2.83

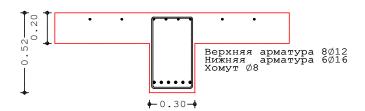
Пролет 1 M = 1 :25 схема армирования сечения с координатой х = 3.00

 Позиция
 t304
 Страница
 137

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/304
 Версия
 2025.000

Пролет 1 M = 1 :25 схема армирования сечения с координатой x = 3.84


Пролет 1 M = 1 :25 схема армирования сечения с координатой х = 3.86

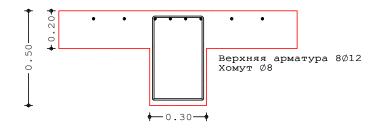
Пролет 1 M = 1 :25 схема армирования сечения с координатой x = 4.00

Пролет 1 M = 1 :25 схема армирования сечения с координатой x = 4.09


Пролет 2 M = 1 :15 схема армирования сечения с координатой x = 0.15

 Позиция Проект
 t304
 Страница
 138

 СТАТИКА тест всех модулей Разработчик
 СТАТИКА/304
 Версия
 2025.000


Пролет 2 схема армирования сечения с координатой x = 1.0 M = 1 :20

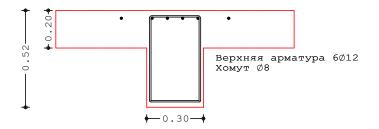
Пролет 2 схема армирования сечения с координатой x = 1.14 M = 1 :20

Пролет 2 схема армирования сечения с координатой x = 1.16 M = 1 :20

Пролет 2 схема армирования сечения с координатой x = 2.00 M = 1 :20

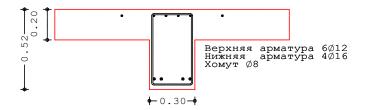
Пролет 2 схема армирования сечения с координатой x = 2.84 M = 1 :20

 Позиция
 t304
 Страница
 139


 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/304
 Версия
 2025.000

Пролет 2 схема армирования сечения с координатой x = 2.86 M = 1 :20


Пролет 2 схема армирования сечения с координатой x = 3.00 M = 1 :20

Пролет 2 схема армирования сечения с координатой x = 4.00 M = 1 :15

Пролет 3 схема армирования сечения с координатой x = 0.91 M = 1 :25

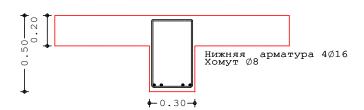
 Позиция
 t304
 Страница
 140

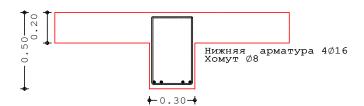
 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/304
 Версия
 2025.000

Пролет 3 M = 1 :25 схема армирования сечения с координатой x = 1.00

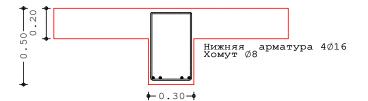
Пролет 3 M = 1 :25


схема армирования сечения с координатой х = 1.14


Пролет 3 M = 1 :25 схема армирования сечения с координатой х = 1.16

Пролет 3 M = 1 :25 схема армирования сечения с координатой x = 2.00

Пролет 3 M = 1 :25 схема армирования сечения с координатой x = 3.00



 Позиция
 t304
 Страница
 141

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/304
 Версия
 2025.000

Пролет 3 M = 1 :25 схема армирования сечения с координатой x = 4.00

Продольн. арм.

пролёт	тип	кол.	ds	ряд	A _{sl}	a	1
опора			[MM]		[см2]	[м]	[M]
1	Н	2	16	1	4.02	-0.31	5.93
1	H	2	16	1	8.04	-0.31	5.35
1	Н	2	16	1	12.06	0.36	3.96
3	Н	2	16	1	4.02	-0.62	5.93
3	Н	2	16	1	8.04	0.44	4.75
пролёт	тип	кол.	ds	ряд	A _{sl}	а	1
опора			[MM]		[см2]	[M]	[M]
В	В	2	12	1	6.79	3.28	3.86
C	В	4	12	1	4.52	-1.72	7.45
В	В	2	12	1	9.05	3.79	2.62
C	-	2	1.0	1	6 70	2 23	2 90

Продольн. арм.

Длины приведены с учетом анкеровки

Хомуты

Пролёт	кол.	срез.	ds	s	A _{sw} /s	а	1
			[MM]	[CM]	[см2/м]	[M]	[м]
1	14	2	8	23	4.47	0.00	2.93
1	2	2	8	20	5.03	2.93	0.40
1	4	2	8	18	5.74	3.33	0.70
1	3	2	8	15	6.70	4.03	0.45
1	3	2	8	18	5.74	4.48	0.53
1	2	2	8	20	5.03	5.00	0.40
2	18	2	8	23	4.47	0.40	4.05
3	21	2	8	23	4.47	0.45	4.72

Тип арматуры	d	длина	кол.	вес
	[MM]	М		[ĸH]
стержневая арматура	12	48.56		0.42
стержневая арматура	16	51.84		0.80
хомуты	8		68	

Поперечная арматура препятствующая срезу между полкой и стенкой

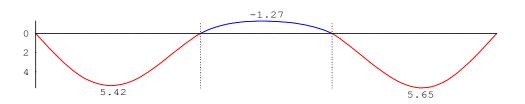
1100117	ттструюн	цал срс	у мсмар т	5511051 31	0 1 0 11 1	
V_{rdc}	= 0.48	ВМПа,	V _{rdmax} =	4.50MN	a,	d = 8мм
Про-	X	V_{ed}	A_{sw}/s	S	n	A_{sw}/s
лет	[м]	[МПа]	[см2/м]	[CM]		[см2/м]
1	0.00	0.75	4.29	22	1x2	4.57
	0.22	0.69	3.99	24	1x2	4.19
	0.46	0.49	2.53	38	1x2	2.65
	3.11	0.44	0.00	20	1x2	5.03
	3.31	0.86	4.92	18	2x2	5.59
	3.67	0.95	5.44	16	3x2	6.28
	4.15	0.93	5.32	6	4×2	16.76
	4.39	2.18	12.55	8	1x2	12.57
	4.47	2.07	11.88	6	9x2	16.76
2	0.01	1.32	7.59	12	1×2	8.38
	0.13	1.23	7.10	14	5x2	7.18
	0.83	1.06	6.10	16	2×2	6.28
	1.15	0.88	5.09	18	1x2	5.59
	1.33	0.73	4.19	22	1×2	4.57
	1.55	0.22	0.80	32	1x2	3.14
	2.99	0.44	0.00	28	1×2	3.59
	3.27	0.60	3.45	24	1x2	4.19

ООО Техсофт, Москва

304 ТАТИКА тест I	всех м	одулей				***	142 28.10.2024	
азработчик		СТАТИКА/304					2025.000	
		3.51	0.71	4.09	20	1x2	5.03	
		3.71	0.81	4.65	18	1x2	5.59	
		3.89	0.90	5.18	10	1x2	10.05	
		3.99	0.96	5.52	8	3×2	12.57	
	3	0.23	1.69	9.74	10	4×2	10.05	
		0.63	1.12	6.43	14	1x2	7.18	
		0.77	0.93	5.35	18	1x2	5.59	
		0.95	0.60	3.45	28	1x2	3.59	
		1.23	0.55	3.18	30	1x2	3.35	
		1.53	0.47	1.26	40	1x2	2.51	
		4.55	0.28	0.00	30	1x2	3.35	
	1	4 85	0.58	3 33	15	1 v 2	6 70	

Трещиностойкость

t304


Позиция Проект Разраб.

допустимая ширина раскрытия трещин $w_{\text{lim}} = 0.30$ мм

Нормальные трещины

			1		1 - '		
Про-	X		M	M _{crc}	$\sigma_{ m s}$	A _c ,eff	Wk
лет	[M]		[кНм]	[кНм]	[МПа]	[см2]	[MM]
	0.00		0.0	48.1			
	0.15	0	13.5	48.1			
	1.00		72.6	48.1	14.9	270.00	0.15
	2.00		103.8	50.2	14.9	270.00	0.13
	2.83	*	98.2	50.2	14.9	270.00	0.12
	3.00		93.5	50.2	14.9	270.00	0.11
	3.84		27.5	48.1			
	3.86		25.6	48.3			
	4.00		11.6	51.1			
	4.09		2.2	50.6	0 0	0 00	0 00
	4.85	0	-90.6	-96.9	0.0	0.00	0.00
	5.00		-111.7	-96.9	14.0	714.00	0.19
	0.00		-111.7	-96.9	14.0	714.00	0.19
	0.15	0	-99.1	-96.9	14.0	714.00	0.16
	1.00		-45.0	-88.4	0.0	0.00	0.00
	1.14		-38.9	-83.5	0.0	0.00	0.00
	1.16		-38.1	-83.2	0.0	0.00	0.00
	2.00		-19.7 -30.5	-82.4	0.0	0.00	0.00
	2.84			-82.4	0.0	0.00	0.00
	2.86		-31.1	-82.8	0.0	0.00	0.00
	3.00	_	-35.9	-87.6	0.0	0.00	0.00
		0	-82.3	-96.0	0.0	0.00	0.00
	4.00		-93.5	-96.0	0.0	0.00	0.00
-	0.00	_	-93.6	-96.0	0.0	0.00	0.00
	0.15	0	-75.1	-96.0	0.0	0.00	0.00
	0.91		4.0	50.5			
	1.00		11.7	48.9			
	1.14		23.1	46.2			
	1.16		24.7	46.1	1.4.0	270 00	0 1 0
	2.00	*	75.5 91.3	48.1	14.9	270.00	0.16
	2.69	^		48.1	14.9	270.00	0.20
	3.00		91.8	48.1	14.9	270.00	0.20
	4.00	_	66.6	48.1	14.9	270.00	0.14
	4.85	0	12.6	48.1			
	5.00		0.0	48.1			

Прогибы [мм] М = 1 :115

 Позиция
 t304
 Страница
 143

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/304
 Версия
 2025.000

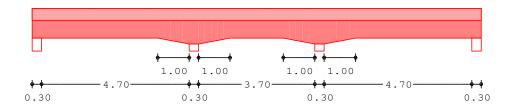
Прогибы

подП	ет х		M	100/ρτ	100/p _{II}	100/ρ	W
115001	[M]		[кНм]	[1/m]	[1/m]	[1/m]	[mm]
1	0.00		0.0	0.00	0.00	0.00	0.00
	0.00		0.0	0.00	0.00	0.00	0.00
	0.00		0.0	0.00	0.00	0.00	0.00
	1.00		72.6	0.14	0.25	0.20	3.47
	2.00		103.7	0.20	0.25	0.23	5.30
	2.33	*	105.0	0.20	0.25	0.24	5.42
	3.00		93.5	0.18	0.22	0.21	4.84
	3.84		27.5	0.05	0.00	0.05	2.95
	3.86		25.6	0.05	0.00	0.05	2.90
	4.00		11.6	0.02	0.00	0.02	2.52
	4.09		2.2	0.00	0.00	0.00	2.28
	4.09		2.1	0.00	0.00	0.00	2.27
	5.00		-111.7	-0.16	0.00	-0.16	0.00
2	0.00		-111.7	-0.16	0.00	-0.16	-0.00
	1.00		-45.0	-0.09	0.00	-0.09	-1.07
	1.14		-38.9	-0.08	0.00	-0.08	-1.14
	1.16		-38.1	-0.08	0.00	-0.08	-1.14
	2.00	*	-19.7	-0.04	0.00	-0.04	-1.27
	2.84		-30.5	-0.06	0.00	-0.06	-1.07
	2.86		-31.1	-0.06	0.00	-0.06	-1.06
	3.00		-35.9	-0.07	0.00	-0.07	-0.99
	4.00		-93.5	-0.13	0.00	-0.13	-0.00
	4.00		-93.6	-0.13	0.00	-0.13	-0.00
3	0.00		-93.6	-0.13	0.00	-0.13	0.00
	0.00		-93.5	-0.13	0.00	-0.13	0.00
	0.91		3.8	0.01	0.00	0.01	2.33
	0.91		4.0	0.01	0.00	0.01	2.34
	1.00		11.7	0.02	0.00	0.02	2.59
	1.14		23.1	0.04	0.00	0.04	2.97
	1.16		24.7	0.05	0.00	0.05	3.02
	2.00		75.5	0.15	0.26	0.21	4.98
	2.67	*	91.0	0.18	0.31	0.27	5.65
	3.00		91.8	0.18	0.32	0.27	5.54
1	4.00		66.6	0.13	0.00	0.13	3.52
	5.00		0.0	0.00	0.00	0.00	0.00

Расчет выполнен модулем 304 программы СТАТИКА 2025 © 000 Техсофт

Поз. t305

Трехпролетная балка


Расчётная схема

M = 1 : 120

t305 Позиция 144 Страница СТАТИКА тест всех модулей 28.10.2024 Проект Дата Разраб. Разработчик **СТАТИКА/305** Версия 2025.000

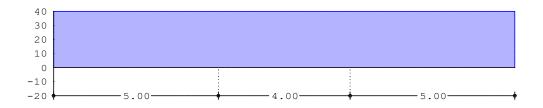
M = 1 : 120

Воздействия

Nº	Тип воздействия	Описание			
1	Постоянное	Постоянное воздействие			
		постоянное -			
2	Переменное	Категория А: жилые здания			
		переменное Категория-А			

Характеристики

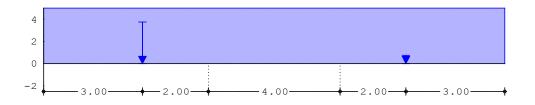
$N_{\tilde{0}}$	$\gamma_{ m F}$	Ψ_0	ψ_1	ψ_2	группа	знак	распред
		ξ			несоч.		по прол
1	1.35	0.85					
2	1.50	0.70	0.50	0.30			заданн.


Коэффициент Сочетание воздейст. по формуле (6.10) EN 1990

управления надежностью конструкции

 $K_{FI} = 1.00$

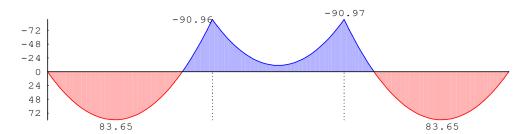
Нагружение Нагружение 1 M = 1 : 115


постоянное - γ_f = 1.35

	Ν.	Пролёт	а	s	рл/Р	p _n /M
		опора	[M]	[M]	[кН/м,к	Н,кНм]
Равномерн.	1	1-3			40.00	

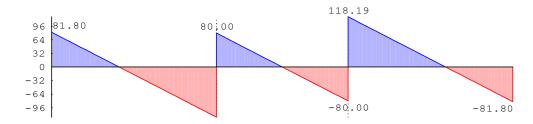
Нагружение 2 M = 1 : 115

переменное Категория-А $\gamma_{\rm f}$ = 1.50


	Ν.	Пролёт	а	s	рл/Р	рп/М
		опора	[M]	[M]	[кН/м,кН	І,кНм]
Равномерн.	1	1-3			5.00	
Сосредот.	1	1	3.00		100.00	
	2	3	2.00		20.00	

Позиция t305
Проект СТАТИКА тест всех модулей Дата 28.10.2024
Разраб. Разработчик СТАТИКА/305 Версия 2025.000

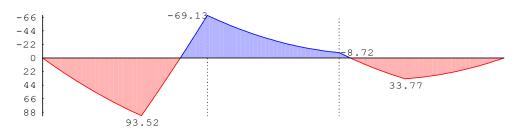
Усилия в сечении


по линейно упругой теории

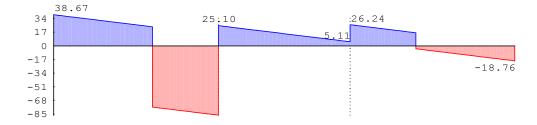
Нагружение 1 M = 1 :115 моменты М_{упр} [кНм]

Нагружение 1 М = 1 :115

поперечные силы $Q_{ ext{ynp}}$ [кН]


Нагружение 1

[M] [KHM] [KHM] [KHM] [KH] [KH] 1 0.00							
1 0.00 0.00 0.00 81.81 81.81 0.15 0 11.82 11.82 75.81 75.81 0.62 h0 42.93 42.93 57.05 57.05 1.00 61.74 61.74 41.81 41.81 2.00 83.57 83.57 1.81 1.81 2.05 * 83.65 83.65 -0.00 -0.00 3.00 65.40 65.40 -38.19 -38.19 4.00 7.17 7.17 -78.19 -78.19 4.28 h0 -16.37 -16.37 -89.43 -89.43 4.85 0 -73.69 -73.69 -112.19 -112.19 5.00 -90.97 -90.97 -118.19 -118.19 2 0.00 -90.97 -90.97 80.00 80.00 0.15 0 -79.42 -79.42 74.00 74.00 0.72 h0 -43.84 -43.84 51.24 51.24 1.00 -31.00 -31.00 40.00 -40.00	Пролёт		m	_	_	_	- 1
0.15 o 11.82 11.82 75.81 75.81 0.62 h0 42.93 42.93 57.05 57.05 1.00 61.74 61.74 41.81 41.81 2.00 83.57 83.57 1.81 1.81 2.05 * 83.65 83.65 -0.00 -0.00 3.00 65.40 65.40 -38.19 -38.19 4.00 7.17 7.17 -78.19 -78.19 4.28 h0 -16.37 -16.37 -89.43 -89.43 4.85 o -73.69 -73.69 -112.19 -112.19 5.00 -90.97 -90.97 118.19 -118.19 2 0.00 -90.97 -90.97 80.00 80.00 0.15 o -79.42 -79.42 74.00 74.00 0.72 h0 -43.84 -43.84 51.24 51.24 1.00 -31.00 -31.00 40.00 40.00 2.00 -10.97 -10.97 0.00 0.00 3.28 h0 -43.84 -43.84 -51.24 -51.24 3.85 o -79.42 -79.42 -74.00 -40.00 3.28 h0 -43.84 -43.84 -51.24 -51.24 3.85 o -79.42 -79.42 -74.00 -74.00 40.00 3.28 h0 -43.84 -43.84 -51.24 -51.24 3.85 o -79.42 -79.42 -74.00 -74.00 40.00 3.00 -90.97 -90.97 -90.97 -80.00 -80.00 3.00 -90.97 -90.97 -90.97 -80.00 -80.00 3.00 -90.97 -90.97 -90.97 -80.00 -80.00 3.00 -73.69 -73.69 112.19 112.19 0.72 h0 -16.37 -16.37 89.43 89.43 1.00 7.17 7.17 78.19 78.19 0.15 o -73.69 -73.69 112.19 112.19 112.19 0.72 h0 -16.37 -16.37 89.43 89.43 1.00 7.17 7.17 78.19 78.19 2.00 65.40 65.40 38.19 38.19 38.19 2.95 * 83.65 83.65 -0.00 -0.00 3.00 83.57 83.57 -1.81 -1.81 40.00 61.74 61.74 -41.81 -41.81 41.81							
0.62 h0 42.93 42.93 57.05 57.05 1.00 61.74 61.74 41.81 41.81 2.00 83.57 83.57 1.81 1.81 2.05 * 83.65 83.65 -0.00 -0.00 3.00 65.40 65.40 -38.19 -38.19 4.00 7.17 7.17 -78.19 -78.19 4.28 h0 -16.37 -16.37 -89.43 -89.43 4.85 o -73.69 -73.69 -112.19 -112.19 5.00 -90.97 -90.97 -118.19 -118.19 2 0.00 -90.97 -90.97 80.00 80.00 0.15 o -79.42 -79.42 74.00 74.00 0.72 h0 -43.84 -43.84 51.24 51.24 1.00 -31.00 -31.00 40.00 40.00 3.28 h0 -43.84 -43.84 -51.24 -51.24 3.85 o -79.42 -79.42 -74.00 -74.00 4.00 -90.97 -90.97 -80.00 -80.00	1						
1.00 61.74 61.74 41.81 41.81 2.00 83.57 83.57 1.81 1.81 1.81 2.05 * 83.65 83.65 -0.00 -0.00 3.00 65.40 65.40 -38.19 -38.19 4.00 7.17 7.17 -78.19 -78.19 4.28 h0 -16.37 -16.37 -89.43 -89.43 4.85 o -73.69 -73.69 -112.19 -112.19 5.00 -90.97 -90.97 -118.19 -118.19 2 0.00 -90.97 -90.97 80.00 80.00 0.15 o -79.42 -79.42 74.00 74.00 0.72 h0 -43.84 -43.84 51.24 51.24 1.00 -31.00 -31.00 40.00 40.00 2.00 -10.97 -10.97 0.00 0.00 3.28 h0 -43.84 -43.84 -51.24 51.24 3.85 o -79.42 -79.42 -74.00 -40.00 3.28 h0 -43.84 -43.84 -51.24 -51.24 3.85 o -79.42 -79.42 -74.00 -74.00 4.00 -90.97 -90.97 -80.00 -80.00 3.00 -31.00 -31.00 -40.00 -74.00 4.00 -90.97 -90.97 -80.00 -80.00 3.28 h0 -43.84 -63.84 -63.84 -51.24 -51.24 3.85 o -79.42 -79.42 -74.00 -74.00 -74.00 4.00 -90.97 -90.97 -80.00 -80.00 3.00 -90.97 -90.97 -80.00 -80.00 3.00 -73.69 -73.69 112.19 112.19 0.72 h0 -16.37 -16.37 89.43 89.43 1.00 7.17 7.17 78.19 78.19 2.00 65.40 65.40 38.19 38.19 38.19 2.95 * 83.65 83.65 -0.00 -0.00 3.00 83.57 83.57 -1.81 -1.81 4.00 61.74 61.74 -41.81 -41.81 4.38 h0 42.93 42.93 -57.05 -57.05 4.85 o 11.82 11.82 -75.81 -75.81		0.15	0	11.82	11.82		
2.00		0.62	h0	42.93	42.93	57.05	57.05
2.05 * 83.65 83.65 -0.00 -0.00 3.00 65.40 65.40 -38.19 -38.19 4.00 7.17 7.17 -78.19 -78.19 4.28 h0 -16.37 -16.37 -89.43 -89.43 4.85 o -73.69 -73.69 -112.19 -112.19 5.00 -90.97 -90.97 -118.19 -118.19 2 0.00 -90.97 -90.97 80.00 80.00 0.15 o -79.42 -79.42 74.00 74.00 0.72 h0 -43.84 -43.84 51.24 51.24 1.00 -31.00 -31.00 40.00 40.00 2.00 -10.97 -10.97 0.00 0.00 3.28 h0 -43.84 -43.84 -51.24 -51.24 3.85 o -79.42 -79.42 -74.00 -74.00 4.00 -90.97 -90.97 80.00 -80.00 3.28 h0 -43.84 -43.84 -51.24 -51.24 3.85 o -79.42 -79.42 -74.00 -74.00 4.00 -90.97 -90.97 118.19 118.19 0.15 o -73.69 -73.69 112.19 112.19 0.72 h0 -16.37 -16.37 89.43 89.43 1.00 7.17 7.17 78.19 78.19 2.95 * 83.65 83.65 -0.00 -0.00 3.00 83.57 83.57 -1.81 -1.81 4.00 61.74 61.74 -41.81 -41.81 4.38 h0 42.93 42.93 -57.05 -57.05		1.00			61.74	41.81	41.81
3.00 65.40 65.40 -38.19 -38.19 4.00 7.17 7.17 -78.19 -78.19 4.28 h0 -16.37 -16.37 -89.43 -89.43 4.85 o -73.69 -73.69 -112.19 -112.19 5.00 -90.97 -90.97 -118.19 -118.19 2 0.00 -90.97 -90.97 80.00 80.00 0.15 o -79.42 -79.42 74.00 74.00 0.72 h0 -43.84 -43.84 51.24 51.24 1.00 -31.00 -31.00 40.00 40.00 2.00 -10.97 -10.97 0.00 0.00 3.28 h0 -43.84 -43.84 -51.24 -51.24 3.85 o -79.42 -79.42 -74.00 -40.00 4.00 4.00 4.00 4.00 -90.97 -90.97 188.19 188.19 0.15 o -73.69 -73.69 112.19 112.19 0.72 h0 -16.37 -90.97 188.19 118.19 12.19 0.72 h0 -16.37 -16.37 89.43 89.43 1.00 7.17 7.17 78.19 78.19 2.00 65.40 65.40 38.19 38.19 2.95 * 83.65 83.65 -0.00 -0.00 3.00 83.57 83.57 -1.81 -1.81 4.00 61.74 61.74 -41.81 -41.81 4.38 h0 42.93 42.93 -57.05 -57.05 4.85 o 11.82 11.82 -75.81 -75.81		2.00		83.57	83.57	1.81	1.81
4.00 7.17 7.17 -78.19 -78.19 4.28 h0 -16.37 -16.37 -89.43 -89.43 4.85 o -73.69 -73.69 -112.19 -112.19 5.00 -90.97 -90.97 -118.19 -118.19 2 0.00 -90.97 -90.97 80.00 80.00 0.15 o -79.42 -79.42 74.00 74.00 0.72 h0 -43.84 -43.84 51.24 51.24 1.00 -31.00 -31.00 40.00 40.00 2.00 -10.97 -10.97 0.00 0.00 3.00 -31.00 -31.00 -40.00 -40.00 3.28 h0 -43.84 -43.84 -51.24 -51.24 3.85 o -79.42 -79.42 -74.00 -74.00 4.00 -90.97 -90.97 -80.00 -80.00 3 0.00 -90.97 -90.97 118.19 118.19 11.219 0.72 h0 -16.37 -16.37 89.43 89.43 1.00 7.17 7.17		2.05	*	83.65	83.65	-0.00	-0.00
4.28 h0 -16.37 -16.37 -89.43 -89.43 4.85 o -73.69 -73.69 -112.19 -112.19 5.00 -90.97 -90.97 -118.19 -118.19 2 0.00 -90.97 -90.97 80.00 80.00 0.15 o -79.42 -79.42 74.00 74.00 0.72 h0 -43.84 -43.84 51.24 51.24 1.00 -31.00 -31.00 40.00 40.00 2.00 -10.97 -10.97 0.00 0.00 3.00 -31.00 -31.00 -40.00 -40.00 3.28 h0 -43.84 -43.84 -51.24 -51.24 3.85 o -79.42 -79.42 -74.00 -74.00 4.00 -90.97 -90.97 -80.00 -80.00 3 0.00 -90.97 -90.97 118.19 118.19 1.2.19 0.72 h0 -16.37 -16.37 89.43 89.43 1.00 7.17 7.17 78.19 78.19 2.95 * 83.65 83.65 <td></td> <td>3.00</td> <td></td> <td>65.40</td> <td>65.40</td> <td>-38.19</td> <td>-38.19</td>		3.00		65.40	65.40	-38.19	-38.19
4.85 o -73.69 -73.69 -112.19 -112.19 5.00 -90.97 -90.97 -118.19 -118.19 2 0.00 -90.97 -90.97 80.00 80.00 0.15 o -79.42 -79.42 74.00 74.00 0.72 h0 -43.84 -43.84 51.24 51.24 1.00 -31.00 -31.00 40.00 40.00 2.00 -10.97 -10.97 0.00 0.00 3.00 -31.00 -31.00 -40.00 -40.00 3.28 h0 -43.84 -43.84 -51.24 -51.24 3.85 o -79.42 -79.42 -74.00 -74.00 4.00 -90.97 -90.97 -80.00 -80.00 3 0.00 -90.97 -90.97 118.19 118.19 1.2.19 0.72 h0 -16.37 89.43 89.43 1.00 7.17 7.17 78.19 78.19 2.95 * 83.65 83.65 -0.00 -0.00 3.00 83.57 83.57 -1.81		4.00		7.17	7.17	-78.19	-78.19
5.00 -90.97 -90.97 -118.19 -118.19 2 0.00 -90.97 -90.97 80.00 80.00 0.15 0 -79.42 -79.42 74.00 74.00 0.72 h0 -43.84 -43.84 51.24 51.24 1.00 -31.00 -31.00 40.00 40.00 2.00 -10.97 -10.97 0.00 0.00 3.00 -31.00 -31.00 -40.00 -40.00 3.28 h0 -43.84 -43.84 -51.24 -51.24 3.85 0 -79.42 -79.42 -74.00 -74.00 4.00 -90.97 -90.97 -80.00 -80.00 3 0.00 -90.97 -90.97 118.19 118.19 0.15 0 -73.69 -73.69 112.19 112.19 0.72 h0 -16.37 -16.37 89.43 89.43 1.00 7.17 7.17 78.19 78.19 2.95 * 83.65 83.65 -0.00 -0.00 <		4.28	h0	-16.37	-16.37	-89.43	-89.43
2 0.00		4.85	0	-73.69	-73.69	-112.19	-112.19
0.15 o		5.00		-90.97	-90.97	-118.19	-118.19
0.15 o	2	0.00		-90.97	-90.97	80.00	80.00
1.00		0.15	0	-79.42	-79.42	74.00	
2.00		0.72	h0	-43.84	-43.84	51.24	51.24
3.00		1.00		-31.00	-31.00	40.00	40.00
3.28 h0 -43.84 -43.84 -51.24 -51.24 3.85 o -79.42 -79.42 -74.00 -74.00 4.00 -90.97 -90.97 -80.00 -80.00 3 0.00 -90.97 -90.97 118.19 118.19 0.15 o -73.69 -73.69 112.19 112.19 0.72 h0 -16.37 -16.37 89.43 89.43 1.00 7.17 7.17 78.19 78.19 2.00 65.40 65.40 38.19 38.19 2.95 * 83.65 83.65 -0.00 -0.00 3.00 83.57 83.57 -1.81 -1.81 4.00 61.74 61.74 -41.81 -41.81 4.38 h0 42.93 42.93 -57.05 -57.05 4.85 o 11.82 11.82 -75.81		2.00		-10.97	-10.97	0.00	0.00
3.85 o		3.00		-31.00	-31.00	-40.00	-40.00
3.85 o		3.28	h0	-43.84	-43.84	-51.24	-51.24
3 0.00 -90.97 -90.97 118.19 118.19 0.15 o -73.69 -73.69 112.19 112.19 0.72 h0 -16.37 -16.37 89.43 89.43 1.00 7.17 7.17 78.19 78.19 2.00 65.40 65.40 38.19 38.19 2.95 * 83.65 83.65 -0.00 -0.00 3.00 83.57 83.57 -1.81 -1.81 4.00 61.74 61.74 -41.81 -41.81 4.38 h0 42.93 42.93 -57.05 -57.05 4.85 o 11.82 11.82 -75.81		3.85	0	-79.42	-79.42	-74.00	
3 0.00 -90.97 -90.97 118.19 118.19 0.15 o -73.69 -73.69 112.19 112.19 0.72 h0 -16.37 -16.37 89.43 89.43 1.00 7.17 7.17 78.19 78.19 2.00 65.40 65.40 38.19 38.19 2.95 * 83.65 83.65 -0.00 -0.00 3.00 83.57 83.57 -1.81 -1.81 4.00 61.74 61.74 -41.81 -41.81 4.38 h0 42.93 42.93 -57.05 -57.05 4.85 o 11.82 11.82 -75.81				-90.97	-90.97		
0.15 o -73.69 -73.69 112.19 112.19 0.72 h0 -16.37 -16.37 89.43 89.43 1.00 7.17 7.17 78.19 78.19 2.00 65.40 65.40 38.19 38.19 2.95 * 83.65 83.65 -0.00 -0.00 3.00 83.57 83.57 -1.81 -1.81 4.00 61.74 61.74 -41.81 -41.81 4.38 h0 42.93 42.93 -57.05 -57.05 4.85 o 11.82 11.82 -75.81 -75.81	3	0.00		-90.97	-90.97	118.19	
1.00 7.17 7.17 78.19 78.19 2.00 65.40 65.40 38.19 38.19 2.95 * 83.65 83.65 -0.00 -0.00 3.00 83.57 83.57 -1.81 -1.81 4.00 61.74 61.74 -41.81 -41.81 4.38 h0 42.93 42.93 -57.05 -57.05 4.85 0 11.82 11.82 -75.81 -75.81		0.15	0			112.19	
1.00 7.17 7.17 78.19 78.19 2.00 65.40 65.40 38.19 38.19 2.95 * 83.65 83.65 -0.00 -0.00 3.00 83.57 83.57 -1.81 -1.81 4.00 61.74 61.74 -41.81 -41.81 4.38 h0 42.93 42.93 -57.05 -57.05 4.85 0 11.82 11.82 -75.81 -75.81		0.72	h0	-16.37	-16.37	89.43	89.43
2.00 65.40 65.40 38.19 38.19 2.95 * 83.65 83.65 -0.00 -0.00 3.00 83.57 83.57 -1.81 -1.81 4.00 61.74 61.74 -41.81 -41.81 4.38 h0 42.93 42.93 -57.05 -57.05 4.85 0 11.82 11.82 -75.81 -75.81		1.00				78.19	
2.95 * 83.65 83.65 -0.00 -0.00 3.00 83.57 83.57 -1.81 -1.81 4.00 61.74 61.74 -41.81 -41.81 4.38 h0 42.93 42.93 -57.05 -57.05 4.85 o 11.82 11.82 -75.81 -75.81						38.19	
3.00 83.57 83.57 -1.81 -1.81 4.00 61.74 61.74 -41.81 -41.81 4.38 h0 42.93 42.93 -57.05 -57.05 4.85 o 11.82 11.82 -75.81		2.95	*	83.65	83.65	-0.00	
4.00 61.74 61.74 -41.81 -41.81 4.38 h0 42.93 42.93 -57.05 -57.05 4.85 o 11.82 11.82 -75.81 -75.81				83.57	83.57		
4.38 h0 42.93 42.93 -57.05 -57.05 4.85 o 11.82 11.82 -75.81 -75.81							
4.85 0 11.82 11.82 -75.81 -75.81			h0				
5.00 0.00 0.00 -81.81 -81.81		5.00		0.00	0.00	-81.81	-81.81


Позиция 1305
Проект СТАТИКА тест всех модулей Разработчик СТАТИКА/305 Страница 146 Версия 28.10.2024

[кНм]

Нагружение 2 моменты $M_{yпp}$ M = 1 :115

Нагружение 2 поперечные силы $Q_{yпp}$ [кН] M = 1 :115

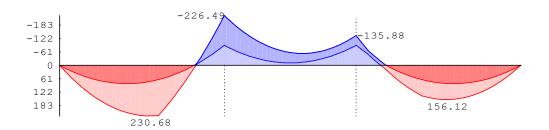
Нагружение 2

Пролёт	X		AND MARK	min Мупр	m 2 37 O 37 = 7	min Overn
uboner	X [M]	11	ax Mynp [kHm]	MIN MYND	max Qynp [kH]	min Qупр [кН]
1			0.00	0.00	38.67	
1 +	0.00	_				38.67
	0.15		5.74	5.74	37.92	37.92
	0.62	h0	22.98	22.98	35.58	35.58
	1.00		36.16	36.16	33.67	33.67
	2.00		67.34	67.34	28.67	28.67
	3.00	*	93.52	93.52	23.67	23.67
	4.00		14.68	14.68	-81.33	-81.33
	4.28	h0	-8.37	-8.37	-82.73	-82.73
	4.85	0	-56.24	-56.24	-85.58	-85.58
	5.00		-69.14	-69.14	-86.33	-86.33
2	0.00		-69.14	-69.14	25.11	25.11
	0.15	0	-65.43	-65.43	24.36	24.36
	0.72	h0	-52.38	-52.38	21.51	21.51
	1.00		-46.54	-46.54	20.11	20.11
	2.00		-28.93	-28.93	15.11	15.11
	3.00		-16.33	-16.33	10.11	10.11
	3.28	h0	-13.69	-13.69	8.70	8.70
	3.85	0	-9.54	-9.54	5.86	5.86
	4.00		-8.72	-8.72	5.11	5.11
3	0.00		-8.72	-8.72	26.24	26.24
	0.15	0	-4.84	-4.84	25.49	25.49
	0.72	h0	8.85	8.85	22.65	22.65
	1.00		15.02	15.02	21.24	21.24
	2.00	*	33.77	33.77	-3.76	-3.76
	3.00		27.51	27.51	-8.76	-8.76
	4.00		16.25	16.25	-13.76	-13.76
	4.38	h0	10.65	10.65	-15.66	-15.66
	4.85	0	2.76	2.76	-18.01	-18.01
	5.00	•	0.00	0.00	-18.76	-18.76
	J • U U		0.00	0.00	10.70	±0.70

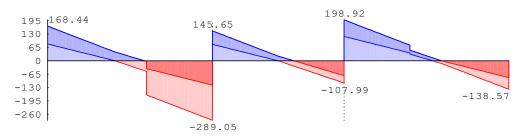
Реакции опор

Воздействие	опора	max	min
		[ĸH]	[ĸH]
1	А	81.81	81.81
	В	198.19	198.19
	С	198.19	198.19
	D	81.81	81.81
2	А	38.67	38.67
	В	111.43	111.43
	С	21.14	21.14

 Позиция
 t305
 Страница
 147


 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/305
 Версия
 2025.000


D 18.76 18.76

РСУ

Момент M [кНм] М = 1 :115 Сочетания усилий согласно п.6.4.3 MSZ EN 1990:2011 Основы проектирования несущих конструкций. основные сочетания усилий

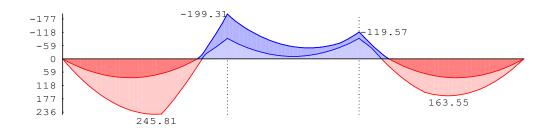
Попер. сила Q [кН] основные сочетания усилий M = 1 :115

Пролёт	Х	n	nax Mpcy	min Mpcy	max Qpcy	min Qpcy
-	[M]		[кНм]	[кНм]	[KH]	[KH]
1	0.00		0.00	0.00	168.45	81.81
	0.15	0	24.58	11.82	159.22	75.81
	0.62	h0	92.49	42.97	130.38	57.05
	1.00		137.59	61.74	106.95	41.81
	2.00		213.83	83.57	45.45	1.81
	2.74	*	230.68	74.02	9.71	-37.47
	3.00		228.59	65.42	-2.69	-51.56
	4.00		31.71	7.17	-78.19	-227.55
	4.28	h0	-16.33	-34.59	-89.43	-244.84
	4.85	0	-73.69	-183.85	-112.19	-279.83
	5.00		-90.97	-226.52	-118.19	-289.05
2	0.00		-90.97	-226.52	145.66	80.00
	0.15	0	-79.42	-205.36	136.43	74.00
	0.72	h0	-43.79	-137.69	101.44	51.24
	1.00		-31.00	-111.66	84.16	40.00
	2.00		-10.97	-58.20	22.66	0.00
	3.00		-31.00	-66.34	-24.84	-54.00
	3.28	h0	-43.79	-79.64	-38.19	-69.17
	3.85	0	-79.42	-121.53	-65.22	-99.90
	4.00		-90.97	-135.89	-72.34	-108.00
3	0.00		-90.97	-135.89	198.93	118.19
	0.15	0	-73.69	-106.74	189.70	112.19
	0.72	h0	-3.04	-22.05	154.71	89.43
	1.00		32.21	7.17	137.43	78.19
	2.00		138.97	65.42	75.93	38.19
	2.75	*	156.12	82.79	11.24	-2.91
	3.00		154.08	83.57	-1.81	-15.57
	4.00		107.72	61.74	-41.81	-77.07
	4.38	h0	73.99	42.97	-57.05	-100.50
	4.85	0	20.09	11.82	-75.81	-129.35
	5.00		0.00	0.00	-81.81	-138.57

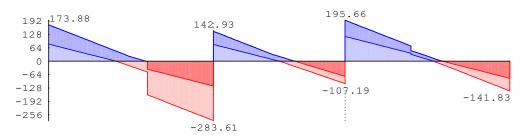
 Позиция
 t305
 Страница
 148

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/305
 Версия
 2025.000


Сочетания реакций в опорах

Сочетание	опора	max	min
		[ĸH]	[ĸH]
основные РСУ	A	168.45	81.81
	В	434.71	198.19
	С	299.27	198.19
	D	138.57	81.81


Перераспр. моментов В С

B C -----12.0% 12.0%

Момент M [кНм] M = 1 :115 Результаты после перераспределения моментов. основные сочетания усилий

Попер. сила Q [кН] основные сочетания усилий М = 1 :115

						
Пролёт	X			min Mpcy		
	[M]		[кНм]	[кНм]	[KH]	[KH]
1	0.00		0.00	0.00	173.88	81.81
		0	25.39	11.82	164.66	75.81
	0.56	h0		39.76	139.20	59.25
	1.00		143.03	61.74	112.38	41.81
	2.00		224.70	83.57	50.88	1.81
	2.83	*	245.81	71.41	5.52	-42.24
	3.00		244.90	65.42	-2.69	-51.56
	4.00		53.45	7.17	-78.19	-222.13
	4.28	h0	-11.81	-29.52	-89.55	-239.58
	4.85	0	-73.69	-158.06	-112.19	-274.36
	5.00		-90.97	-199.34	-118.19	-283.62
2	0.00		-90.97	-199.34	142.94	80.00
	0.15	0	-79.42	-178.59	133.71	74.00
	0.72	h0	-43.95	-122.62	98.88	51.36
	1.00		-31.00	-100.81	81.42	40.00
	2.00		-10.97	-54.36	22.66	0.00
	3.00		-31.00	-55.49	-24.84	-53.18
	3.28	h0	-43.95	-64.43	-38.33	-68.52
	3.85	0	-79.42	-104.82	-65.22	-99.07
	4.00		-90.97	-119.58	-72.34	-107.19
3	0.00		-90.97	-119.58	195.67	118.19
	0.15	0	-73.69	-96.35	186.44	112.19
		h0		-19.64	151.63	89.55
	1.00		45.26	7.17	134.18	78.19
	2.00		148.75	65.42	72.67	38.19
	2.69	*	163.55	82.29	13.45	-0.39
			100.00	02.23	10.10	0.00

Позиция t305 Проект СТАТИКА тест в	Страница Дата 2 8	149 8.10.2024			
Разработчик	СТ	АТИКА/305		Версия 2	025.000
	3.00	160.61	83.57	-1.81	-18.83
	4.00	110.98	61.74	-41.81	-80.33
	4.43 h0	70.40	39.88	-59.17	-107.02
	4.85 0	20.58	11.82	-75.81	-132.61
	5.00	0.00	0.00	-81.81	-141.83
Сочетания реакций в опорах	Сочетание	опора		max кН]	mir [кН]
	основные РСУ	A	173	.88	81.81
		В	426	.56	198.19
		С	298	.73	198.19
		D	141	.83	81.81
Расчёт по прочности	Согласно MSZ EN Бетон C25/30, х		Проект.		констр. rk=400МПа
	верхняя S500 нижняя S500			500МПа ft 500МПа ft	

Защитный слой

Пролёт	аз н	аз в	аз б	ан	ав	
	[MM]	[MM]	[MM]	[CM]	[CM]	
1	28	28	15	3.6	3.4	
2	28	28	15		3.4	
3	28	28	15	3.4	3.4	

Пролёт 1

Х	max M	min M	Ash(I)	Ass(I)	Аsн	Ass
[м]	[кНм]	[кНм]	[см ²]	[см ²]	[cm ²]	[см ²]
0.00	0.0	0.0	2.82	0.00	2.82	0.00
0.15 o	25.4	11.8	2.82	0.00	2.82	0.00
1.00	143.0	61.7	6.92	0.00	6.92	0.00
2.00	224.7	83.6	10.94	0.00	10.94	0.00
2.83 *	245.8	71.4	11.99	0.00	11.99	0.00
3.00	244.9	65.4	11.94	0.00	11.94	0.00
3.84	88.3	19.2	4.25	0.00	4.25	0.00
3.86	84.0	17.8	4.06	0.00	4.06	0.00
4.00	53.5	7.2	2.89	0.00	2.89	0.00
4.09	33.3	0.0	2.72	0.00	2.72	5.32
4.85 0	-73.7	-158.1	0.00	6.50	0.00	6.50
5.00	-91.0	-199.3	0.00	8.41	0.00	8.41

Х	V _{Ed}	V _{rdc}	V _{rds}	V _{rdmax}	A _{sw} /s
[M]	[ĸH]	[ĸH]	[ĸH]	[ĸH]	$[cm^2/m]$
0.00					
0.15 o	164.7	67.4	164.7	410.2	3.64
0.56 h0	139.2	67.4	139.2	410.0	3.64
1.00	112.4	77.1	114.8	405.4	3.03
2.00	50.9	77.1			3.00
3.00	51.6	77.1			3.00
3.84	212.3	77.1	212.3	405.9	5.60
3.86	213.5	77.2	213.5	406.8	5.62
4.00	222.1	73.3	222.1	421.7	5.64
4.09	227.6	67.5	227.7	427.0	5.71
4.28 h0	239.6	73.2	239.6	432.6	5.93
4.85 0	274.4	77.0	274.4	475.6	4.77
5.00					

Пролёт 2

Х	max M	min M	Ash(I)	Ass(I)	Аsн	Ass
[M]	[кНм]	[кНм]	[см ²]	[см ²]	[cм ²]	[см ²]
0.00	-91.0	-199.3	0.00	8.41	0.00	8.41
0.15 0	-79.4	-178.6	0.00	7.43	0.00	7.43
1.00	-31.0	-100.8	0.00	4.84	0.00	4.84
1.14	-25.8	-91.4	0.00	4.52	0.00	4.52
1.16	-25.1	-90.2	0.00	4.49	0.00	4.49
2.00	-11.0	-54.4	0.00	4.49	0.00	4.49
2.84	-25.1	-52.1	0.00	4.49	0.00	4.49
2.86	-25.8	-52.5	0.00	4.49	0.00	4.49
3.00	-31.0	-55.5	0.00	4.55	0.00	4.55

Позиция	t305		Страниц	a 150
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/305	Версия	2025.000

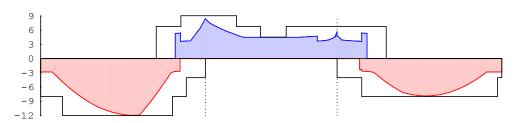
3.85 0	-79.4 -104.8	0.00	4.23	0.00	4.23
4.00	-90.9 -119.5	0.00	4.85	0.00	5.68

Х	V _{Ed}	V _{rdc}	V _{rds}	V _{rdmax}	A _{sw} /s
[м]	[ĸH]	[ĸH]	[ĸH]	[ĸH]	[CM ² /M]
0.00					
0.15 0	133.7	77.0	133.7	472.0	4.16
0.72 h0	98.9	73.2	118.6	423.5	3.00
1.00	81.4	64.8	113.3	404.4	3.00
1.14	72.8	63.9	109.9	392.2	3.00
1.16	71.6	63.8	109.7	391.3	3.00
2.00	22.7	55.7			3.00
2.84	44.6	63.8			3.00
2.86	45.6	63.9			3.00
3.00	53.2	64.8			3.00
3.28 h0	68.5	66.5	119.8	427.6	3.00
3.85 0	99.1	70.0	133.5	476.4	3.29
4.00					

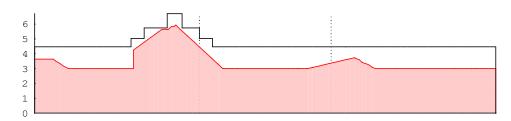
Пролёт 3

X	max M	min M		Ass(I)	Азн	Аsв
[м]	[кНм]	[кНм]	[см ²]	[cm ²]	[см ²]	$[cm^2]$
-0.00	-91.0	-119.6	0.00	4.85	0.00	5.68
0.00	-91.0	-119.6	0.00	4.85	0.00	4.85
0.15 0	-73.7	-96.4	0.00	3.89	0.00	3.89
0.91	32.8	-0.1	2.72	5.32	2.72	5.32
0.91	33.1	0.1	2.72	0.00	2.72	0.00
1.00	45.3	7.2	2.76	0.00	2.76	0.00
1.14	63.5	17.8	3.08	0.00	3.08	0.00
1.16	66.0	19.2	3.16	0.00	3.16	0.00
2.00	148.7	65.4	7.17	0.00	7.17	0.00
2.69 *	163.6	82.3	7.89	0.00	7.89	0.00
3.00	160.6	83.6	7.74	0.00	7.74	0.00
4.00	111.0	61.7	5.33	0.00	5.33	0.00
4.85 0	20.6	11.8	2.82	0.00	2.82	0.00
5.00	0.0	0.0	2.82	0.00	2.82	0.00

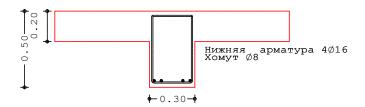
Х	V _{Ed}	V _{rdc}	V _{rds}	V _{rdmax}	A _{sw} /s
[м]	[ĸH]	[ĸH]	[ĸH]	[ĸH]	A _{sw} /s [cm²/m]
-0.00					
0.00					
0.15 0	186.4	70.0	186.4	483.8	3.45
0.72 h0	151.6	66.5	151.6	434.5	3.74
0.91	139.8	67.6	139.8	428.4	3.49
0.91	139.7	67.6	139.7	428.4	3.49
1.00	134.2	68.5	134.2	425.6	3.37
1.14	125.6	67.6	125.6	412.9	3.26
1.16	124.3	67.5	124.3	411.9	3.23
2.00	72.7	67.5	115.3	411.6	3.00
3.00	18.8	67.5			3.00
4.00	80.3	67.5	115.3	411.3	3.00
4.43 h0	107.0	67.5	115.3	411.6	3.00
4.85 0	132.6	67.5	132.6	411.9	3.00
5.00					

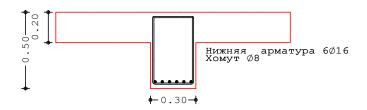

Констр. арматуры

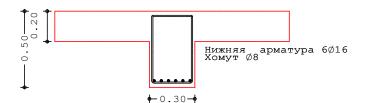
 Позиция
 t305
 Страница
 151


 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/305
 Версия
 2025.000

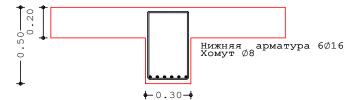

Продольная арматура A_s [cm²] M = 1 : 115


Поперечная арматура A_{sw}/s [cm²/м] M = 1 : 115

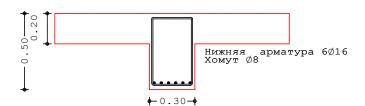

Пролет 1 M = 1 :25 схема армирования сечения с координатой x = 0.00

Пролет 1 M = 1 :25 схема армирования сечения с координатой x = 1.00

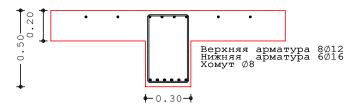
Пролет 1 M = 1 :25 схема армирования сечения с координатой x = 2.00

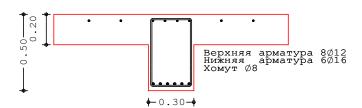


 Позиция
 t305
 Страница
 152


 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/305
 Версия
 2025.000


Пролет 1 M = 1 :25 схема армирования сечения с координатой x = 2.8


Пролет 1 M = 1 :25 схема армирования сечения с координатой х = 3.00

Пролет 1 M = 1 :25 схема армирования сечения с координатой х = 3.84

Пролет 1 M = 1 :25 схема армирования сечения с координатой x = 3.86

Пролет 1 M = 1 :25 схема армирования сечения с координатой x = 4.00

 Позиция
 t305
 Страница
 153

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/305
 Версия
 2025.000

Пролет 1 M = 1 :25 схема армирования сечения с координатой x = 4.09

Пролет 2 M = 1 :15 схема армирования сечения с координатой х = 0.15

Пролет 2 M = 1 :20 схема армирования сечения с координатой x = 1.00

Пролет 2 M = 1 :20

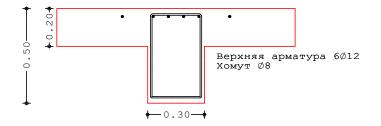
схема армирования сечения с координатой х = 1.14

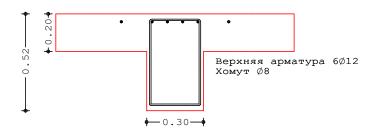
 Позиция
 t305
 Страница
 154

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/305
 Версия
 2025.000

Пролет 2 схема армирования сечения с координатой x = M = 1 : 20

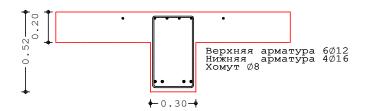

Пролет 2 схема армирования сечения с координатой x = 2.00 M = 1 :20


Пролет 2 схема армирования сечения с координатой x = 2.84 M = 1 :20

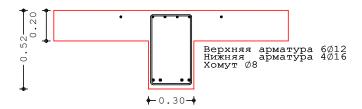
Пролет 2 схема армирования сечения с координатой x = 2.86 M = 1 :20

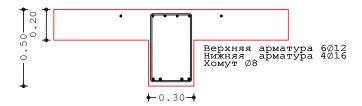
Пролет 2 схема армирования сечения с координатой x = 3.00 M = 1 :20

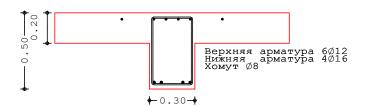
 Позиция
 t305
 Страница
 155


 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/305
 Версия
 2025.000

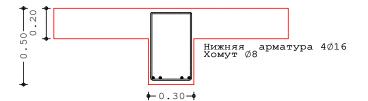

Пролет 2 M = 1 :15 схема армирования сечения с координатой x = 4.00


Пролет 3 M = 1 :25 схема армирования сечения с координатой x = 0.91

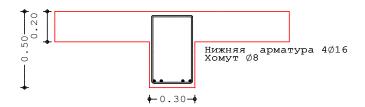

Пролет 3 M = 1 :25 схема армирования сечения с координатой х = 1.00

Пролет 3 M = 1 :25 схема армирования сечения с координатой х = 1.14

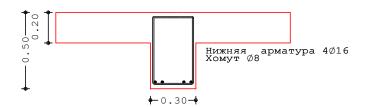
Пролет 3 M = 1 :25 схема армирования сечения с координатой х = 1.16



 Позиция
 t305
 Страница
 156


 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/305
 Версия
 2025.000


Пролет 3 M = 1 :25 схема армирования сечения с координатой x = 2.00

Пролет 3 M = 1 :25 схема армирования сечения с координатой x = 3.00

Пролет 3 M = 1 :25 схема армирования сечения с координатой x = 4.00

Продольн. арм.

пролёт	тип	кол.	ds	ряд	A _{sl}	a	1
опора			[MM]		[CM ²]	[M]	[M]
1	Н	2	16	1	4.02	-0.31	5.93
1	Н	2	16	1	8.04	-0.31	5.35
1	Н	2	16	1	12.06	0.36	3.96
3	Н	2	16	1	4.02	-0.62	5.93
3	Н	2	16	1	8.04	0.44	4.75
пролёт	тип	кол.	ds	ряд	A _{sl}	a	1
опора			[MM]		[cм ²]	[м]	[M]
В	В	2	12	1	6.79	3.28	3.86
С	В	4	12	1	4.52	-1.72	7.45
В	В	2	12	1	9.05	3.79	2.62
С	В	2	12	1	6.79	1.99	3.73

Продольн. арм.

Длины приведены с учетом анкеровки

Хомуты

Пролёт	кол.	срез.	ds	s	A _{sw} /s	a	1
			[MM]	[CM]	$[cm^{2}/m]$	[M]	[м]
1	14	2	8	23	4.47	0.00	2.93
1	2	2	8	20	5.03	2.93	0.40
1	4	2	8	18	5.74	3.33	0.70
1	3	2	8	15	6.70	4.03	0.45
1	3	2	8	18	5.74	4.48	0.53
1	2	2	8	20	5.03	5.00	0.40
2	18	2	8	23	4.47	0.40	4.05
3	21	2	8	23	4.47	0.45	4.72

 Позиция
 t305
 Страница
 157

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/305
 Версия
 2025.000

Тип арматуры	d	длина	кол.	вес
	[MM]	[м]		[кН]
стержневая арматура	12	50.22		0.44
стержневая арматура	16	51.84		0.80
хомуты	8		68	

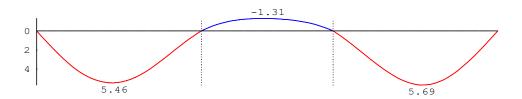
Поперечная арматура препятствующая срезу между полкой и стенкой

V_{rdc}	= 0.4	48МПа,	V _{rdmax} =	4.50MT	[a,	d = 8мм
Про-	X	V_{Ed}	A _{sw} /s	s	n	A _{sw} /s
лет	[M]	[МПа]	$[cm^{2}/m]$	[CM]		$[cm^2/m]$
1	0.00	0.75	4.34	22	1x2	4.57
	0.22	0.69	3.99	24	1x2	4.19
	0.46	0.49	2.53	38	1x2	2.65
	3.11	0.44	0.00	20	1×2	5.03
	3.31	0.86	4.92	18	2×2	5.59
	3.67	0.95	5.44	16	4×2	6.28
	4.31	0.83	4.80	20	2×2	5.03
	4.71	0.84	4.86	18	2×2	5.59
2	0.07	0.47	0.33	40	1x2	2.51
	4.00	0.31	0.00	28	1x2	3.59
3	0.28	0.28	0.97	30	1×2	3.35
	0.58	0.47	2.18	28	2×2	3.59
	1.14	0.57	3.30	30	1×2	3.35
	1.44	0.50	2.86	34	1×2	2.96
	4.55	0.28	0.00	30	1×2	3.35
	4.85	0.58	3.33	15	1x2	6.70

Трещиностойкость

допустимая ширина раскрытия трещин w_{lim}=0.30 мм

Нормальные трещины


).30 MM
Про- х	М	M _{crc}	$\sigma_{ extsf{s}}$	A _{c,eff}	wk
лет [м]	[кНм]	[кНм]	[МПа]	[см2]	[MM]
1 0.00	0.0	48.1			
0.15 o	13.5	48.1			
1.00	72.6	48.1	14.9	270.00	0.15
2.00	103.8	50.2	14.9	270.00	0.13
2.83 *	98.2	50.2	14.9		0.12
3.00	93.5	50.2	14.9	270.00	0.11
3.84	27.5	48.1			
3.86	25.6	48.3			
4.00	11.6	51.1			
4.09	2.2	50.6			
4.85 0	-90.6	-96.9	0.0	0.00	0.00
5.00	-111.7	-96.9	14.0	714.00	0.19
2 0.00	-111.7	-96.9	14.0	714.00	0.19
0.15 o	-99.1	-96.9	14.0	714.00	0.16
1.00	-45.0	-88.4	0.0	0.00	0.00
1.14	-38.9	-83.5	0.0	0.00	0.00
1.16	-38.1	-83.2	0.0	0.00	0.00
2.00	-19.7	-82.4	0.0	0.00	0.00
2.84	-30.5	-83.2	0.0	0.00	0.00
2.86	-31.1	-83.5	0.0	0.00	0.00
3.00	-35.9	-88.4	0.0	0.00	0.00
3.85 0	-82.3	-96.0	0.0	0.00	0.00
4.00	-93.5	-96.0	0.0	0.00	0.00
3 0.00	-93.6	-96.0	0.0	0.00	0.00
0.15 0	-75.1	-96.0	0.0	0.00	0.00
0.91	4.0	50.5			
1.00	11.7	48.9			
1.14	23.1	46.2			
1.16	24.7	46.1			
2.00	75.5	48.1	14.9	270.00	0.16
2.69 *	91.3	48.1	14.9	270.00	0.20
3.00	91.8	48.1	14.9	270.00	0.20
4.00	66.6	48.1	14.9	270.00	0.14
4.85 0	12.6	48.1			
5.00	0.0	48.1			

 Позиция
 t305
 Страница
 158

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/305
 Версия
 2025.000

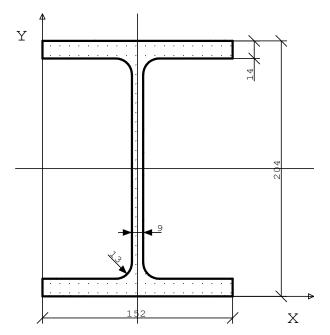
Прогибы [мм] М = 1 :115

Прогибы

Прол	ет х		М	100/p _I	100/p _{II}	100/ρ	W
	[M]		[кНм]	[1/м]	[1/м]	[1/м]	[MM]
1	0.00		0.0	0.00	0.00	0.00	0.00
	1.00		72.6	0.15	0.00	0.15	3.50
	2.00		103.7	0.21	0.25	0.24	5.35
	2.33	*	105.0	0.21	0.25	0.24	5.46
	3.00		93.5	0.19	0.22	0.21	4.89
	4.00		11.6	0.02	0.00	0.02	2.55
	5.00		-111.7	-0.16	0.00	-0.16	0.00
2	0.00		-111.7	-0.16	0.00	-0.16	-0.00
	1.00		-45.0	-0.09	0.00	-0.09	-1.10
	2.00	*	-19.7	-0.04	0.00	-0.04	-1.31
	3.00		-35.9	-0.07	0.00	-0.07	-1.01
	4.00		-93.6	-0.13	0.00	-0.13	-0.00
3	0.00		-93.6	-0.13	0.00	-0.13	0.00
	1.00		11.7	0.02	0.00	0.02	2.61
	2.00		75.5	0.15	0.26	0.21	5.02
	2.67	*	91.0	0.18	0.31	0.27	5.69
	3.00		91.8	0.18	0.32	0.28	5.58
	4.00		66.6	0.13	0.00	0.13	3.55
	5.00		0.0	0.00	0.00	0.00	0.00

Расчет выполнен модулем 305 программы СТАТИКА 2025 © 000 Техсофт

Поз. t308


Предельные кривые стального сечения

Сечение

t308 Позиция 159 Страница 28.10.2024 СТАТИКА тест всех модулей Проект Дата Разработчик **СТАТИКА/308** Версия 2025.000 Разраб.

Профиль 20Ш3 M = 1 : 3

двутавр широкополочный, ГОСТ Р 57837-2017

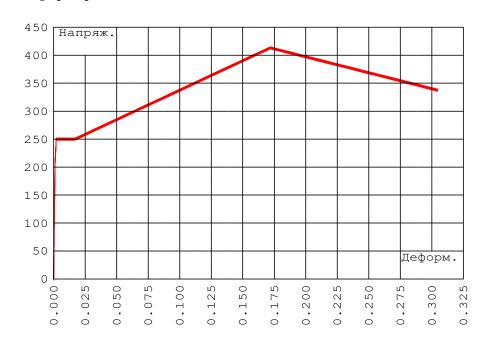
152мм 204мм ширина высота h =b $\omega = 0$ толщ.стенки $t_W = 0$ t = 14.0 MM $A = 59.9 \text{ cm}^2$ толщ.полки t = 9.0мм

Параметры сечения

Моменты инерции

Площадь

4362см⁴ $I_x =$ 821см⁴ $I_{y} =$


Моменты сопротивления

428см³ $W_{\times} =$ 486см³ $W_{plx} =$

108см³ 166см³ $W_{ply} =$

Диаграмма

сталь С255 ГОСТ 27772-2015 Материал сечения мод.упруг. E = 206 ГПА расч.сопр. $R_v =$ деформирования стали.

 Позиция
 1308
 Страница
 160

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/308
 Версия
 2025.000

Диаграмма Mx - N область допустимых значений при My = 0.0 кН*м.

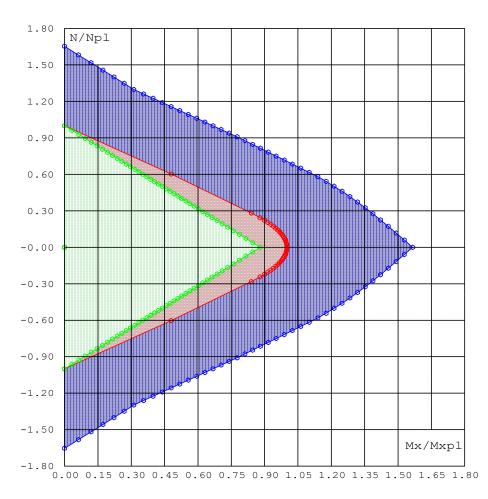


Таблица Мх - N

M_{\times}	N_{el}	N_{pl}	N_{dg}	M_{\times}	N_{el}	N _{pl}	N_{dg}
M _{xpl}	$R_{y}A$	$R_{V}A$	$R_{V}A$	 M _{xpl}	$R_{v}A$	$R_{y}A$	$R_{V}A$
	-1.00			0.00	1.00	1.00	1.65
0.16	-0.82	-0.87	-1.48	0.16	0.82	0.87	1.48
0.31	-0.64	-0.74	-1.30	0.31	0.64	0.74	1.30
0.47	-0.47	-0.61	-1.17	0.47	0.47	0.61	1.17
0.63	-0.29	-0.47	-1.03	0.63	0.29	0.47	1.03
0.78	-0.11	-0.33	-0.90	0.78	0.11	0.33	0.90
0.94		-0.17	-0.76	0.94		0.17	0.76
1.10			-0.62	1.10			0.62
1.25			-0.45	1.25			0.45
1.41			-0.24	1.41			0.24
1.57			0.00	1.57			0.00

 Позиция
 t308
 Страница
 161

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/308
 Версия
 2025.000

Диаграмма My - N область допустимых значений при Mx = 0.0 кH*m.

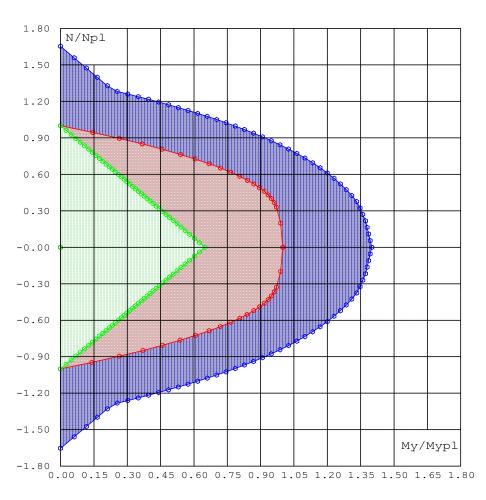


Таблица Му - N

M_{y}	N_{el}	N_{pl}	N_{dg}	M_{y}	N_{el}	N_{pl}	N_{dg}
M _{vpl}	$R_{v}A$	$R_{V}A$	$R_{v}A$	Mypl	$R_{y}A$	$R_{v}A$	$R_{v}A$
		-1.00		0.00	1.00	1.00	1.65
0.14	-0.78	-0.95	-1.44	0.14	0.78	0.95	1.44
0.28	-0.57	-0.89	-1.27	0.28	0.57	0.89	1.27
0.42	-0.35	-0.82	-1.21	0.42	0.35	0.82	1.21
0.56	-0.14	-0.75	-1.13	0.56	0.14	0.75	1.13
0.70		-0.67	-1.05	0.70		0.67	1.05
0.84		-0.55	-0.96	0.84		0.55	0.96
0.98		-0.27	-0.85	0.98		0.27	0.85
1.12			-0.71	1.12			0.71
1.26			-0.52	1.26			0.52
1.40			0.00	1.40			0.00

 Позиция
 \$1308
 Страница
 162

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/308
 Версия
 2025.000

Диаграмма Му - Мх область допустимых значений при N = 0.0 кH.

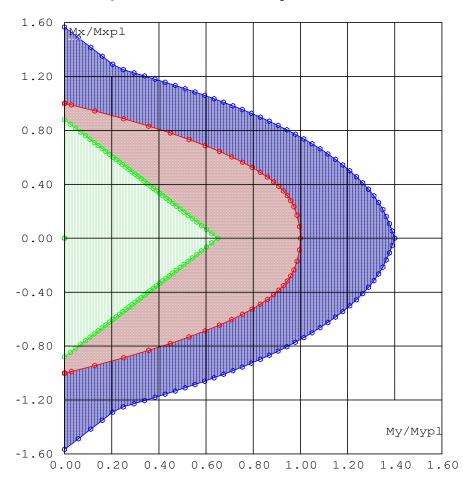
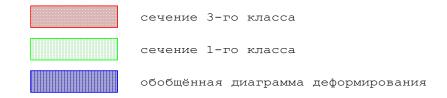



Таблица Му - Мх

M_y M_{xel}	M_{xpl}	M_{xdg}	M_{Y}	M_{xel}	M_{xpl}	M_{xdg}
Mypl Mxpl	M _{xpl}	M _{xpl}	Mypl	M _{xpl}	M _{xpl}	M_{xpl}
0.00 -0.88	-nan (in	-1.5	7 0	.00 0.	88 1.	.00 1
0.14 -0.69	-0.94	-1.38	0.14	0.69	0.94	1.38
0.28 -0.50	-0.87	-1.23	0.28	0.50	0.87	1.23
0.42 -0.31	-0.80	-1.16	0.42	0.31	0.80	1.16
0.56 -0.12	-0.71	-1.08	0.56	0.12	0.71	1.08
0.70	-0.61	-0.99	0.70		0.61	0.99
0.84	-0.48	-0.89	0.84		0.48	0.89
0.98	-0.20	-0.77	0.98		0.20	0.77
1.12		-0.62	1.12			0.62
1.26		-0.42	1.26			0.42
1.40			1.40			

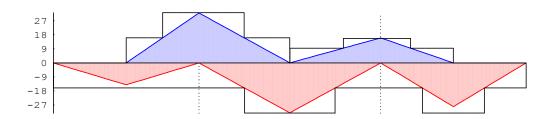
Примечание:

штриховка областей допустимых значений

Расчет выполнен модулем 308 программы СТАТИКА 2025 © 000 Техсофт

 Позиция
 t309
 Страница
 163

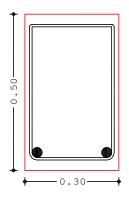
 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024


 Разраб.
 Разработчик
 СТАТИКА/309
 Версия
 2025.000

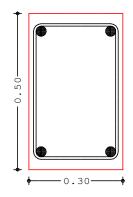
Поз. t309

Конструирование арматуры в балке

Констр. арматуры


As [cm2]M = 1 :104 Продольная арматура

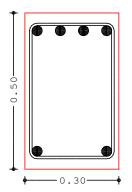
Asw/s [cm2/m]M = 1 :104 Поперечная арматура



Пролет 1 M = 1 :12 схема армирования сечения с координатой x = 0.00

Нижняя арматура 2032 Хомут 08

Пролет 1 M = 1 :12 схема армирования сечения с координатой x = 2.00

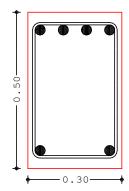

Верхняя арматура 2¢32 Нижняя арматура 2¢32 Хомут ¢8

 Позиция
 t309
 Страница
 164

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/309
 Версия
 2025.000

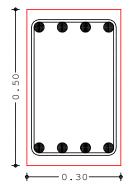
Пролет 2 M = 1 :12 схема армирования сечения с координатой x = 0.00



 Верхняя арматура 4/032

 Нижняя арматура 2/032

 Хомут 0/8


Пролет 2 M = 1 :12 схема армирования сечения с координатой x = 0.15

Верхняя арматура 4032 Нижняя арматура 2032 Хомут 08

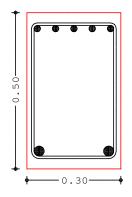
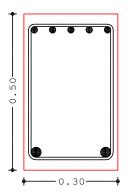

Пролет 2 M = 1 :12

схема армирования сечения с координатой x = 2.50

Верхняя арматура 4Ø32 Нижняя арматура 4Ø32 Хомут Ø8

Пролет 2 M = 1 :12 схема армирования сечения с координатой x = 4.85

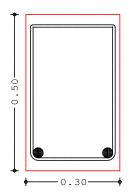

Верхняя арматура 5020 Нижняя арматура 2032 Хомут 08

 Позиция
 t309
 Страница
 165

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/309
 Версия
 2025.000

Пролет 3 M = 1 :12 схема армирования сечения с координатой x = 0.00


Верхняя арматура 5Ø20 Нижняя арматура 2Ø32 Хомут Ø8

Пролет 3 M = 1 :12 схема армирования сечения с координатой x = 2.00

Верхняя арматура 3Ø20 Нижняя арматура 4Ø32 Хомут Ø8

Пролет 3 M = 1 :12 схема армирования сечения с координатой x = 4.00

Нижняя арматура 2032 Хомут 08

Продольн. арм.

пролёт	тип	кол.	ds	ряд	Asl	а	1
опора			[MM]		[см2]	[M]	[M]
2	Н	2	32	1	16.08	-4.48	13.96
2	Н	2	32	1	32.17	0.65	3.70
3	Н	2	32	1	32.17	0.54	2.91
В	В	2	32	1	16.08	1.52	5.46
В	В	2	32	1	32.17	2.40	3.45
С	В	3	20	1	9.42	2.20	5.10
С	В	2	20	1	15.71	3.52	2.76

Длины приведены с учетом анкеровки

Хомуты

Пролёт	кол.	срез.	ds	s	Asw/s	а	1
			[MM]	[CM]	[см2/м]	[M]	[M]
1	35	2	8	12	8.38	0.00	4.08
2	42	2	8	12	8.38	0.08	5.04
3	33	2	8	12	8.38	0.12	3.96

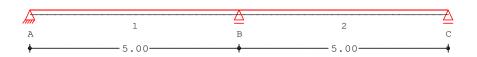
ООО Техсофт, Москва

 Позиция
 t309
 Страница
 166

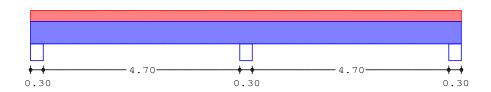
 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/309
 Версия
 2025.000

Тип арматуры	d	длина	кол.	вес
	[MM]	[M]		[ĸH]
стержневая арматура	32	58.96		3.65
стержневая арматура	20	20.81		0.50
хомуты	8		111	


Расчет выполнен модулем 309 программы СТАТИКА 2025 © 000 Техсофт

Поз. t310


Двухпролетная балка

Расчётная схема

M = 1 : 90

M = 1 : 90

Размеры

Пролёт	1	bπ	hπ	bp	hp	EI
опора	[M]	[CM]	[CM]	[CM]	[CM]	[кН*м ²]
1	5.00	118.3	20.0	0.0	0.0	221638
2	5.00	118.3	20.0	0.0	0.0	221638
A		91.7	20.0	0.0	0.0	207448
В		74.5	20.0	0.0	0.0	195961
С		91.7	20.0	0.0	0.0	207448

Опоры

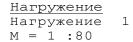
Опора	t [см]	Опора	t [см]
A	30.0	В	30.0
С	30.0		

Модуль упругости бетона Е =30000.0 МПа

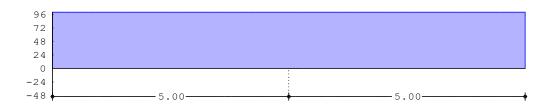
Воздействия

$N_{\bar{0}}$	Тип воздействия	Описание
1	Постоянное	Собственный вес ж/б конструкций
2	Кратковременное	
	Равномерн	о распределенная нагрузка - жилые помещения

Характеристики воздействий


N_{δ}	γf	k _l	уч	ет	группа	знак	распред
			С	0	несоч.		по прол
1	1.10						
2	1.30	0.35	+	+			неблаг.

учет С - кратковр. нагрузка учитывают в сейсм. РСН учет О - кратковр. нагрузка учитывают в особом РСН


 Позиция
 t310
 Страница
 167

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

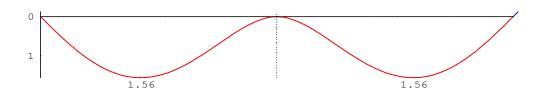
 Разраб.
 Разработчик
 СТАТИКА/310
 Версия
 2025.000

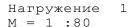
постоянные нагрузки $\gamma_{\rm f}$ = 1.10

	Ν.	Пролёт	a	S	p _л /P	p _n /M
		опора	[M]	[M]	[кН/м,	кН,кНм]
Равномерн.	1	1-2			100.00	

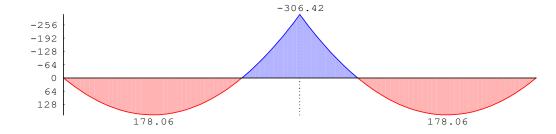
Нагружение 2 M = 1 :80

кратковременные нагрузки $\gamma_{\rm f}$ = 1.30


	Ν.	Пролёт	a	s	рл/Р	p _n /M
		опора	[M]	[M]	[кН/м,	кН,кНм]
Равномерн.	1	1-2			50.00	

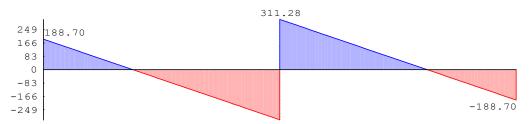

Усилия в сечении

1


по линейно упругой теории

Нагружение М = 1 :80 прогибы fупр [мм]

моменты Мупр [кНм]

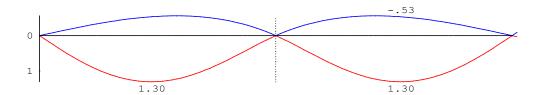


 Позиция
 t310
 Страница
 168

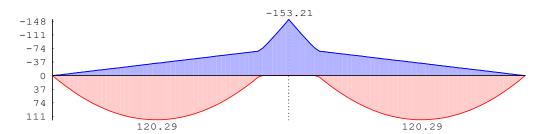
 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/310
 Версия
 2025.000

Нагружение 1 поперечные силы Qупр [кН] M = 1 : 80



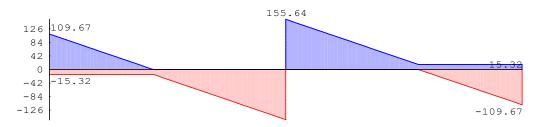
Нагружение 1


T			N/	N/		
Пролёт	X		$\max_{\mathbf{M}_{\mathbf{y}\pi\mathbf{p}}}$	$\min_{y_{\pi}p}$	max Q _{yπp}	min Q _{yпp}
	[M]		[кНм]	[кНм]	[KH]	[KH]
1	0.00		0.00	0.00	188.71	188.71
	0.15	0	27.18	27.18	173.71	173.71
	1.25		157.70	157.70	63.71	63.71
	1.89	*	178.06	178.06	-0.00	-0.00
	2.50		159.27	159.27	-61.29	-61.29
	3.75		4.48	4.48	-186.29	-186.29
	4.85	0	-260.89	-260.89	-296.29	-296.29
	5.00		-306.45	-306.45	-311.29	-311.29
	5.00	*	-306.45	-306.45	-311.29	-311.29
2	0.00		-306.45	-306.45	311.29	311.29
	0.15	0	-260.89	-260.89	296.29	296.29
	1.25		4.48	4.48	186.29	186.29
	2.50		159.27	159.27	61.29	61.29
	3.11	*	178.06	178.06	-0.00	-0.00
	3.75		157.70	157.70	-63.71	-63.71
	4.85	0	27.18	27.18	-173.71	-173.71

Нагружение 2 M = 1 :80

огибающая прогибов fyпр [мм]

Нагружение 2 М = 1 :80 огибающая моментов Мупр [кНм]

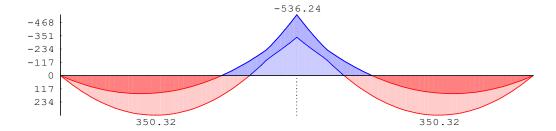


 Позиция
 1310
 Страница
 169

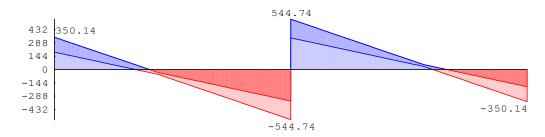
 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/310
 Версия
 2025.000

Нагружение 2 М = 1 :80 огибающая поперечных сил Оупр [кН]


Нагружение 2

Пролёт	X		$\max\ M_{y\pi p}$	min $M_{y\pi p}$	max Q _{yπp}	min Q _{yπp}
	[M]		[кНм]	[кНм]	[ĸH]	[ĸH]
1	0.00		0.00	-0.00	109.68	-15.32
	0.15	0	15.89	-2.30	102.18	-15.32
	1.25		98.01	-19.15	47.18	-15.32
	2.19	*	120.29	-33.61	0.30	-15.62
	2.50		117.94	-38.31	0.00	-30.65
	3.75		59.70	-57.46	0.00	-93.15
	4.85	0	0.00	-130.44	0.00	-148.15
	5.00		0.00	-153.23	0.00	-155.64
2	0.00		0.00	-153.23	155.64	0.00
	0.15	0	0.00	-130.44	148.15	0.00
	1.25		59.70	-57.46	93.15	0.00
	2.50		117.94	-38.31	30.65	0.00
	2.81	*	120.29	-33.61	15.62	-0.30
	3.75		98.01	-19.15	15.32	-47.18
	4.85	0	15.89	-2.30	15.32	-102.18


Реакции опор

Нагружение	опора	max	min
		[ĸH]	[кН]
1	A	188.71	188.71
	В	622.58	622.58
	С	188.71	188.71
2	А	109.68	-15.32
	В	311.29	0.00
	С	109.68	-15.32

<u>РСУ</u> Момент М [кНм] М = 1 :80 Сочетания усилий согласно СП 20.13330.2016 основные сочетания усилий

Попер. сила Q [кН] основные сочетания усилий М = 1 :80

Позиция	t310		Страниц	a 170
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/310	Версия	2025.000

Пролёт	Х		max M _{pcy}	min M _{pcy}	max Q _{pcy}	min Q _{pcy}
_	[M]		[кНм]	[кНм]	[ĸH]	[ĸH]
1	0.00		0.00	0.00	350.16	187.66
	0.15	0	50.56	26.91	323.91	171.16
	1.25		300.88	148.57	131.41	50.16
	2.00	*	350.32	155.29	0.00	-32.44
	2.50		328.53	125.40	-67.42	-107.26
	3.75		82.53	-69.77	-204.92	-326.01
	4.85	0	-286.97	-456.55	-325.92	-518.51
	5.00		-337.10	-536.29	-342.42	-544.76
2	0.00		-337.10	-536.29	544.76	342.42
	0.15	0	-286.97	-456.55	518.51	325.92
	1.25		82.53	-69.77	326.01	204.92
	2.50		328.53	125.40	107.26	67.42
	3.00	*	350.32	155.29	32.44	-0.00
	3.75		300.88	148.57	-50.16	-131.41
	4.85	0	50.56	26.91	-171.16	-323.91

Сочетания реакций в опорах

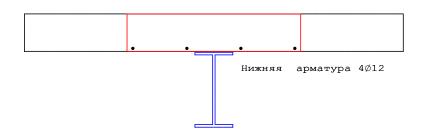
Сочетание	опора	max	min
		[ĸH]	[ĸH]
основные РСУ	А	350.16	187.66
	В	1089.52	684.84
	С	350.16	187.66

<u>Расчёт по прочности</u> По СП 63.13330.2018 с использованием трехлинейной диаграммы состояния бетона и СП 20.13330.2016.

Арматурная сталь А500. Бетон В 25 (тяжелый). $\gamma_b = 0.90$ Коэффициент условий работы бетона Профиль: сварной двутавр 400 h MM b 200 мм t 14 мм Сталь С 255 12 s MM $\gamma_c = 1.00$

Нижняя арматура

Пролёт		Х	M	h ₀	d	s/n	As	М _{пред} [кНм]
		[M]	[кНм]	[MM]	[MM]	[MM]	$[cm^2]$	[кНм]
1	П	2.00	350	179	12	285	4.5	686
2	П	3.00	350	179	12	285	4.5	686

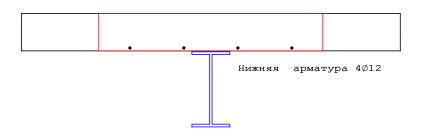

Верхняя арматура

Опо	X	1	M	h_0	d	S	As	Мпред
ра	[M]	[M]	[кНм]	[MM]	[MM]	[MM]	[CM ²]	[кНм]
В	-1.88	3.76	536	179	12	60	12.4	538

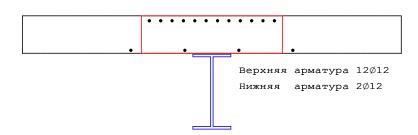
Длина стержней приведена с учетом анкеровки.

Опора А M = 1 : 20 схема армирования сечения

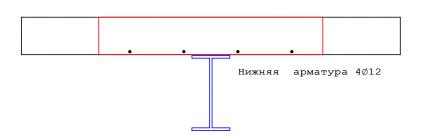
Коэффициент условий работы стали

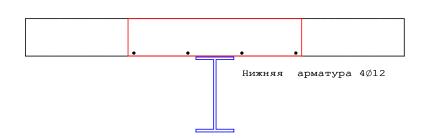


 Позиция
 t310
 Страница
 171


 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/310
 Версия
 2025.000


Пролет 1 M = 1 :20 схема армирования сечения с координатой x = 2.00


Опора В M = 1 :20 схема армирования сечения

Пролет 2 M = 1 :20 схема армирования сечения с координатой x = 3.00

Опора С M = 1 :20 схема армирования сечения

Проверка прочности

Коорд.	Усилия		Пли	та l	профиль	коэфф.	
Х	Му	Qz	M	N	M	испо	ольз.
[M]	[кНм]	[ĸH]	[кНм]	[ĸH]	[кНм]	нор.	кас.
0.00	0.0	350.2	-0.0	0.0	-0.0	0.00	0.57
1.25	300.9	131.4	29.8	660.7	72.9	0.44	0.21
2.00	350.3	-32.4	34.7	769.3	84.9	0.51	0.05

Позиция	t310		Страниц	a 172
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/310	Версия	2025.000

2.50	328.5	-107.3	32.5	721.4	79.6	0.48	0.17
3.75	-69.8	-326.0	-14.4	-80.4	-41.2	0.13	0.53
5.00	-536.3	-544.8	-145.8	-646.7	-300.1	1.00	0.88
5.00	-536.3	544.8	-145.8	-646.7	-300.1	1.00	0.88
6.25	-69.8	326.0	-14.4	-80.4	-41.2	0.13	0.53
7.50	328.5	107.3	32.5	721.4	79.6	0.48	0.17
8.00	350.3	32.4	34.7	769.3	84.9	0.51	0.05
8.75	300.9	-131.4	29.8	660.7	72.9	0.44	0.21
10.00	0.0	-350.2	-0.0	0.0	-0.0	0.00	0.57

Трещиностойкость

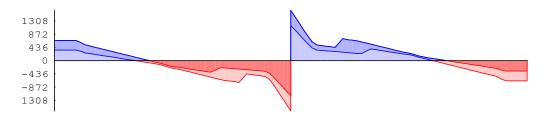
Предельно допустимая ширина раскрытия трещин принимается из условия обеспечения сохранности арматуры $a_{\texttt{crc1}} = \textbf{0.40мm} \ a_{\texttt{crc2}} = \textbf{0.30мm}$

Нормальные трещины

Про	Пролет Образование			Продолжит	ельные	Непрод.
опора х		M	$M_{\tt CrC}$	M	a _{crc2}	a _{crc1}
	[M]	[кНм]	[кНм]	[кНм]	[MM]	[MM]
1	2.00	296.8	680.2	219.4	0.000	0.000
2	3.00	296.8	680.2	219.4	0.000	0.000
В		459.7	110.3	360.1	0.232	0.302

Соединение плиты

со стальным профилем с помощью гибких упоров диаметром 20мм и длиной 120мм по 8 упоров в ряду Расчетное сопротивление стали упоров R_y =200МПа


Пролет		S	S	n	Р
		[кН/м]	[MM]		[кН/м]
1	0.00	662.7	60	12	672.0
	0.72	493.1	8 0	3	504.0
	0.96	401.5	100	2	403.2
	1.16	324.6	120	1	336.0
	1.28	277.7	140	1	288.0
	1.42	223.2	180	1	224.0
	1.60	154.1	260	1	155.1
	1.86	54.2	320	1	126.0
	2.18	117.7	200	1	201.6
	2.38	200.1	140	1	288.0
	2.52	253.2	120	2	336.0
	2.76	334.0	100	1	403.2
	2.86	372.2	8 0	4	504.0
	3.18	494.7	60	9	672.0
	3.72	675.4	40	6	1008.0
	3.96	622.1	60	10	672.0
	4.56	641.4	40	4	1008.0
	4.72	995.7	20	14	2016.0
	5.00	248.0	20	14	2016.0
2	0.28	995.7	40	4	1008.0
	0.44	641.4	60	3	672.0
	0.62	502.6	8 0	4	504.0
	0.94	443.1	60	2	672.0
	1.06	656.9	40	6	1008.0
	1.30	672.0	60	9	672.0
	1.84	487.0	8 0	3	504.0
	2.08	395.2	100	2	403.2
	2.28	318.7	120	1	336.0
	2.40	272.8	140	1	288.0
	2.54	233.2	160	1	252.0
	2.70	158.7	240	1	168.0
	2.94	85.5	340	1	118.6
	3.28	107.9	200	1	201.6
	3.48	184.8	160	1	252.0
	3.64	246.5	120	1	336.0
	3.76	293.4	100	2	403.2
	3.96	370.9	8 0	4	504.0
	4.28	493.1	60	11	672.0
Общее	количество	гибких	упоров	1168 штук	

Общее количество гибких упоров 1168 штук

 Позиция Проект
 t310
 Страница
 173

 Разраб.
 Разработчик
 СТАТИКА/310
 Версия
 2025.000

Погонная сдвиг. сила S [кН/м], основные сочетания усилий M = 1 :80

Несущая способность гибких упоров Р [кН/м] М = 1 :80

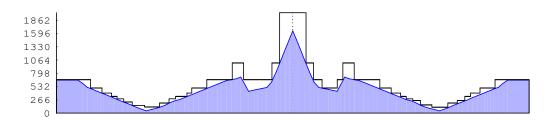
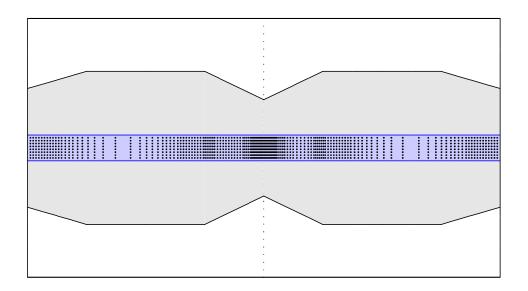
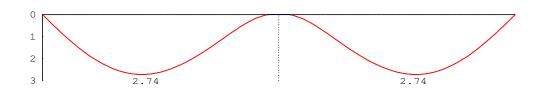




Схема установки М = 1 :80 гибких упоров и эффективная ширина плиты

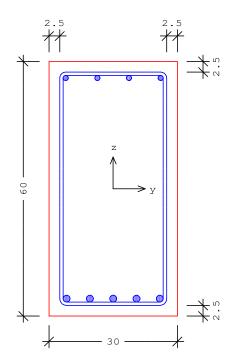
Прогибы [мм] М = 1 :80

Прогибы

Проле	⊖T X	w _O	M	1000/r	w ₁	W
	[M]	[MM]	[кНм]	[1/м]	[MM]	[MM]
1	0.00	0.00	0.0	0.00	0.00	0.00
	1.25	0.00	191.9	1.26	2.22	2.22
	2.17 *	0.00	294.4	1.41	2.74	2.74

Позиция Проект Разраб.	t310 СТАТИКА тест і Разработчик	всех м	ех модулей СТАТИКА/310				• • • • • • • • • • • • • • • • • • • •	174 10.2024 25.000
			2.50	0.00	200.6	1.31	2.63	2.63
			3.75	0.00	25.3	0.15	1.20	1.20
			5.00	0.00	-333.3	-3.73	-0.00	-0.00
		2	0.00	0.00	-333.3	-3.73	-0.00	-0.00
			1.25	0.00	25.3	0.15	1.20	1.20
			2.50	0.00	200.6	1.31	2.63	2.63
			2.83 *	0.00	294.4	1.41	2.74	2.74
			3.75	0.00	191.9	1.26	2.22	2.22
			5.00	0.00	0.0	0.00	0.00	0.00

Расчет выполнен модулем 310 программы СТАТИКА 2025 © ООО Техсофт


Поз. t313 Расчет ж/б балки по огнестойкости

Расчетная схема	Длина балки			1	=	6.00	М
	Закрепление к	раев балки				шарн	нирное
Сечение	Ширина Высота	b h	= =	30.0	CM CM		
Верхняя арматура	Диаметр крайны Диаметр промежуч Число промежуч	d _{s,kp} d _{s,np} n _{np}	=		MM MM -		
Нижняя арматура	Диаметр крайна Диаметр промежуч Число промежуч	жут. стержн	ней	d _{s,kp} d _{s,np} n _{np}		16 16 3	MM MM -
Поперечная арматура	Диаметр Число ветвей Шаг Погонная площа	адь	A _{sw} /	d _{sw} n _w s _w	= = =	8 2 10 10.05	MM - CM CM2/M
	Защитный слой	сверху снизу сбоку		а _{зв} а _{зн} а _{зб}	= = =	25 25 25	мм мм мм

 Позиция
 t313
 Страница
 175

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/313
 Версия
 2025.000

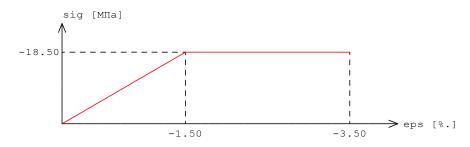
Нагрузки

Распределенная нагрузка

q = 10.00 kH/M

Расчет

Согласно СП 468.1325800.2019, СП 63.13330.2018 Изменение температуры среды при пожаре принимается согласно ГОСТ 30247.0-94

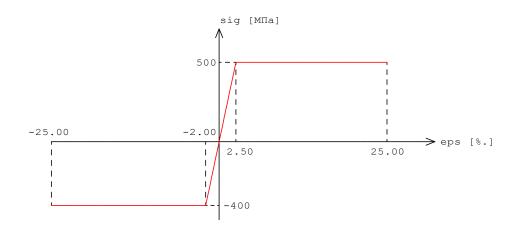

Бетон В 25 (тяжелый) на силикатном заполнителе Плотность бетона ρ = 2300 кг/м3 Бетон сухой

Продольная арматура **A500** Поперечная арматура **A400**

Сопротивления при нормальной температуре

 R_{bn} = 18.50 МΠа R_{btn} = 1.55 МΠа R_{sn} = 500 МΠа R_{sc} = 400МΠа = 280Rsw МΠа

Диаграмма для бетона при нормальной температуре


ООО Техсофт, Москва

 Позиция
 t313
 Страница
 176

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/313
 Версия
 2025.000

Диаграмма для арматуры при нормальной температуре

Коэффициент условий работы бетона

$N_{\bar{0}}$	Т	γ _{bt}	$N_{\bar{0}}$	Т	γ _{bt}	$N_{\bar{0}}$	Т	γ _{bt}
	[°C]			[°C]			[°C]	
1	100	1.00	2	200	0.98	3	300	0.95
4	400	0.85	5	500	0.80	6	600	0.60
7	700	0.20	8	800	0.00	9	900	0.00
10	1000	0.00	11	1100	0.00	12	1200	0.00

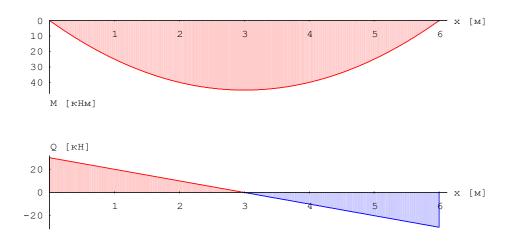
Параметры диаграммы сжатого бетона

T	[°C]	20	100	200	300	400	500	600
ϵ_{b1}	[%.]	1.5	1.9	2.6	3.8	4.9	6.8	10.7
$\varepsilon_{\rm b2}$	[%.]	3.5	4.4	6.1	8.8	11.4	15.8	25.0

Коэффициент условий работы арматуры

$N_{\bar{0}}$	Т	γ _{st}	Nº	Т	γ _{st}	$N_{\bar{0}}$	Т	γ _{st}
	[°C]			[°C]			[°C]	
1	100	1.00	2	200	1.00	3	300	1.00
4	400	0.85	5	500	0.60	6	600	0.37
7	700	0.22	8	800	0.10	9	900	0.00
10	1000	0.00	11	1100	0.00	12	1200	0.00

Коэффициент редукции модуля упругости арматуры


T	β_s	$N_{\bar{0}}$	Т	β_s	$N_{\bar{0}}$	T	β_s
[°C]			[°C]	. 5		[°C]	
100	1.00	2	200	0.92	3	300	0.90
400	0.85	5	500	0.80	6	600	0.77
700	0.72	8	800	0.65	9	900	0.00
1000	0.00	11	1100	0.00	12	1200	0.00
	[°C] 100 400 700	[°C] 100 1.00 400 0.85 700 0.72	[°C] 100 1.00 2 400 0.85 5 700 0.72 8	[°C] [°C] 100 1.00 2 200 400 0.85 5 500 700 0.72 8 800	[°C] [°C] 100 1.00 2 200 0.92 400 0.85 5 500 0.80 700 0.72 8 800 0.65	[°C] [°C] 100 1.00 2 200 0.92 3 400 0.85 5 500 0.80 6 700 0.72 8 800 0.65 9	[°C] [°C] [°C] 100 1.00 2 200 0.92 3 300 400 0.85 5 500 0.80 6 600 700 0.72 8 800 0.65 9 900

Линейный расчет усилий в балке при нормальной температуре

Усилия

Х	M	Q
[M]	[кНм]	[ĸH]
0.00	0.0	30.0
0.50	13.8	25.0
1.00	25.0	20.0
1.50	33.8	15.0
2.00	40.0	10.0
2.50	43.8	5.0
3.00	45.0	0.0
3.50	43.8	-5.0
4.00	40.0	-10.0
4.50	33.8	-15.0
5.00	25.0	-20.0
5.50	13.8	-25.0
6.00	0.0	-30.0

Проверка прочности балки при пожаре

Рассматривается трехсторонний нагрев балки

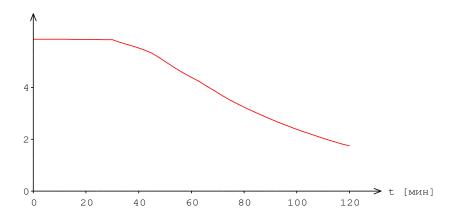
Расчетный момент

 $M_{+} = 45.0$

кНм

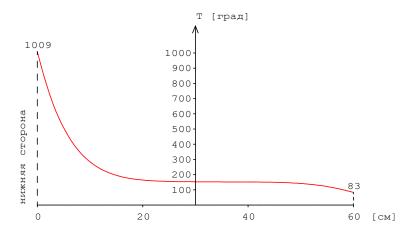
Коэффициент запаса прочности

t	Т среды	γu
[мин]	[°C]	
0	20	5.864
3	502	5.864
6	603	5.863
9	663	5.861
12	705	5.858
15	739	5.855
18	766	5.852
21	789	5.849
24	809	5.846
27	826	5.843
30	8 4 2	5.839
33	856	5.739
36	869	5.644
39	881	5.555
42	892	5.453
45	902	5.320
48	912	5.136
51	921	4.934
5 4	930	4.740
57	938	4.560
60	945	4.391
63	953	4.228
66	960	4.041
69	966	3.859
72	973	3.670
75	979	3.495
78	985	3.342
81	990	3.195
8 4	996	3.052
87	1001	2.914
90	1006	2.785
93	1011	2.659
96	1016	2.537
99	1020	2.421
102	1025	2.313
105	1029	2.210
108	1033	2.109
111	1033	2.011
114	1037	1.916
117	1045	1.823
117		1:023

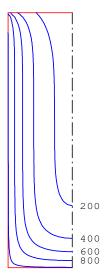

 Позиция
 t313
 Страница
 178

 Проект
 СТАТИКА тест всех модулей
 СТАТИКА/313
 Дата 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/313
 Версия 2025.000


120 1049 1.748

Коэффициент запаса прочности γ_{u}



Температурное поле при t = 120 мин

Температура Т на вертикальной оси

Изотермы

 Позиция
 t313
 Страница
 179

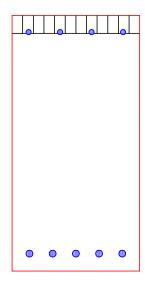
 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/313
 Версия
 2025.000

Температура верхней арматуры

У	Z	Т
[CM]	[CM]	[°C]
-11.10	26.10	478.5
-3.70	26.10	146.2
3.70	26.10	146.2
11.10	26.10	478.5

Температура нижней арматуры


У	Z	Т
[CM]	[CM]	[°C]
-10.90	-25.90	758.5
-5.45	-25.90	608.8
0.00	-25.90	571.7
5.45	-25.90	608.8
10.90	-25.90	758.5

Проверка прочности при действии изгибающего момента при t = 120 мин

Условие прочности

$$M_{+}$$
 / M_{u+} = 45.0 / 78.7 = **0.572** <= 1 γ_{u} = 1.748 -

Сжатая зона при действии $M_{u\,+} = 78.7 \, \, \mathrm{кHm}$

Деформации бетона в углах сечения

Максимал	ьная дефо	рмация	Минимал	ьная дефо	рмация
3	σ	T	3	σ	T
[%.]	[МПа]	[°C]	[%.]	[MΠa]	[°C]
53.96	0.00	1038	-4.05	-0.95	732

Деформации арматуры

Максимал	ьная дефо	рмация	Минимал	ьная дефо	рмация
3	σ	T	3	σ	T
[%.]	[МПа]	[°C]	[%.]	[МПа]	[°C]
50.00	74.9	759	-0.28	-45.6	479

Проверка прочности при действии поперечной силы при t = 120 мин

Глубина	прогрева	снизу	а _{tн}	=	5.12	СМ
		сбоку	a _{tő}	=	4.59	CM
Критиче	ская темпе	ература	T _{b,cr}	=	500	°C

Примечание. Значение $a_{\text{tб}}$ определяется на уровне середины высоты сечения

Расчетная ширина сечения	b _t	=	20.8	СМ
Рабочая высота при $M < 0$ при $M > 0$	h_{0-} h_{0+}		51.0 55.9	CM CM
Температура хомутов	Т	=	864.9	°C

ООО Техсофт, Москва

 Позиция
 t313
 Страница
 180

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/313
 Версия
 2025.000

Расчетное сопротивление

 $R_{sw}\gamma_{st} = 10$

МΠа

Условие прочности бетонной полосы между наклонными сечениями

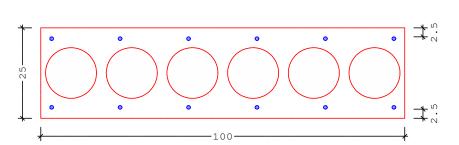
$$Q_{\text{max}}$$
 / $\phi_{\text{b1}}R_{\text{bn}}b_{\text{t}}h_{0}$ = 30.0 / 646.1 = **0.046** <= 1
 $\pi p \mu \ h_{0}$ = 55.9 cm

Условие прочности по наклонному сечению в левой приопорной части

Q / (
$$Q_b$$
 + Q_{sw}) = 15.0 / (135.3 + 0.0) = **0.149** <= 1 при x = 1.50 м, c = 111.8 см, h_0 = 55.9 см Арматура не учитывается согласно СП 63, 8.1.33

Условие прочности по наклонному сечению в правой приопорной части

Q / (
$$Q_b$$
 + Q_{sw}) = 15.0 / (135.3 + 0.0) = **0.149** <= 1 при x = 4.50 м, с = 111.8 см, h_0 = 55.9 см Арматура не учитывается согласно СП 63, 8.1.33


Огнестойкость балки обеспечена

Расчет выполнен модулем 313 программы СТАТИКА 2025 © 000 Техсофт

<u>Поз. t315</u> <u>Многопустотная плита</u>

Сечение	
---------	--

b	=	100.0	СМ
h	=	25.0	CM
n	=	6	_
D	=	14.0	CM
$d_{s\scriptscriptstyle B}$	=	10	MM
d_{sH}	=	10	MM
n _{sв}	=	6	_
п _{вн}	=	6	_
азв	=	25	MM
азн	=	25	MM
а _в	=	3.00	CM
а _н	=	3.00	СМ
A _{s B}	=	4.71	CM ²
А _{зн}	=	4.71	см ²
	h n D d _{SB} d _{SH} n _{SB} n _{SH} a _{3B} a _{3H} a _B a _H	h = n = D = D = D = D = D = D = D = D = D	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Позиция t315 Проект СТАТИКА тест всех модулей			Страница Дата 28 .		181 .10.2024	
Разработчик	СТАТИКА/315		Версия	2025.	000	
Расчетная схема	Длина плиты	1	=	6.00	М	
	Закрепление краев плиты			шарн	ирное	
Распределенная нагрузка	расчетная нормативная длительн.часть норм.нагрузки	q q _n q _{n l}	= = =	8.00 7.00 6.00	кН/м кН/м кН/м	
Расчетная нагрузка						

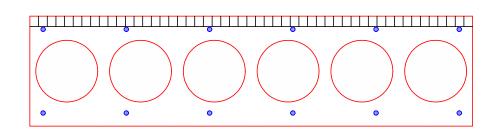
Расчет Согласно СП 63.13330.2018

Бетон В 25 (тяжелый) Коэффициент условий работы γ_b = 1.000 - Сопротивление бетона $\gamma_b R_b$ = 14.50 МПа Для бетона применяется трехлинейная диаграмма

Арматура А500

Сопротивление арматуры $R_{\text{S}} = 435$ МПа $R_{\text{SC}} = 400$ МПа

Для арматуры применяется двухлинейная диаграмма


Проверка прочности плиты

Изгибающий момент от расчетной нагрузки

Изгибающий момент от расчетной нагрузки $M_{+}=36.0\,$ кНм Положительный предельный момент $M_{u+}=44.5\,$ кНм

Сжатая зона

Деформация бетона

Нижняя	сторона	Верхняя	сторона
ε [%.]	σ [M Π a]	ε [%.]	σ [M∏a]
28.82	0.00	-3.01	-14.50

ООО Техсофт, Москва

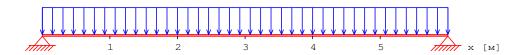
 Позиция
 t315
 Страница
 182

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/315
 Версия
 2025.000

Деформация арматуры

нижняя	арматура	Верхняя	арматура
ε [%.]	σ [M Π a]	ε [%.]	σ [M∏a]
25.00	435.0	0.81	161.4


Условие прочности

$$M_{+}$$
 / M_{u+} = 36.0 / 44.5 = **0.809** <= 1


Прочность плиты обеспечена

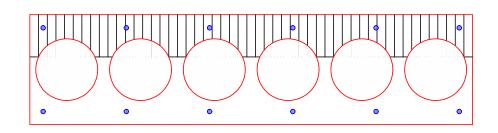
Проверка трещиностойкости плиты

Нормативная нагрузка

Изгибающий момент от нормативной нагрузки

Изгибающий момент от нормативной нагрузки

 $M_{n+} = 31.5$ кнм


кНм

Определение момента образования трещин

Положительный момент образования трещин

 $M_{crc+} = 23.4$

Сжатая зона

Деформация бетона

нижия	сторона	Верхняя	сторона
ε [%.]	σ [ΜΠα]	ε [%.]	σ [M∏a]
0.15	1.55	-0.09	-2.81

Деформация арматуры

Нижняя	арматура	Верхняя	арматура
ε [%.]	σ [ΜΠα]	ε [%.]	σ [M∏a]
0 12	24 2	-0.06	-12 9

Площадь растянутой зоны

$${
m A_{bt}}$$
 =1250.0 - 458.9 = 791.1 см 2 Учтено минимальное значение высоты растянутой зоны Площадь растянутой арматуры ${
m A_{st}}$ = 4.71 см 2

Определение ширины раскрытия трещин

ООО Техсофт, Москва

1	OT 4 T1416 4					18.10.2	183 2024
Разраб.	Разработчик	СТАТИКА/315			Версия	2025.0	00

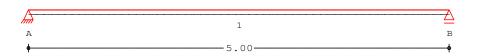
Предельная ширина	Непродолжительное раскрытие	a _{crc1} =	0.30	MM
раскрытия трещин	Продолжительное раскрытие	$a_{crc2} =$	0.20	MM

Момент от длительной части нормативной нагрузки $M_{\text{nl+}} = 27.0$ кНм

Ширина раскрытия трещин на уровне нижней арматуры

σ _{s,crc} [ΜΠα]	$\sigma_{ m s}$	$\sigma_{ extsf{sl}}$	d _s [мм]	1 _s	а _{сгс} [мм]	a _{crc,1}
238.5	320.9	275.0	10	40.0	0.164	0.118

Трещиностойкость плиты обеспечена

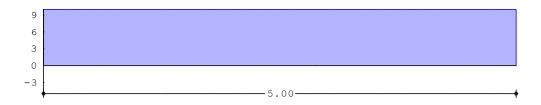

Расчет выполнен модулем 315 программы СТАТИКА 2025 © 000 Техсофт

Поз. t320_1

Однопролетная балка

Расчётная схема

M = 1 : 45



Воздействия

Nº	Тип воздействия	Описание					
1	Постоянное	Собственный вес металлических конструкций					
2	Кратковременное						
	Равно	мерно распределенная нагрузка - жилые помещения					

Нагружение

 $_{\rm Harpyжehue}$ 1 постоянные нагрузки $\gamma_{\rm f}$ = 1.05 M = 1 :40

	Ν.	Пролёт	a	s	p _π /P	p _π /M
		опора	[м]	[M]	[кН/м,	кН,кНм]
Равномерн.	1	1			10.00	

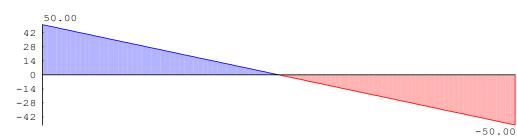
t320_1 Позиция 184 Страница 28.10.2024 СТАТИКА тест всех модулей Проект Дата Разработчик **СТАТИКА/320** Версия 2025.000 Разраб. Нагружение кратковременные нагрузки γ_{f} = 1.30 M = 1 : 4020 15 10 5 0 -5 -10 N. Пролёт а s p_{π}/P p_{π}/M [кН/м,кН,кНм] [M] опора [M] Равномерн. 20.00 по линейно упругой теории Усилия в сечении Нагружение 1 моменты $M_{yпp}$ [кНм] M = 1 : 400 5 10 15 20 25 30 31.25 Нагружение 1 поперечные силы $Q_{y\pi p}$ [кН] M = 1 : 4025.00 21 14 7 0 -7 -14-21 -25.00 Нагружение прогибы $f_{yпp}$ [мм] M = 1 : 400 2 4 6 7.54 Нагружение max \min Q_1 Про Х M_1 W₁ M_1 Q₁ W₁ [M] [кНм] [KH] [кНм] [KH] [MM] [MM] 0.00 25.00 0.00 0.00 0.00 25.00 0.00

_						
1	1.25	23.44	12.50	5.37	23.44	12.50
1	2.50*	31.25	0.00	7.54	31.25	0.00
1	3.75	23.44	-12.50	5.37	23.44	-12.50
1	5.00	0.00	-25.00	0.00	23.44 31.25 23.44 0.00	-25.00

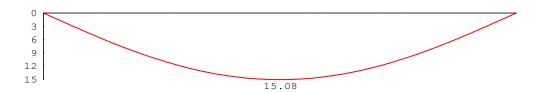
5.37

7.54

5.37


0.00

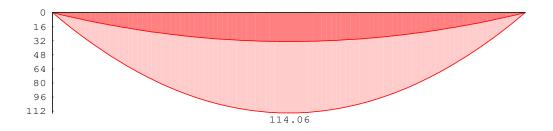
Позиция t320_1 Страница 185
Проект СТАТИКА тест всех модулей Дата 28.10.2024
Разраб. Разработчик СТАТИКА/320 Версия 2025.000


Нагружение 2 М = 1 :40 огибающая моментов $M_{\text{упр}}$ [кНм]

0 9 18 27 36 45 54

Нагружение 2 М = 1 :40 огибающая поперечных сил $Q_{\text{упр}}$ [кН]

Нагружение 2 M = 1 :40 огибающая прогибов $f_{ extsf{y}\pi extsf{p}}$ [мм]

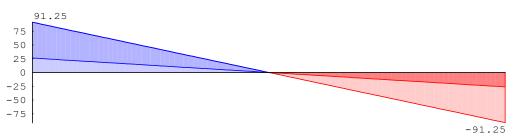

Нагружение 2

max					min		
Про	X	M_2	Q ₂	W ₂	M_2	Q ₂	W ₂
лет	[M]		[ĸH]	[MM]	[кНм]	[ĸH]	[MM]
1	0.00	0.00	50.00	0.00	0.00	50.00	0.00
1	1.25	46.88	25.00	10.75	46.88	25.00	10.75
1	2.50*	62.50	0.00	15.08	62.50	0.00	15.08
1	3.75	46.88	-25.00	10.75	46.88	-25.00	10.75
1	5.00	0.00	-50.00	0.00	0.00	-50.00	0.00

Реакции опор

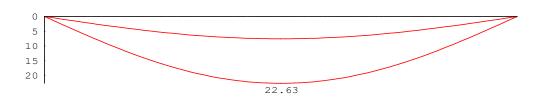
Нагружение	опора	max	min
		[ĸH]	[ĸH]
1	А	25.00	25.00
	В	25.00	25.00
2	А	50.00	50.00
	В	50.00	50.00

<u>РСУ</u> Момент М [кНм] М = 1 :40 Сочетания усилий согласно СП 20.13330.2016 основные сочетания усилий



 Позиция
 t320_1
 Страница
 186

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

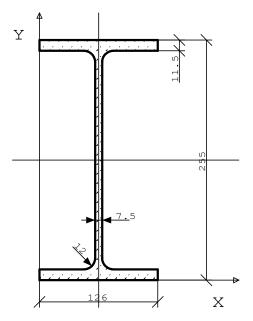

 Разраб.
 Разработчик
 СТАТИКА/320
 Версия
 2025.000

Попер. сила Q [кН] основные сочетания усилий M=1:40

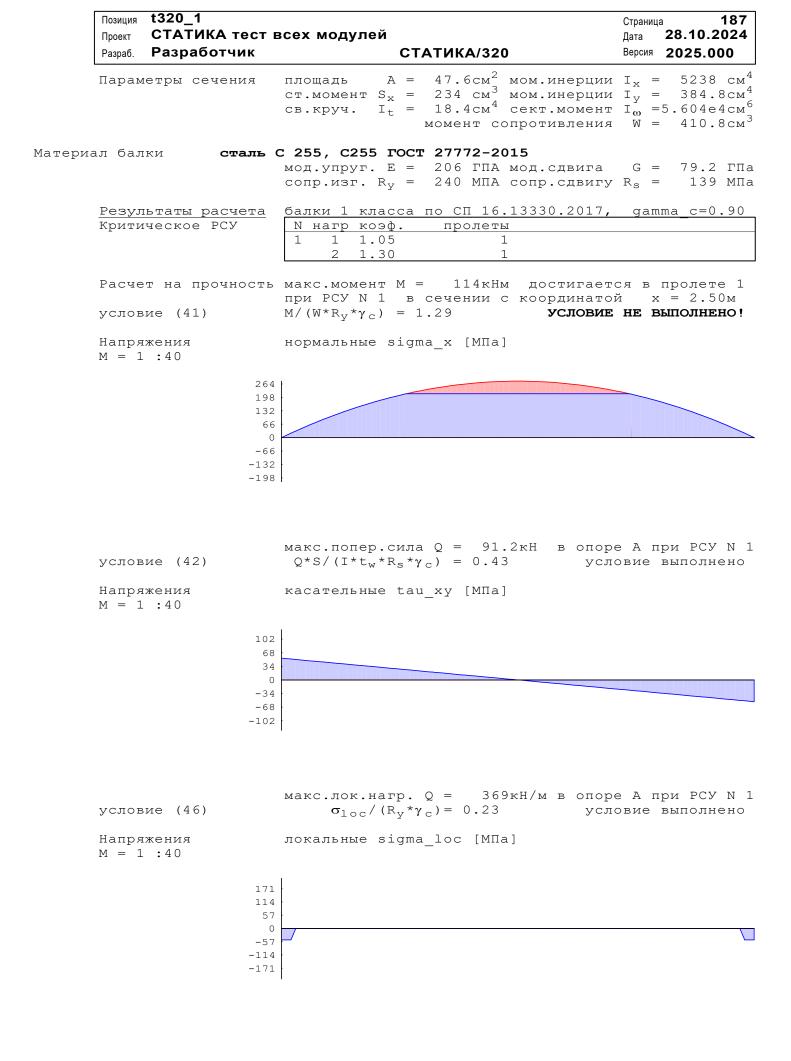
Прогибы [мм] М = 1 :40

основные сочетания усилий

Расчетные сочетания усилий и перемещений


			max			min	
Про	X	M_{PCY}	Q _{PC} y	W _{РСУ}	M_{PCY}	Q _{PC} y	W _{РСУ}
лет	[M]	[кНм]	[ĸH]	[MM]	[кНм]	[ĸH]	[MM]
1	0.00	0.0	91.2	0.00	0.0	26.2	0.00
1	1.25	85.5	45.6	16.12	24.6	13.1	5.37
1	2.50*	114.1	0.0	22.63	32.8	0.0	7.54
1	3.75	85.5	-13.1	16.12	24.6	-45.6	5.37
1	5.00	0.0	-26.2	0.00	0.0	-91.2	0.00

Сочетания реакций в опорах

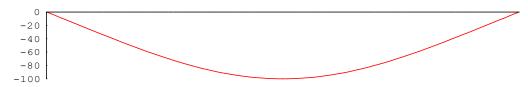

Сочетание	опора	max	min
		[ĸH]	[ĸH]
основные РСУ	A	91.25	26.25
	В	91.25	26.25

<u>Сечение балки</u> Профиль 25Б3 М = 1 : 4

двутавр балочный, ГОСТ Р 57837-2017

высота h = 255 мм ширина b = 126 мм толщ.полки t = 11.5 мм толщ.стенки $t_w = 7.5 \text{мм}$

 Позиция
 t320_1
 Страница
 188

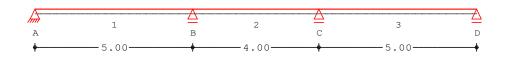

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/320
 Версия
 2025.000

макс. эквивал. напряжения достигаются в пролете 1при РСУ N 1 в сечении с координатой x = 2.50 м $sigma_x = -226$ МПа $sigma_y = -0$ МПа $tau_x = 0$ МПа условие (44) $\sigma_{9KB} * 0.87 / (R_V * \gamma_C) = 0.91$ условие выполнено Напряжения эквивалентные sigma экв [МПа] M = 1 : 40197.02 171 114 57 52 32 52.32 0 -57 -114 -171

Устойчивость балки наиболее опасное РСУ N 1 макс.момент M = 114кНм коэффиц. ψ = 3.75 коэф.устойч. ϕ_b = 0.61 условие (69) М/(ϕ_b *W_c*R_y* γ_c) = 2.09 **УСЛОВИЕ НЕ ВЫПОЛНЕНО!**

Форма потери устойчивости [условные единицы] M = 1 : 40

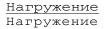

Расчет выполнен модулем 320 программы СТАТИКА 2025 © 000 Техсофт

<u>Поз. t320 3</u>

Трехпролетная балка

Расчётная схема

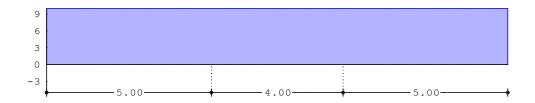
M = 1 : 120



Воздействия

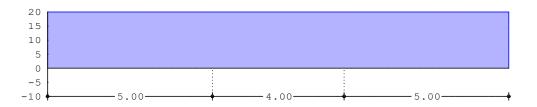
Nº	Тип воздействия	Описание				
1	Постоянное	Собственный вес металлических конструкций				
2	Кратковременное					
	Равн	омерно распределенная нагрузка - жилые помещения				

ООО Техсофт, Москва


Позиция t320_3
Проект СТАТИКА тест всех модулей Дата 28.10.2024
Разраб. Разработчик СТАТИКА/320 Версия 2025.000

1

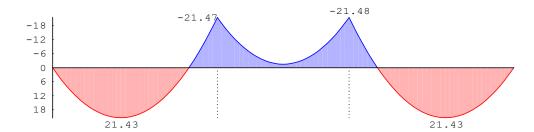
постоянные нагрузки $\gamma_{\rm f}$ = 1.05


M = 1 : 115

	Ν.	Пролёт	а	S	рл/Р	p _n /M
		опора	[M]	[M]	[кН/м,к]	н,кнм]
Равномерн.	1	1-3			10.00	

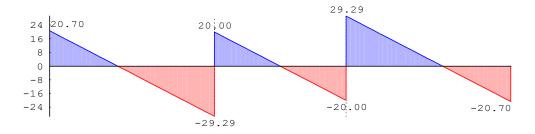
Нагружение 2 М = 1 :115

кратковременные нагрузки γ_{f} = 1.30



	Ν.	Пролёт	а	S	рл/Р	p _n /M
		опора	[м]	[M]	[кН/м,к	н,кнм]
Равномерн.	1	1-3			20.00	

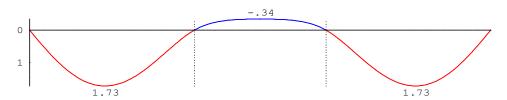
Усилия в сечении


по линейно упругой теории

Нагружение 1 М = 1 :115 моменты $M_{yпp}$ [кНм]

Нагружение 1 М = 1 :115

поперечные силы $Q_{y\pi p}$ [кН]

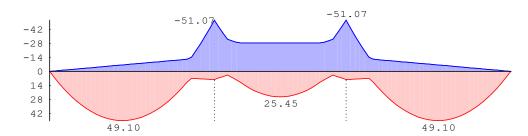


 Позиция
 t320_3
 Страница
 190

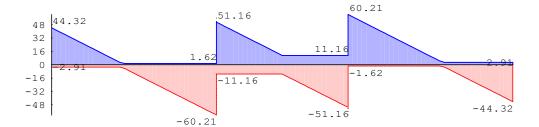
 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/320
 Версия
 2025.000

Нагружение 1 М = 1 :115 прогибы $f_{yпp}$ [мм]



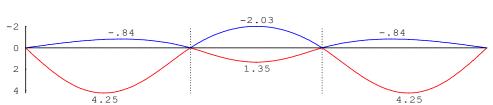
Нагружение 1


			max			min	
Про	Х	M_1	Q_1	w_1	M_1	Q ₁	w_1
лет	[M]	[кНм]	[ĸH]	[MM]	[кНм]	[ĸH]	[MM]
1	0.00	0.00	20.70	0.00	0.00	20.70	0.00
1	1.25	18.07	8.20	1.33	18.07	8.20	1.33
1	2.07*	21.43	-0.00	1.71	21.43	-0.00	1.71
1	2.29*	21.18	-2.15	1.73	21.18	-2.15	1.73
1	2.50	20.51	-4.30	1.71	20.51	-4.30	1.71
1	3.75	7.33	-16.80	1.02	7.33	-16.80	1.02
1	5.00	-21.48	-29.30	0.00	-21.48	-29.30	0.00
2	0.00	-21.48	20.00	0.00	-21.48	20.00	0.00
2	1.00	-6.50	10.00	-0.30	-6.50	10.00	-0.30
2	2.00*	-1.48	0.00	-0.34	-1.48	0.00	-0.34
2	3.00	-6.50	-10.00	-0.30	-6.50	-10.00	-0.30
2	4.00	-21.48	-20.00	0.00	-21.48	-20.00	0.00
3	0.00	-21.48	29.30	0.00	-21.48	29.30	0.00
3	1.25	7.33	16.80	1.02	7.33	16.80	1.02
3	2.50	20.51	4.30	1.71	20.51	4.30	1.71
3	2.71*	21.18	2.15	1.73	21.18	2.15	1.73
3	2.93*	21.43	0.00	1.71	21.43	0.00	1.71
3	3.75	18.07	-8.20	1.33	18.07	-8.20	1.33
3	5.00	0.00	-20.70	0.00	0.00	-20.70	0.00

Нагружение 2 М = 1 :115

огибающая моментов ${
m M}_{
m y\pi p}$ [кНм]

Нагружение 2 M = 1 :115 огибающая поперечных сил $Q_{\text{упр}}$ [кН]

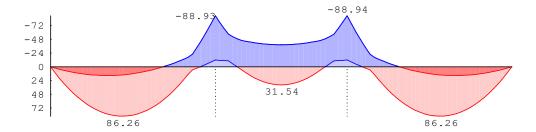


 Позиция
 t320_3
 Страница
 191

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/320
 Версия
 2025.000

Нагружение 2 М = 1 :115 огибающая прогибов $f_{y\pi p}$ [мм]

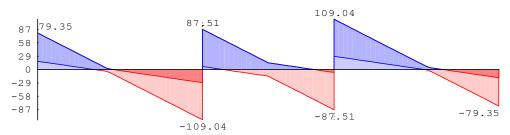

Нагружение 2

			max			min	
Про	X	M_2	Q_2	w_2	M_2	Q_2	W ₂
лет	[м]	[кНм]	[ĸH]	[MM]	[кНм]	[ĸH]	[MM]
1	0.00	0.00	44.32	0.00	0.00	-2.91	0.00
1	1.25	39.77	19.32	3.16	-3.64	-2.91	-0.51
1	2.22*	49.10	1.67	4.23	-6.45	-4.58	-0.77
1	2.38*	48.82	1.62	4.25	-6.92	-7.78	-0.80
1	2.50	48.30	1.62	4.24	-7.27	-10.21	-0.81
1	2.89*	44.57	1.62	4.03	-8.40	-17.95	-0.84
1	3.75	25.57	1.62	2.76	-10.91	-35.21	-0.71
1	5.00	8.12	1.62	0.00	-51.07	-60.21	0.00
2	0.00	8.12	51.16	0.00	-51.07	-11.16	0.00
2	1.00	15.41	31.16	0.92	-28.41	-11.16	-1.52
2	2.00*	25.45	11.16	1.35	-28.41	-11.16	-2.03
2	3.00	15.41	11.16	0.92	-28.41	-31.16	-1.52
2	4.00	8.12	11.16	0.00	-51.07	-51.16	0.00
3	0.00	8.12	60.21	0.00	-51.07	-1.62	0.00
3	1.25	25.57	35.21	2.76	-10.91	-1.62	-0.71
3	2.11*	44.57	17.95	4.03	-8.40	-1.62	-0.84
3	2.50	48.30	10.21	4.24	-7.27	-1.62	-0.81
3	2.62*	48.82	7.78	4.25	-6.92	-1.62	-0.80
3	2.78*	49.10	4.58	4.23	-6.45	-1.67	-0.77
3	3.75	39.77	2.91	3.16	-3.64	-19.32	-0.51
3	5.00	0.00	2.91	0.00	0.00	-44.32	0.00

Реакции опор

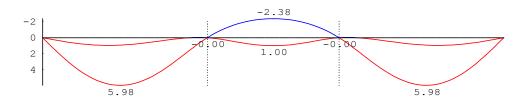
Нагружение	опора	max	min
		[ĸH]	[кН]
1	А	20.70	20.70
	В	49.30	49.30
	С	49.30	49.30
	D	20.70	20.70
2	А	44.32	-2.91
	В	111.37	-12.78
	С	111.37	-12.78
	D	44.32	-2.91

<u>РСУ</u> Момент М [кНм] М = 1 :115 Сочетания усилий согласно СП 20.13330.2016 основные сочетания усилий



 Позиция
 t320_3
 Страница
 192

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024


 Разраб.
 Разработчик
 СТАТИКА/320
 Версия
 2025.000

Попер. сила Q [кН] основные сочетания усилий М = 1 :115

Прогибы [мм] М = 1 :115

основные сочетания усилий

Расчетные сочетания усилий и перемещений

			max			min	
Про	X	M_{PCY}	Q _{PC} y	W _{РСУ}	M_{PCY}	Q _{PC} y	W _{PC} y
лет	[M]	[кНм]	[ĸH]	[MM]	[кНм]	[ĸH]	[MM]
1	0.00	0.00	79.35	0.00	0.00	17.96	0.00
1	1.25	70.68	33.73	4.48	14.24	4.83	0.82
1	2.17*	86.26	1.49	5.93	14.23	-6.36	0.96
1	2.35*	85.67	-0.83	5.98	13.20	-12.33	0.93
1	2.50	84.32	-2.40	5.95	12.08	-17.79	0.90
1	3.75	40.93	-15.52	3.79	-6.49	-63.41	0.31
1	5.00	-12.00	-28.65	0.00	-88.94	-109.04	0.00
2	0.00	-12.00	-28.65	0.00	-88.94	-109.04	0.00
2	1.00	13.21	51.01	0.62	-43.76	-4.01	-1.83
2	2.00*	31.54	14.51	1.00	-38.48	-14.51	-2.38
2	3.00	13.21	4.01	0.62	-43.76	-51.01	-1.83
2	4.00	-12.00	-6.49	0.00	-88.94	-87.51	0.00
3	0.00	-12.00	-6.49	0.00	-88.94	-87.51	0.00
3	1.25	40.93	63.41	3.79	-6.49	15.52	0.31
3	2.50	84.32	17.79	5.95	12.08	2.40	0.90
3	2.65*	85.67	12.33	5.98	13.20	0.83	0.93
3	2.83*	86.26	6.36	5.93	14.23	-1.49	0.96
3	3.75	70.68	-4.83	4.48	14.24	-33.73	0.82
3	5.00	0.00	-17.96	0.00	0.00	-79.35	0.00

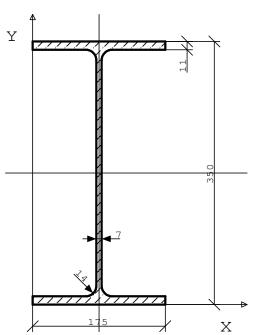
Сочетания реакций в опорах

Сочетание	опора	max	min
		[ĸH]	[KH]
основные РСУ	A	79.35	17.96
	В	196.55	35.14
	С	196.55	35.14
	D	79.35	17.96

 Позиция
 t320_3
 Страница
 193

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

<u>Сечение балки</u> Профиль 35Б2 М = 1 : 5


Разраб.

Разработчик

двутавр балочный, ГОСТ Р 57837-2017

СТАТИКА/320

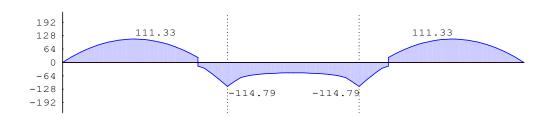
Версия 2025.000

Параметры сечения

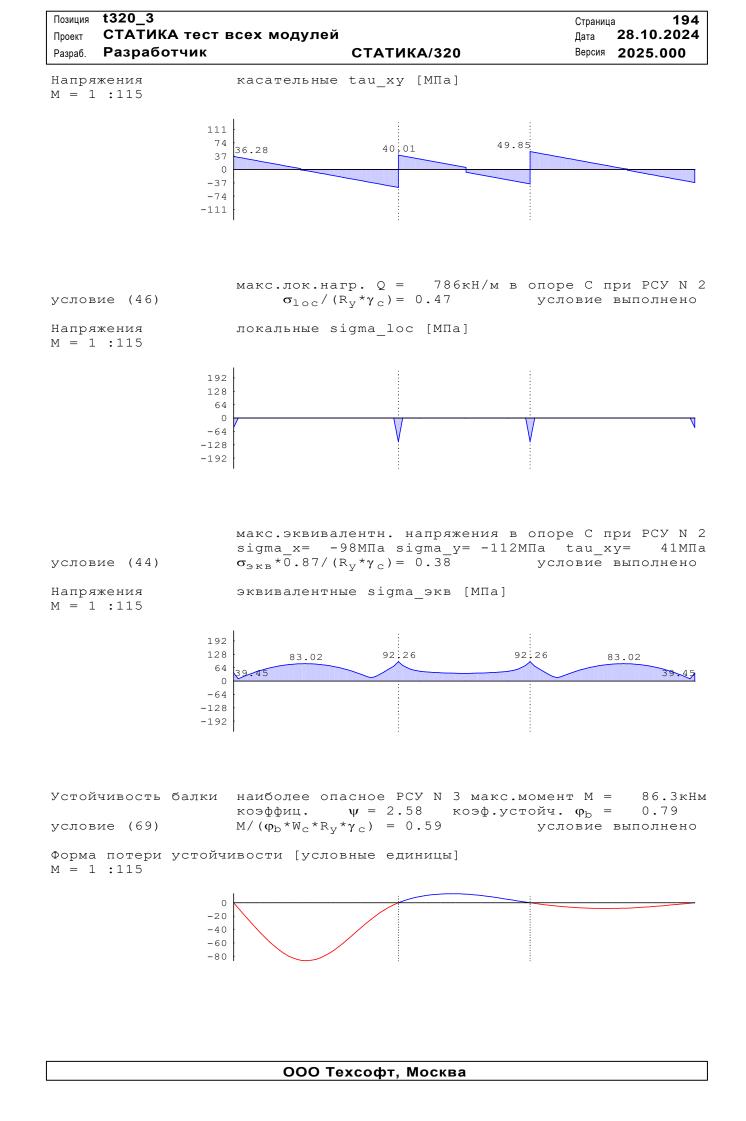
высота h = 350мм ширина b = 175мм толщ.полки t = 11.0мм толщ.стенки t_w = 7.0мм площадь A = 63.1cm^2 мом.инерции I_x =1.356e4cm⁴ ст.момент S_x = 434 cm³ мом.инерции I_y = 984.3cm^4 св.круч. I_t = 22.1cm^4 сект.момент I_w =2.797e5cm⁶ момент сопротивления W = 774.8cm³

Материал балки

сталь С 255, С255 ГОСТ 27772-2015


мод.упруг. E = 206 ГПА мод.сдвига G = 79.2 ГПа сопр.изг. $R_{\rm v} = 240$ МПА сопр.сдвигу $R_{\rm s} = 139$ МПа

 $\frac{{\sf Результаты}\ {\sf расчета}}{{\sf Критические}\ {\sf РСУ}}$


бал	пки	1	класса	по СП	16.1	3330	.2017	7 , gar	nma	c=1.00
N	наі	¬р	коэф.	проз	леты	N	нагр	коэф.		пролеты
1	1	L	1.05		123	2	1	1.05		123
	2	2	1.30		12		2	1.30		23
3	_	L	1.05		123					
	2	2	1.30		13					

Расчет на прочность макс. момент $M = 88.9 \, \text{kHm}$ в опоре В при РСУ N 1 условие (41) $M/(W^*R_y^*\gamma_c) = 0.48$ условие выполнено

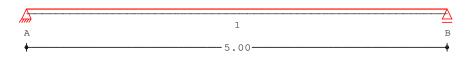
Напряжения М = 1 :115 нормальные sigma_x [МПа]

макс.попер.сила Q = 109кH в опоре В при РСУ N 1 условие (42) $Q*S/(I*t_W*R_S*\gamma_C) = 0.36$ условие выполнено

Позиция **t320_3** 195 СТАТИКА тест всех модулей 28.10.2024 Проект Дата

СТАТИКА/320

Расчет выполнен модулем 320 программы СТАТИКА 2025 © 000 Техсофт


Поз. t321

Однопролетная балка ТКП EN 1993-1-1

Расчётная схема

Разработчик

M = 1 : 45

Опоры

Опора	t [см]	Опора	t [см]
A	20.0) B	20.0

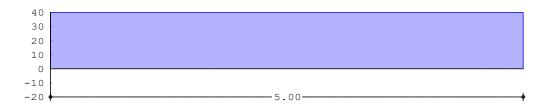
Воздействия

Nº	Тип воздействия	Описание				
1	Постоянное	Постоянное	воздействие			
		постоя	- эоннг			
2	Переменное	Категория А:	жилые здания			
		переменное	Категория-А			

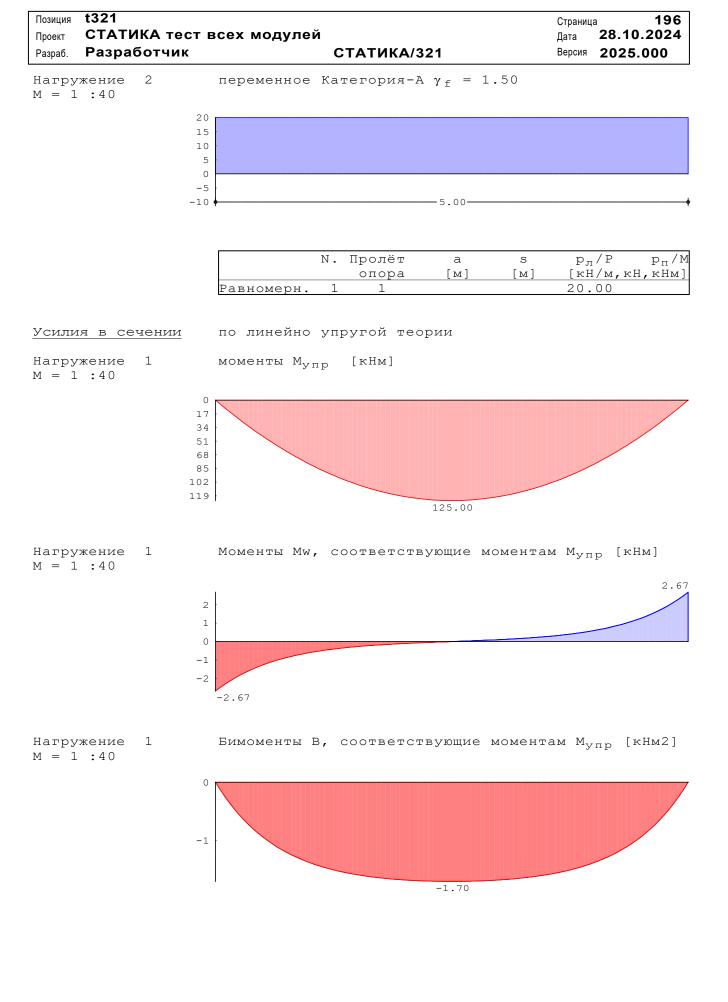
Характеристики

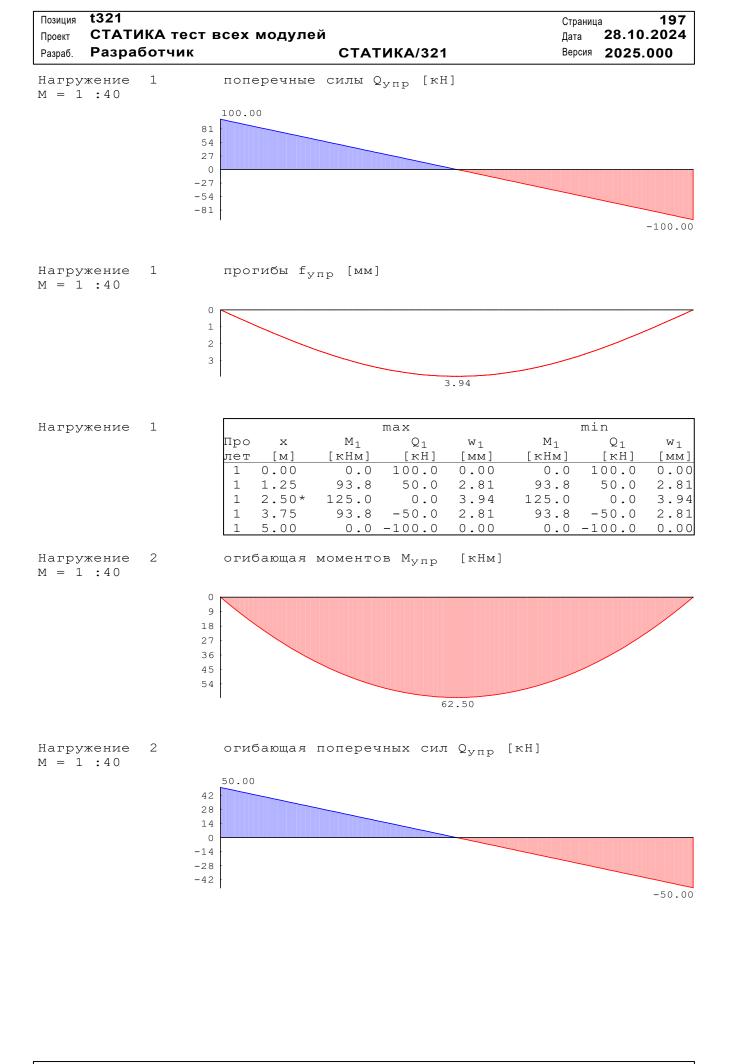
$N_{\bar{0}}$	$\gamma_{\rm F}$	Ψ_0	ψ_1	ψ_2	группа	знак	распред
		ξ			несоч.		по прол
1	1.35	0.85					
2	1.50	0.70	0.50	0.30			неблаг.
упра	вления	надежн	остью	констр	укции	ŀ	$\kappa_{\text{FI}} = 1.00$

Коэффициент


Сочетание воздейст. по формуле (6.10) EN 1990

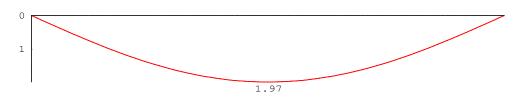
 $K_{FI} = 1.00$


Версия 2025.000


Нагружение Нагружение M = 1 : 40

постоянное - γ_f = 1.35

	Ν.	Пролёт	a	s	рл/Р	p _π /M
		опора	[M]	[M]	[кН/м,к]	н,кнм]
Равномерн.	1	1			40.00	



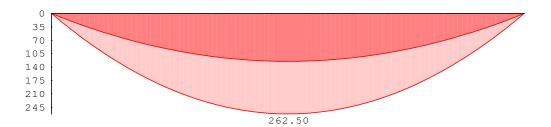
 Позиция
 t321
 Страница
 198

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/321
 Версия
 2025.000

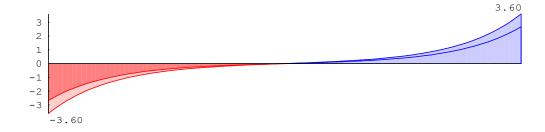
Нагружение 2 М = 1 :40 огибающая прогибов $f_{y\pi p}$ [мм]

Нагружение 2

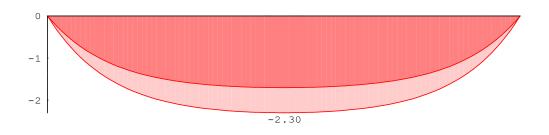

			max			min	
Про	X	M_2	Q_2	W ₂	M_2	Q_2	w ₂
лет	[M]	[кНм]	[ĸH]	[MM]	[кНм]	[ĸH]	[MM]
1	0.00	0.00	50.00	0.00	0.00	50.00	0.00
1	1.25	46.88	25.00	1.40	46.88	25.00	1.40
1	2.50*	62.50	0.00	1.97	62.50	0.00	1.97
1	3.75	46.88	-25.00	1.40	46.88	-25.00	1.40
1	5.00	0.00	-50.00	0.00	0.00	-50.00	0.00

Реакции опор

Нагружение	опора	max	min
		[ĸH]	[ĸH]
1	А	100.00	100.00
	В	100.00	100.00
2	А	50.00	50.00
	В	50.00	50.00


РСУ

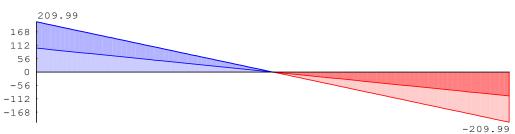
Момент М М = 1 :40 Сочетания усилий согласно СТБ EN 1990-2007 Основы проектирования несущих конструкций. основные сочетания усилий [кHм]


Moment MwM = 1 : 40

соответствующий моментам М основных РСУ [кНм]

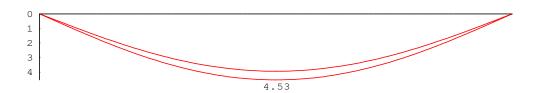
Бимомент В М = 1 :40

соответствующий моментам М основных РСУ [кНм2]



 Позиция
 t321
 Страница
 199

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024


 Разраб.
 Разработчик
 СТАТИКА/321
 Версия
 2025.000

Попер. сила Q [кН] основные сочетания усилий M=1:40

Прогибы M = 1 :40

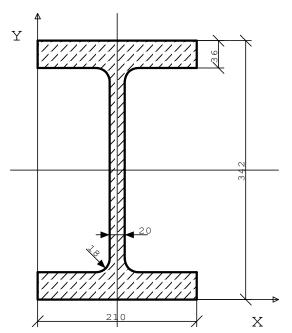
основные сочетания усилий [mm]

Расчетные сочетания усилий и перемещений

			max		min			
Про	X	M_{Ed}	Q_{Ed}	$w_{\rm Ed}$	M_{Ed}	Q_{Ed}	w_{Ed}	
лет	[M]	[кНм]	[ĸH]	[MM]	[кНм]	[ĸH]	[MM]	
1	0.00	0.0	210.0	0.00	0.0	100.0	0.00	
1	1.25	196.9	105.0	3.23	93.8	50.0	2.81	
1	2.50*	262.5	0.0	4.53	125.0	0.0	3.94	
1	3.75	196.9	-50.0	3.23	93.8	-105.0	2.81	
1	5.00	0.0	-100.0	0.00	0.0	-210.0	0.00	

Сочетания реакций в опорах

Сочетание	опора	max	min
		[ĸH]	[ĸH]
основные РСУ	A	210.00	100.00
	В	210.00	100.00


 Позиция
 t321
 Страница
 200

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/321
 Версия
 2025.000

<u>Сечение балки</u> Профиль 30Ш6 М = 1 : 5

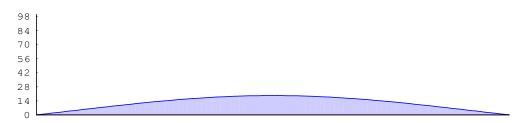
двутавр широкополочный, ГОСТ Р 57837-2017

Параметры сечения

высота h = 342мм ширина b = 210мм толщ.полки t = 36.0мм толщ.стенки t_w = 20.0мм площадь A = 208 см² мом.инерции I_x = 3.932e4см² мом.сопр. V_{p1} = 741 см² сект.момент V_{p1} = 7580 см² сект.момент V_{p1} = 76.9см² осект. площ. V_{p1} = 174.6см²

Материал балки

s 275

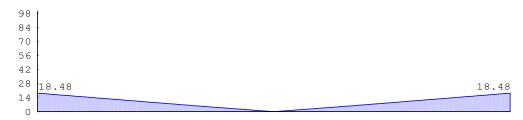

мод.упруг. E = 210 ГПа мод.сдвига G = 80.8 ГПа сопр.изг. f_y = 275 МПа сопр.сдвигу f_s = 159 МПа Частные коэффициенты безопас. γ_{M0} = 1 γ_{M1} = 1

<u>Результаты расчета</u> Критическое РСУ балки 1-го класса по ТКП EN 1993-1-1-2015.

N	нагр	коэф.	пролеты
1	1	1.35	1
	2	1.50	1

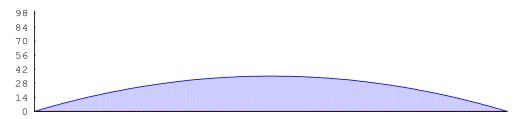
Расчет на прочность макс.момент M = $262 \, \text{кHm}$ достигается в пролете 1 бимомент B = $2.3 \, \text{кHm}^2$ при РСУ N 1 в сечении с координатой x = $2.50 \, \text{м}$ условие прочности $8 \, \omega/W_{\omega}/\left(f_{y}/\gamma_{M\,0}\right) + \left(M/W/\left(f_{y}/\gamma_{M\,0}\right)\right)^2 = 0.19$ выполнено

Коэфф. использования по изгибающему моменту и бимоменту [%] M=1:40


макс.попер.сила Q = 210кH в опоре В при РСУ N 1 соотв. момент $M_{\tau} = 9.89 \kappa$ Hм условие (6.17) Q/($A_{\rm V}*f_{\rm S}/\gamma_{\rm M0}$) = 0.18 условие выполнено

 Позиция
 t321
 Страница
 201

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024


 Разраб.
 Разработчик
 СТАТИКА/321
 Версия
 2025.000

Коэфф. использования по поперечной силе и крутящему моменту [%] М = 1 :40

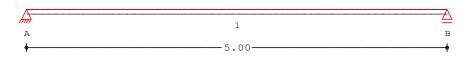
критич. расчетный случай возникает в пролете 1 при РСУ N 1 в сечении с координатой х = 2.50м М= 262.5кНм Q= 0.0кН ρ =0.00 W $_{\rm pl}$, y, v= 2714см 3 условие (6.12) М/(W*f $_{\rm y}/\gamma_{\rm M0}$) = 0.35 условие выполнено

Коэфф. использования по изгибающему моменту и поперечной силе [%] М = 1 :40

Устойчивость балки наиболее опасное РСУ N 1 макс.момент M = 262 кHm M = 1671.8 кHm $\lambda_{\text{LT}} = 0.67$ $\chi_{\text{LT}} = 0.86$ условие (6.54) M/(χ_{LT} *W*f $_{\text{V}}/\gamma_{\text{M1}}$)=0.41 условие выполнено

Форма потери устойчивости [условные единицы] М = 1 :40

Расчет выполнен модулем 321 программы СТАТИКА 2025 © 000 Техсофт


t322 Позиция 202 Страница 28.10.2024 СТАТИКА тест всех модулей Проект Дата Разраб. Разработчик **СТАТИКА/322** Версия 2025.000

Поз. t322

Однопролетная балка MSZ EN 1993-1-1

Расчётная схема

M = 1 : 45

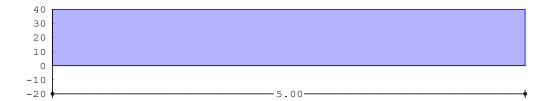
Опоры

Опора	t	[см]	Опора	t	[CM]
A		20.0	В		20.0

Воздействия

Nº	Тип воздействия	Описание				
1	Постоянное	Постоянное	воздействие			
		постоя	- эоннг			
2	Переменное	Категория А:	жилые здания			
		переменное	Категория-А			

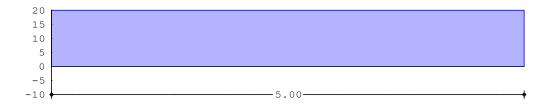
Характеристики


$N_{\bar{0}}$	$\gamma_{ m F}$	Ψ_0	Ψ_1	ψ_2	группа	знак	распред
		ξ			несоч.		по прол
1	1.35	0.85					
2	1.50	0.70	0.50	0.30			неблаг.

Коэффициент

 $K_{FI} = 1.\overline{00}$ управления надежностью конструкции Сочетание воздейст. по формулам (6.10a)/(6.10b) EN 1990 без учета переменных воздействий в (6.10а)

Нагружение Нагружение 1 M = 1 : 40


постоянное - γ_f = 1.35

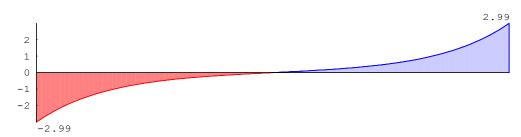
	Ν.	Пролёт	a	S	рл/Р	p _n /M
		опора	[M]	[M]	[кН/м,к	Н,кНм]
Равномерн.	1	1			40.00	

Нагружение 2 M = 1 : 40

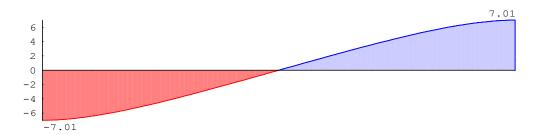
переменное Категория-А γ_f = 1.50

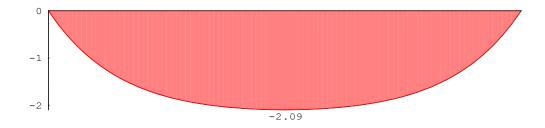


	N.	Пролёт	a	S	рл/Р	рп/М
		опора	[M]	[м]	[кН/м , к	:Н,кНм]
Равномерн.	1	1			20.00	


Усилия в сечении

по линейно упругой теории

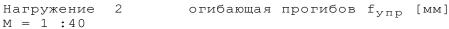

Нагружение 1 M = 1 :40 моменты М_{упр} [кНм]

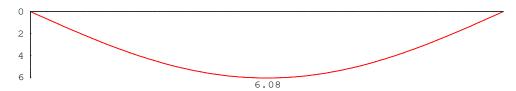

Нагружение 1 M = 1 :40 Моменты Мw, соответствующие моментам $M_{\text{упр}}$ [кНм]



Нагружение 1 M = 1 :40 Моменты Mt, соответствующие моментам $M_{ exttt{ynp}}$ [кНм]

Нагружение 1 М = 1 :40 Бимоменты В, соответствующие моментам M_{ynp} [кНм2]



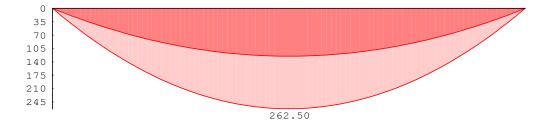


 Позиция
 t322
 Страница
 205

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/322
 Версия
 2025.000

Нагружение 2

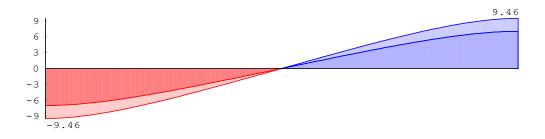

			max		min			
Про	X	M_2	Q_2	W ₂	M_2	Q_2	W ₂	
лет	[м]	[кНм]	[ĸH]	[MM]	[кНм]	[ĸH]	[MM]	
1	0.00	0.00	50.00	0.00	0.00	50.00	0.00	
1	1.25	46.88	25.00	4.33	46.88	25.00	4.33	
1	2.50*	62.50	0.00	6.08	62.50	0.00	6.08	
1	3.75	46.88	-25.00	4.33	46.88	-25.00	4.33	
1	5.00	0.00	-50.00	0.00	0.00	-50.00	0.00	

Реакции опор

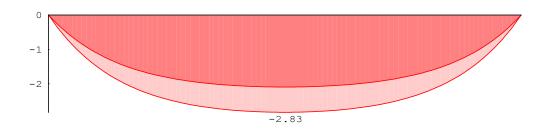
Нагружение	опора	max	min
		[ĸH]	[ĸH]
1	А	100.00	100.00
	В	100.00	100.00
2	A	50.00	50.00
	В	50.00	50.00

РСУ

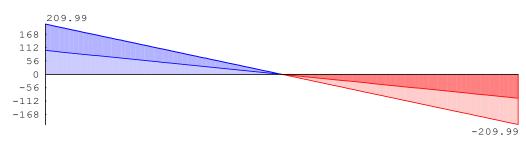
Момент М М = 1 :40 Сочетания усилий согласно п.6.4.3 MSZ EN 1990:2011 Основы проектирования несущих конструкций. основные сочетания усилий [кНм]


Moment Mw M = 1 : 40

соответствующий моментам М основных РСУ [кНм]

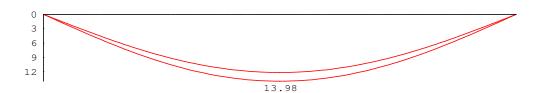

Момент Mt M = 1 : 40

соответствующий моментам М основных РСУ [кНм]



Позиция t322
Проект СТАТИКА тест всех модулей Дата 28.10.2024
Разраб. Разработчик СТАТИКА/322 Версия 2025.000

Бимомент В М = 1 :40 соответствующий моментам М основных РСУ [кНм2]



Попер. сила Q [кН] основные сочетания усилий М = 1 :40

Прогибы
M = 1 :40

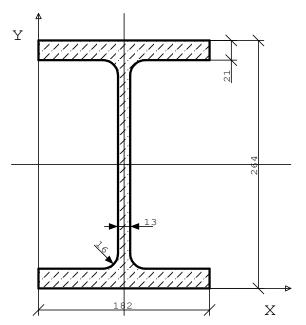
основные сочетания усилий [mm]

Расчетные сочетания усилий и перемещений

			max		min			
Про	X	$M_{\rm Ed}$	Q_{Ed}	w_{Ed}	M_{Ed}	Q_{Ed}	w_{Ed}	
лет	[M]	[кНм]	[ĸH]	[MM]	[кНм]	[ĸH]	[MM]	
1	0.00	0.0	210.0	0.00	0.0	100.0	0.00	
1	1.25	196.9	105.0	9.96	93.8	50.0	8.66	
1	2.50*	262.5	0.0	13.98	125.0	0.0	12.16	
1	3.75	196.9	-50.0	9.96	93.8	-105.0	8.66	
1	5.00	0.0	-100.0	0.00	0.0	-210.0	0.00	

ПРЕДУПРЕЖДЕНИЕ

Превышен допустимый прогиб в пролете 1


Сочетания реакций в опорах

Сочетание	опора	max	min
		[ĸH]	[KH]
основные РСУ	А	210.00	100.00
	В	210.00	100.00

Позиция t322 207 Страница СТАТИКА тест всех модулей 28.10.2024 Проект Дата Разработчик **СТАТИКА/322** Версия 2025.000 Разраб.

Сечение балки Профиль 25Ш4 M = 1 : 4

двутавр широкополочный, ГОСТ Р 57837-2017

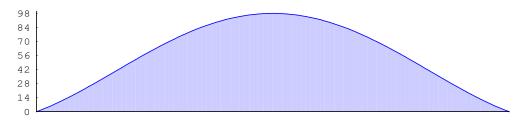
Параметры сечения

264мм высота h =ширина b = толщ.полки t = 21.0мм толщ.стенки $t_w = 13.0$ мм площадь A = 107 см² мом.инерции $I_x = 1.275$ е4см² ст.момент $S_x = 556$ см³ мом.инерции $I_y = 2116$ см² св.круч. $I_t = 141$ см² сект.момент $I_{\omega} = 3.052$ е5см6 мом. сопр. $W_{\text{pl}} = 1.11 \text{e3cm}^3$ сект. площ. ω = 118.0cm^2 пл.сдвига $A_v = 40.5$ cm²

Материал балки

s 275

мод.упруг. E = 210 ГПа мод.сдвига G = 80.8 ГПа сопр.изг. f_y = 275 МПа сопр.сдвигу f_s = 159 МПа Частные коэффициенты безопас. $\gamma_{M\,0} = 1$ $\gamma_{M1} = 1$


Результаты расчета Критическое РСУ

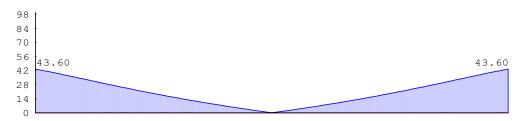
балки 1-го класса по MSZ EN 1993-1-1-2005.

N	нагр	коэф.	пролеты	
1	1	1.35	1	
	2	1.50	1	

макс.момент M = 262кHм бимомент B = 2.83кHм 2 Расчет на прочность макс. момент M =достигается в пролете 1 при РСУ N 1 в сечении с координатой x = 2.50 M $B\omega/W_{\omega}/(f_{y}/\gamma_{M0}) + (M/W/(f_{y}/\gamma_{M0}))^{2} = 0.98$ условие прочности выполнено

Коэфф. использования по изгибающему моменту и бимоменту [\S] M = 1 : 40

макс.попер.сила Q = 210кН в опоре В при РСУ N 1 соотв. момент $M_{\tau} = 9.46 \, \mathrm{kHm}$ = 0.44 условие (6.17) $Q/(A_v*f_s/\gamma_{M0})$


условие выполнено

 Позиция
 t322
 Страница
 208

 Проект
 CTATИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Pазработчик
 CTATИКА/322
 Версия
 2025.000

Коэфф. использования по поперечной силе и крутящему моменту [%] М = 1 :40


критич. расчетный случай возникает в пролете 1 при РСУ N 1 в сечении с координатой $x=2.50 \, \mathrm{M}$ М = $262.5 \, \mathrm{kHm}$ Q= $0.0 \, \mathrm{kH}$ М $_{\odot}$ = $0.0 \, \mathrm{kHm}$ В = $2.8 \, \mathrm{kHm}^2$ Условие (6.32) М $_{\mathrm{f}}$ = $11.6 \, \mathrm{kHm}$ N $_{\mathrm{f}}$ = $956.0 \, \mathrm{kH}$ τ_{f} = $0.00 \, \mathrm{Mma}$ ρ =0.00 для верхней полки $\mathrm{M_f/M_{fpl,Rd} + (N_f/N_{f,Rd})^2 = 1.07}$ УСЛОВИЕ НЕ ВЫПОЛНЕНО!

Коэфф. использования по изгибающему моменту и поперечной силе [%] М = 1 :40

Устойчивость балки наиболее опасное РСУ N 1 макс.момент M = 262 кHm M = 262 кHm M = 451.3 кHm $\lambda_{\text{LT}} = 0.82$ $\chi_{\text{LT}} = 0.78$ условие (6.54) M/($\chi_{\text{LT}}*W*f_{\text{y}}/\gamma_{\text{M1}}$)=1.10 **УСЛОВИЕ НЕ ВЫПОЛНЕНО!**

Форма потери устойчивости [условные единицы] М = 1 :40

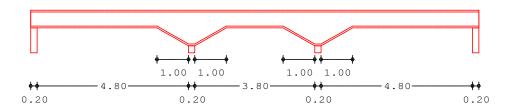
Расчет выполнен модулем 322 программы СТАТИКА 2025 © 000 Техсофт

 Позиция
 t325
 Страница
 209

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024


 Разраб.
 Разработчик
 СТАТИКА/325
 Версия
 2025.000

Поз. t325

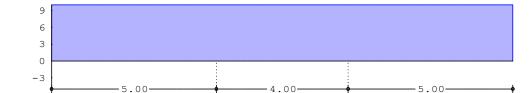

Трехпролетная балка

Расчётная схема

M = 1 : 120

M = 1 : 120

Опоры

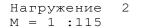

Опора	t	Вут	слева	справа	высота
	[CM]		[m]	[m]	[CM]
А	20.0				
В	20.0		1.0	1.0	40.0
С	20.0		1.0	1.0	40.0
D	20.0				

Воздействия

Nº	Тип воздействия	Описание					
1	Постоянное	Собстве	нный вес	мета	плических	констр	укций
2	Кратковременное						
	Равн	омерно ра	спределе	ная і	нагрузка	- жилые	помешения

Нагружение Нагружение М = 1 :115

постоянные нагрузки γ_{f} = 1.05



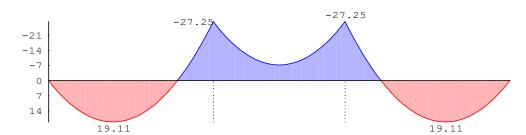
	N.	Пролёт	a	S	рл/Р	pπ/M
		опора	[M]	[M]	[кН/м,к	Н, кНм]
Равномерн.	1	1-3			10.00	


 Позиция
 t325
 Страница
 210

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

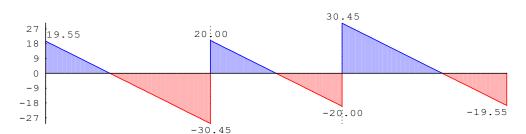
 Разраб.
 Разработчик
 СТАТИКА/325
 Версия
 2025.000

кратковременные нагрузки $\gamma_{\rm f}$ = 1.30

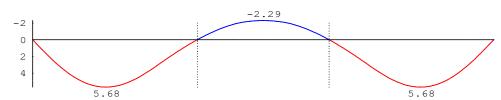

	N.	Пролёт	a	S	рл/Р	pπ/M
		опора	[M]	[M]	[кН/м,к	Н, кНм]
Равномерн.	1	1-3			20.00	

Усилия в сечении

по линейно упругой теории


Нагружение 1 М = 1 :115

моменты $M_{yпp}$ [кНм]



Нагружение 1 M = 1 :115

поперечные силы $Q_{yпp}$ [кН]

Нагружение М = 1 :115 прогибы $f_{yпp}$ [мм]

Нагружение 1

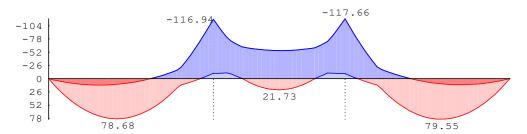
			max			min			
Про	X	M_1	Q ₁	w_1	M_1	Q ₁	w ₁		
лет	[M]	[кНм]	[ĸH]	[MM]	[кНм]	[ĸH]	[MM]		
1	0.00	0.00	19.55	0.00	0.00	19.55	0.00		
1	1.25	16.62	7.05	4.45	16.62	7.05	4.45		
1	1.95*	19.11	0.00	5.59	19.11	0.00	5.59		
1	2.22*	18.75	-2.66	5.68	18.75	-2.66	5.68		
1	2.50	17.62	-5.45	5.58	17.62	-5.45	5.58		
1	3.75	3.00	-17.95	3.17	3.00	-17.95	3.17		
1	5.00	-27.25	-30.45	0.00	-27.25	-30.45	0.00		

ООО Техсофт, Москва

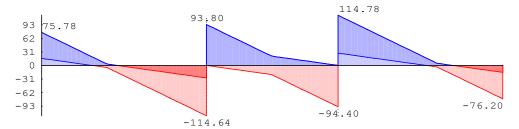
Позиция t325 211 Страница СТАТИКА тест всех модулей 28.10.2024 Проект Дата Разработчик **СТАТИКА/325** Версия 2025.000 Разраб. 0.00 -27.25 20.00 0.00 -27.25 20.00 0.00 1.00 -12.27 10.00 -1.73 -12.27 2 10.00 - 1.732 2.00* -7.25 -0.00 -2.29 -7.25 -0.00 -2.29 2 3.00 -12.27 -10.00 -1.73 -12.27 -10.00 -1.73 4.00 -27.25 -20.00 0.00 -27.25 -20.00 0.00 3 0.00 -27.25 30.45 0.00 -27.25 30.45 0.00 3 1.25 3.00 17.95 3.17 3.00 17.95 3.17 3 2.50 17.62 5.58 17.62 5.45 5.58 5.45 3 2.78* 18.75 5.68 5.68 2.66 18.75 2.66 3 3.05* 19.11 0.00 5.59 19.11 0.00 5.59 3 3.75 16.62 -7.05 4.45 16.62 -7.05 4.45 5.00 0.00 -19.55 0.00 0.00 -19.55 0.00 огибающая моментов $M_{\text{упр}}$ Нагружение [кНм] M = 1 : 115-68.50 -67.94 -64 -48 -32 -16 Ω 16 22.58 32 45.17 45.86 Нагружение 2 огибающая поперечных сил $Q_{\text{упр}}$ [кН] M = 1 : 11563.70 56.00 51 42.50 34 16.44 17 2.78 0 -2.87 -17 -16.03 -34 -51 -42.83 -56.47 -63.59

Нагружение 2

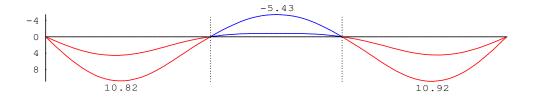
		1	max			min			
Про	X	M_2	Q ₂	W2	M_2	Q ₂	W2		
лет	[м]	[кНм]	[ĸH]	[MM]	[кНм]	[ĸH]	[MM]		
1	0.00	0.00	42.51	0.00	0.00	-3.31	0.00		
1	1.25	37.51	17.51	11.09	-4.14	-3.31	-2.14		
1	2.13*	45.17	2.78	14.56	-7.04	-6.10	-3.15		
1	2.34*	44.70	2.78	14.70	-7.73	-10.29	-3.30		
1	2.50	43.76	2.78	14.62	-8.28	-13.59	-3.38		
1	2.82*	40.26	2.78	13.98	-9.35	-20.05	-3.44		
1	3.75	18.77	2.78	9.24	-12.42	-38.59	-2.82		
1	5.00	13.92	2.78	0.00	-67.95	-63.59	0.00		
2	0.00	13.92	56.00	0.00	-67.95	-16.03	0.00		
2	1.00	12.96	36.00	2.84	-37.07	-16.03	-6.36		
2	1.98*	22.58	16.80	4.30	-36.67	-16.39	-8.95		
2	2.00	22.57	16.44	4.30	-36.66	-16.47	-8.96		
2	2.00*	22.57	16.44	4.30	-36.66	-16.53	-8.96		
2	2.01*	22.55	16.44	4.30	-36.66	-16.69	-8.96		


Позиция t325 Страница 212 Проект СТАТИКА тест всех модулей Дата 28.10.2024 Разраб. Разработчик СТАТИКА/325 Версия 2025.000

2	3.00	12.09	16.44	2.87	-36.25	-36.47	-6.48
2	4.00	14.36	16.44	0.00	-68.50	-56.47	0.00
3	0.00	14.36	63.70	0.00	-68.50	-2.87	0.00
3	1.25	19.99	38.70	9.46	-13.72	-2.87	-2.93
3	2.21*	41.68	19.44	14.38	-10.20	-2.87	-3.66
3	2.50	44.58	13.70	14.92	-9.15	-2.87	-3.60
3	2.66*	45.44	10.54	14.99	-8.57	-2.87	-3.53
3	2.86*	45.86	6.53	14.86	-7.84	-2.87	-3.39
3	3.75	37.91	3.66	11.28	-4.57	-17.83	-2.30
3	5.00	0.00	3.66	0.00	0.00	-42.83	0.00


Реакции опор

Нагружение	опора	max	min
		[кН]	[ĸH]
1	А	19.55	19.55
	В	50.45	50.45
	С	50.45	50.45
	D	19.55	19.55
2	А	42.51	-3.31
	В	119.59	-18.82
	С	120.17	-19.31
	D	42.83	-3.66


<u>РСУ</u> Момент М [кНм] М = 1 :115 Сочетания усилий согласно СП 20.13330.2016 основные сочетания усилий

Попер. сила Q [кН] основные сочетания усилий М = 1 :115

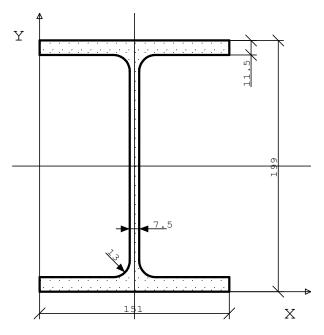
Прогибы [мм] М = 1 :115 основные сочетания усилий

Расчетные сочетания усилий и перемещений

	max					min			
Про	X	M_{PCY}	Q _{PC} y	WPCY	M_{PCY}	Q _{PC} y	W _{РСУ}		
лет	[м]	[кНм]	[ĸH]	[MM]	[кНм]	[ĸH]	[MM]		
1	0.00	0.00	75.78	0.00	0.00	16.22	0.00		
1	1.25	66.22	30.16	8.33	12.08	3.10	3.70		
1	2.08*	78.68	2.35	10.72	11.05	-7.92	4.56		

ООО Техсофт, Москва

Позиция t325 Страница 213 Проект СТАТИКА тест всех модулей дата 28.10.2024 Разраб. Разработчик СТАТИКА/325 Версия 2025.000


	1	2.27*	77.89	0.28	10.82	9.73	-15.11	4.53
	1	2.50	75.40	-2.10	10.70	7.74	-23.39	4.40
	1	3.75	27.55	-15.23	6.41	-12.99	-69.01	2.19
	1	5.00	-10.52	-28.35	0.00	-116.95	-114.64	0.00
	2	0.00	-10.52	-28.35	0.00	-116.95	-114.64	0.00
	2	1.00	3.97	57.30	-0.74	-61.07	-10.34	-3.95
	2	1.98*	21.73	21.87	-0.79	-55.28	-21.18	-5.43
	2	2.00	21.73	21.37	-0.79	-55.27	-21.41	-5.43
	2	2.01*	21.71	21.29	-0.79	-55.27	-21.66	-5.43
	2	3.00	2.83	10.87	-0.73	-60.02	-57.91	-4.00
	2	4.00	-9.95	0.37	0.00	-117.67	-94.41	0.00
	3	0.00	-9.95	0.37	0.00	-117.67	-94.41	0.00
	3	1.25	29.13	69.16	6.49	-14.69	15.12	2.15
	3	2.50	76.45	23.53	10.80	6.61	1.99	4.32
	3	2.72*	78.82	15.38	10.92	8.67	-0.36	4.45
	3	2.91*	79.55	8.49	10.83	10.04	-2.34	4.48
	3	3.75	66.74	-2.64	8.40	11.51	-30.58	3.64
Į	3	5.00	0.00	-15.77	0.00	0.00	-76.21	0.00

Сочетания реакций в опорах

Сочетание	опора	max	min
		[ĸH]	[кН]
основные РСУ	A	75.78	16.22
	В	208.44	28.51
	С	209.19	27.87
	D	76.21	15.77

 $\frac{\text{Сечение балки}}{\text{Профиль 20Ш2}}$ M = 1 : 3

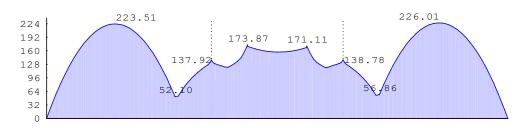
двутавр широкополочный, ГОСТ Р 57837-2017

Параметры сечения

```
высота h = 199мм ширина b = 151мм толщ.полки t = 11.5мм толщ.стенки t_w = 7.5мм площадь A = 49.4см² мом.инерции I_x = 3502 см⁴ ст.момент S_x = 198 см³ мом.инерции I_y = 661.2см⁴ св.круч. I_t = 20.8см⁴ сект.момент I_{\omega} =5.696e4см⁶ момент сопротивления W = 352.0см³
```

Материал балки **сталь C 255, C255 гОСТ 27772-2015** мод.упруг. E = 206 ГПА мод.сдвига G = 79.2 ГПа сопр.изг. $R_{\rm V} = 240$ МПА сопр.сдвигу $R_{\rm S} = 139$ МПа

t325 Позиция 214 Страница СТАТИКА тест всех модулей 28.10.2024 Проект Дата Разработчик **СТАТИКА/325** Версия 2025.000 Разраб.

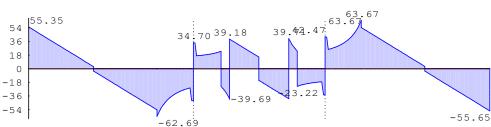

Результаты расчета Критические РСУ

бал	ІКИ	1	класса	по СП	16.1	.3330	.2017	7, gamma	c=1.00
N	наг	р	коэф.	проз	петы	N	нагр	коэф.	пролеты
1	1		1.05		123	2	1	1.05	123 23
	2		1.30		13		2	1.30	23

Расчет на прочность макс.момент M = 79.6кHм достигается в пролете 3 при РСУ N 1 в сечении с координатой x = 2.91м $M/(W*R_V*\gamma_{M0}) = 0.94$ условие (6.12) условие выполнено

Напряжения M = 1 : 115

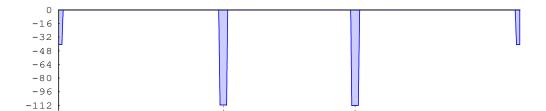
нормальные sigma_x [МПа]


макс.поп.сила Q = 87.2кН достигается в пролете 3 при РСУ N 1 в сечении с координатой x = 1.10 м

условие выполнено

условие (42)

 $Q*S/(I*t_w*R_s*\gamma_c) = 0.46$ касательные tau_xy [МПа]

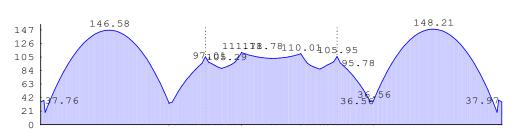

Напряжения M = 1 : 115

условие (46)

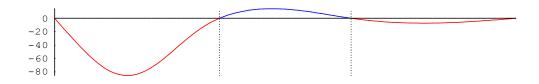
макс.лок.нагр. Q = 840кH/м в опоре C при РСУ N 2 $\sigma_{loc}/(R_v * \gamma_c) = 0.47$ условие выполнено

Напряжения M = 1 : 115 локальные sigma loc [МПа]

макс. эквивал. напряжения достигаются в пролете 3 при РСУ N 1 в сечении с координатой x = 2.91м $sigma x = -170M\Pi a sigma_y = -0M\Pi a tau_xy =$ $\sigma_{9KB} * \overline{0}.87 / (R_V * \gamma_C) = 0.6\overline{2}$ условие выполнено


условие (44)

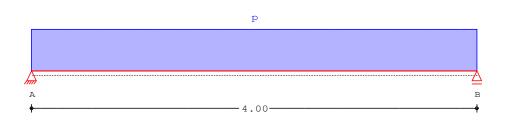
 Позиция
 t325
 Страница
 215


 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/325
 Версия
 2025.000

Напряжения М = 1 :115 эквивалентные sigma_экв [MПа]

Устойчивость балки наиболее опасное РСУ N 1 макс.момент M = 79.6кнм критический момент M = 101кнм коэффиц. ψ = 4.07 коэф.устойч. ϕ_b = 0.90 условие (69) M/(ϕ_b *W_C*R_y* γ_c) = 1.05 **УСЛОВИЕ НЕ ВЫПОЛНЕНО!** Форма потери устойчивости [условные единицы] M = 1:115



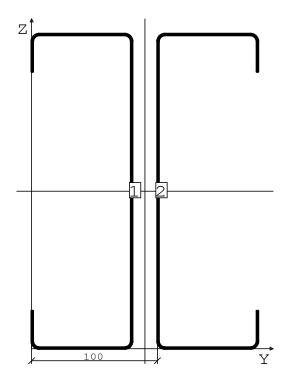
Расчет выполнен модулем 325 программы СТАТИКА 2025 © 000 Техсофт

Поз. t330

Два тонкостенных швеллера полками друг к другу

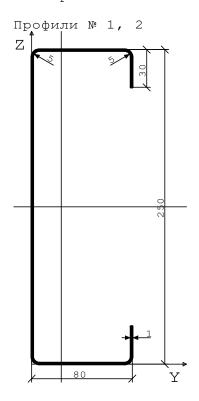
 $\frac{\text{Расчётная схема}}{\text{M} = 1 : 34}$

Края свободно оперты, длина элемента 1 = 4.00м


Нагружение

 Позиция
 t330
 Страница
 216

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024


 Разраб.
 Разработчик
 СТАТИКА/330
 Версия
 2025.000

 $\frac{\text{Сечение элемента}}{M = 1:3}$

250 Высота сечения MM Ширина сечения b 180 MM 9.1 cm^2 Площадь сечения Α 69 cm³ Моменты сопротивления сечения 21 cm³ $W_z =$ 860 cm^4 Моменты инерции сечения 188 CM⁴
0.0 CM⁴ $I_z =$ Момент инерции свободного кручения I_{t} = $I_{\rm W} = 22931 \, {\rm cm}^6$ Секториальный момент инерции

M = 1:3

Высота профиля $h=250\,$ мм Ширина профиля $b=80\,$ мм Координата центра тяжести профиля $y_c=23.6\,$ мм Площадь сечения $A=4.57\,$ см 2

Позиция t330 Проект СТАТИКА тест Разраб. Разработчик	всех модулей СТАТИКА/330	Страниі Дата Версия	217 28.10.2024 2025.000
	Моменты сопротивления профиля	W _V =	34.42 cm ³
	Моменты инерции профиля	$W_z = I_v =$	7.51 cm ³ 430.2 cm ⁴ 42.4 cm ⁴
Материал элемента	сталь 320 320 ГОСТ Р 52246 Модуль упругости Расчетное сопротивление Расчетное сопротивление сдвигу	$R_{y} = R_{s} =$	206 ГПа 310 МПа 179 МПа
Результаты расчета	Коэффициент условий работы по СП 260.1325800.2016.	$\gamma_{\text{C}} =$	1.00
Исходное сечение	проверка прочности при действии ме (N/A+M $_{ m y}$ /W)/(R $_{ m y}\gamma_{ m c}$) =0.41<1 у проверка прочности при действии п	СЛОВИЕ оперечн	выполнено
Плоскость ХZ	Q_Z $< n_W L R_S \gamma_C$ = 9.2 У С Здесь R_S принято по табл. 7.4 СП УСЛОВНАЯ ГИБКОСТЬ КОЭФФИЦИЕНТ УСТОЙЧИВОСТИ КОЭФФИЦИЕНТ УСТОЙЧИВОСТИ КОЭФФИЦИЕНТ ВЗАИМОДЕЙСТВИЯ $ (N/(\phi_y A) + k_{yy} M_y/(\chi_{LT} W_y))/(R_y * \gamma_C N) $ УСЛОВИЕ ВЫПОЛНЕНО	260.132 $\lambda_{y} = \phi_{y} = \chi_{LT} = \kappa_{yy} = 0$	25800.2016 1.62 0.88
Плоскость ХҮ	Условная гибкость Коэффициент устойчивости Коэффициент взаимодействия $(N/(\phi_z A) + k_{zy} M_y/(\chi_{LT} W_y))/(R_y * \gamma_z)$ УСЛОВИЕ ВЫПОЛНЕНО		3.48 0.53 0.99 0.76
м = 1:3	Редуцирование по причине локальног Схема редуцирования сечения		
	Моменты сопротивления сечения W_y W_z W_z Моменты инерции сечения I_y I_z Новое значение момента в редуцироз Расчетный изгибающий момент Проверка прочности при действии момент $(N/A+M_y/W)/(R_y*\gamma_c)=0.77<1$ Убловерка прочности при действии пороверка прочности при действии по	Z _C = eff = ,eff = ,eff = ,eff = BAHHOM M _y = OMEHTA CJOBUE CJOBUE	92.8 мм 6.6 см ² 37 см ³ 16 см ⁴ 143 см ⁴ сечении 8.32кН*м и силы выполнено ной силы выполнено

Позиция	t330		Страниц	a 218
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/330	Версия	2025.000

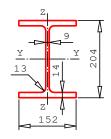
Плоскость	XZ	Условная гибкость	$\lambda_{_{ m V}}$	=	1.67
		Коэффициент устойчивости	ϕ_{∇}	=	0.87
		Коэффициент устойчивости	$\chi_{\text{L T}}$	=	0.70
		Коэффициент взаимодействия	k _{vv}	=	1.01
		$(N/(\phi_{V}A) + k_{VV}M_{V}/(\chi_{LT}W_{V}))/(R_{V}*\gamma_{L}$	c)	=	1.09
		УСЛОВИЕ НЕ ВЫПОЛНЕНО			
Плоскость	XY	Условная гибкость	λ_z	=	3.38
		Коэффициент устойчивости	φ_z	=	0.55
		Коэффициент взаимодействия	k _{zv}	=	0.99
		$(N/(\phi_z A) + k_{z_V} M_V/(\chi_{LT} W_V))/(R_V * \gamma_c$			1.10
		УСЛОВИЕ НЕ ВЫПОЛНЕНО			

Расчет выполнен модулем 330 программы СТАТИКА 2025 © 000 Техсофт

Поз. t340

Однопролетная балка

 $\frac{\text{Расчётная схема}}{\text{M} = 1 : 55}$



Длины пролётов [м] $l_1 = 6.00$

Жёсткое закрепление

Nº	Степени свободы					боды	Точка закрепления		
опоры	X	Y	Z	Rx	Ry	Rz	B	<i>у</i> [см]	z[CM]
1	+	+	+	+				0.0	0.0
2		+	+	+				0.0	0.0

 $\frac{\text{Сечение}}{M = 1 : 10}$

Площадь Главные моменты инерции	$egin{array}{c} A & & & & & & & & & & & & & & & & & & $	= = =	59.85 4362 821	cm^2 cm^4 cm^4
Геометрическая жёсткость на кручение Секториальный момент инерции Координаты центра кручения Линейная плотность	I_t C_m Y_m z_m	= = = =	36 72545 -0.0 -0.0 47.0	СМ ⁴ СМ ⁶ СМ СМ КГ/М
Дополнительные параметры	i_m r_y r_z $r_{oldsymbol{arphi}}$	= = =	9.3 0.0 0.0	CM CM

 Позиция
 t340
 Страница
 219

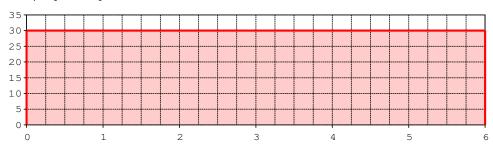
 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/340
 Версия
 2025.000

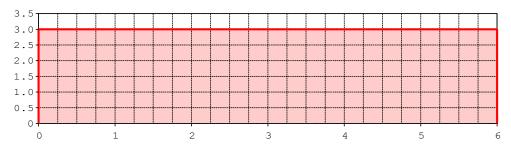
Материал Модуль упругости

 $E = 2.06 \cdot 10^{5}$ $G = 7.9 \cdot 10^{4}$

Модуль сдвига


Коэфф. линейного расширения

 $G = 7.9 \cdot 10^4$ M Π a $\alpha = 1.2 \cdot 10^{-5}$ °C⁻¹


МΠа

Нагружение

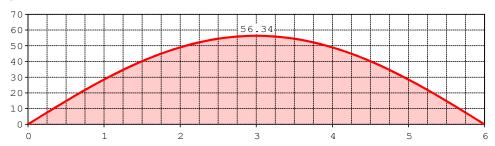
Нагрузка вдоль оси Z, [кН/м]

Моменты вокруг осиX, [кНм/м]

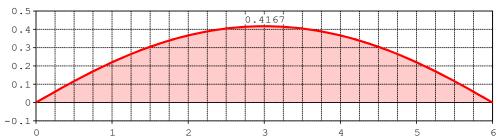
Равномерно распределённая нагрузка

От	ДО	Направл.	p	Y	Z
пролёта	пролёта		[кН/м]	[CM]	[CM]
1	1	Z	30.00	10.0	10.0

В нагружении балки собственный вес не учитывается


Расчёт

по линейной теории

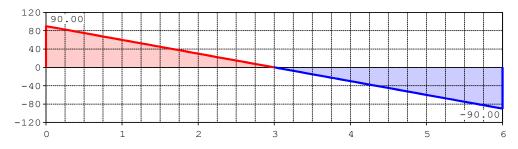

Реакции опор

Опора	<i>Pz</i> [кН]	<i>Мх</i> [кНм]
1	-90.00	-9.00
2	-90.00	-9.00

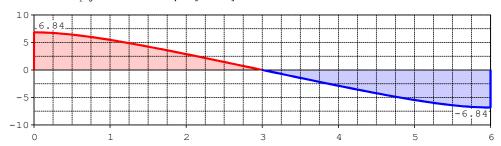
Перемещение w, [мм]

Угол поворота сечения heta, [рад]

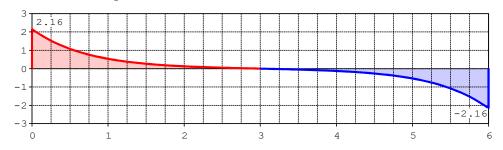
 Позиция
 t340
 Страница
 220

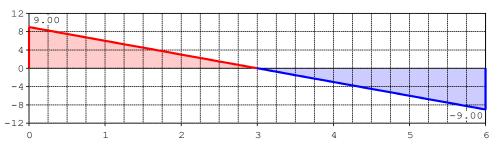

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/340
 Версия
 2025.000


Перемещения

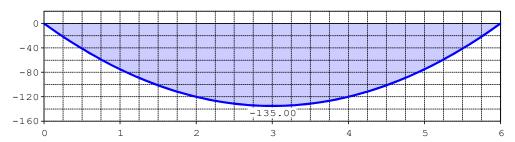
X[M]	W[MM]	heta[рад]	
0.00	0.00	0.000	
0.50	14.82	0.1163	
1.00	28.52	0.2200	
1.50	40.14	0.3045	
2.00	48.97	0.3664	
2.50	54.47	0.4040	
3.00	56.34	0.4167	
3.50	54.47	0.4040	
4.00	48.97	0.3664	
4.50	40.14	0.3045	
5.00	28.52	0.2200	
5.50	14.82	0.1163	
6.00	0.00	0.0000	


Поперечная сила Qz, [кН]

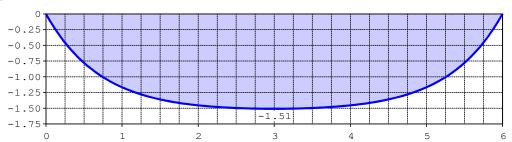

Крутящий момент чистого кручения Mt, [кНм]

Крутящий момент стеснённого кручения Мh, [кНм]

Крутящий момент Mx, [кНм]



Позиция t340
Проект CTATИКА тест всех модулей


Разраб. Разработчик СТАТИКА/340

Страница **221** Дата **28.10.2024** Версия **2025.000**

Изгибающий момент My, [кНм]

Бимомент, [кHм²]

Внутренние усилия

Х[м]	<i>Qz</i> [κΗ]	Мх[кНм]	Му[кНм]	В[кНм²]
0.00	90.00	9.00	0.00	0.00
0.50	75.00	7.50	-41.25	-0.78
1.00	60.00	6.00	-75.00	-1.17
1.50	45.00	4.50	-101.25	-1.36
2.00	30.00	3.00	-120.00	-1.45
2.50	15.00	1.50	-131.25	-1.50
3.00	0.00	0.00	-135.00	-1.51
3.50	-15.00	-1.50	-131.25	-1.50
4.00	-30.00	-3.00	-120.00	-1.45
4.50	-45.00	-4.50	-101.25	-1.36
5.00	-60.00	-6.00	-75.00	-1.17
5.50	-75.00	-7.50	-41.25	-0.78
6.00	-90.00	-9.00	0.00	0.00

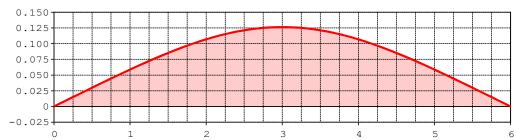

Расчёт

по теории II порядка

Система устойчива Коэффициент критической нагрузки

 $\eta = 1.22$

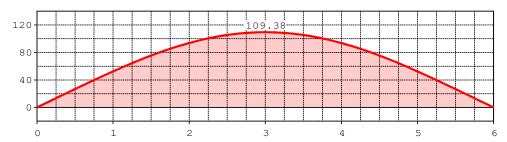
Перемещение v (форма потери устойчивости), [мм]



 Позиция
 t340
 Страница
 222

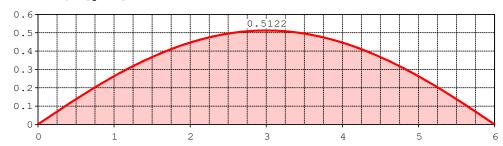
 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/340
 Версия
 2025.000


Угол поворота сечения heta (форма потери устойчивости), [рад]

Реакции опор

Опора	<i>Pz</i> [кН]	<i>Мх</i> [кНм]
1	-90.00	-10.19
2	-90.00	-10.19


Перемещение v, [мм]

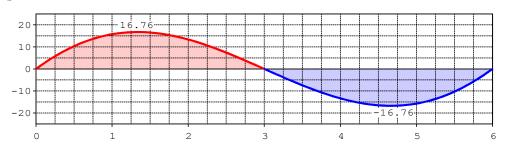
Перемещение w, [мм]

Угол поворота сечения $heta_{m{r}}$ [рад]

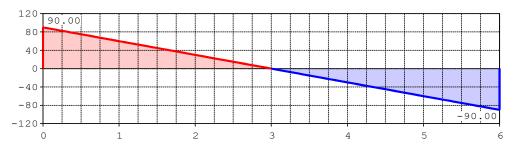
Перемещения

Х[м]	V[MM]	W[MM]	heta[рад]
0.00	0.00	0.00	0.0000
0.50	26.68	12.67	0.1377
1.00	52.45	24.24	0.2628
1.50	75.48	33.88	0.3676
2.00	93.70	41.06	0.4465
2.50	105.36	45.46	0.4956
3.00	109.38	46.95	0.5122
3.50	105.36	45.46	0.4956
4.00	93.70	41.06	0.4465
4.50	75.48	33.88	0.3676
5.00	52.45	24.24	0.2628

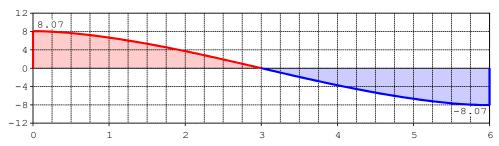
ООО Техсофт, Москва

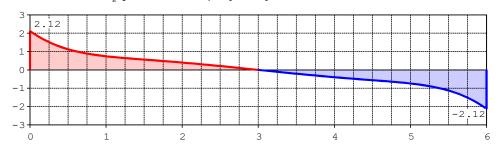

 Позиция
 t340
 Страница
 223

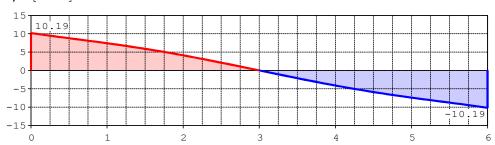
 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024


 Разраб.
 Разработчик
 СТАТИКА/340
 Версия
 2025.000

5.50	26.68	12.67	0.1377	
6.00	0.00	0.00	0.0000	

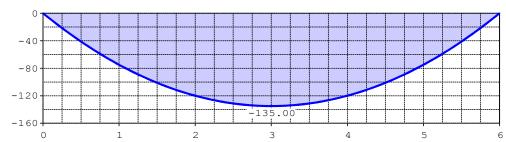

Поперечная сила Qy, [кН]


Поперечная сила Qz, [кН]

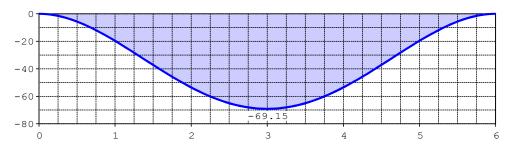

Крутящий момент чистого кручения Mt, [кНм]

Крутящий момент стеснённого кручения Мh, [кНм]

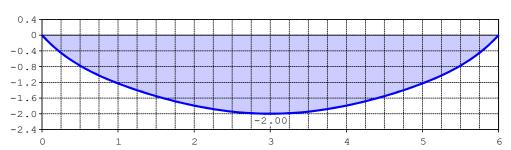
Крутящий момент Mx, [кНм]



 Позиция
 t340
 Страница
 224


 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/340
 Версия
 2025.000


Изгибающий момент My, [кНм]

Изгибающий момент Mz, [кНм]

Бимомент, [кHм²]

Внутренние усилия

X[M]	<i>Qy</i> [кН]	Qz[κH]	Мх[кНм]	Му[кНм]	Mz[кНм]	В[кнм ²]
0.00	0.00	90.00	10.19	0.00	0.00	0.00
0.50	10.33	75.00	8.78	-41.25	-5.68	-0.78
1.00	15.77	60.00	7.42	-75.00	-19.71	-1.23
1.33	16.76	50.10	6.44	-93.17	-31.18	-1.45
1.50	16.54	45.00	5.89	-101.25	-37.22	-1.55
2.00	13.40	30.00	4.11	-120.00	-53.58	-1.79
2.50	7.43	15.00	2.12	-131.25	-65.04	-1.95
3.00	0.00	0.00	0.00	-135.00	-69.15	-2.00
3.50	-7.43	-15.00	-2.12	-131.25	-65.04	-1.95
4.00	-13.40	-30.00	-4.11	-120.00	-53.58	-1.79
4.50	-16.54	-45.00	-5.89	-101.25	-37.22	-1.55
4.67	-16.76	-50.10	-6.44	-93.17	-31.18	-1.45
5.00	-15.77	-60.00	-7.42	-75.00	-19.71	-1.23
5.50	-10.33	-75.00	-8.78	-41.25	-5.68	-0.78
6.00	0.00	-90.00	-10.19	0.00	0.00	0.00

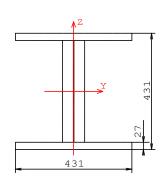
Расчет выполнен модулем 340 программы СТАТИКА 2025 © 000 Техсофт

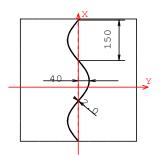
Позиция t341 225 Страница 28.10.2024 Проект СТАТИКА тест всех модулей Дата Разработчик Версия 2025.000 **СТАТИКА/341**

Поз. t341

Расчет двутавра с гофрированной стенкой

Расчётная схема M = 1 : 136




Свободное опирание, длина элемента 1	=	16.00	М
Расчетные длины элемента: в пл. XZ l	., =	16.00	М
для расчета уст. плоск. формы изг. 1			М
учтен собственный вес балки р	=	2.05	сН/м
Продольная сила N	=	10.0	кН
Равномерно распределенная нагрузка р	=	10.001	сН/м
Расчетный изгибающий момент М	., =	385.51	сН*м
	2	96.4	
характеристики подобранного сечения			
Ширина полок b	=	431	MM
Толщина полок t	=	27	MM
Условная гибкость свеса полки $\lambda_{ m f}$	=	0.27	
Толщина стенки s	=	2.0	MM
11		150.0	
Высота полуволны стенки f		40.0	
Момент инерции полуволны стенки Ј	=	27.0	cm^4
Условная гибкость панели гофра $\lambda_{_{ m C}}$	=	2.90	
		6.32	_
Эффективная площадь А		228	см ²

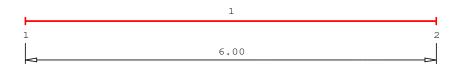
Сечение M = 1 : 14

Нагружение

Сечение

	Моменты инерции	Ιy	=	93439	см4
				35361	
		I_{κ}	=	535	CM ⁴
	Моменты сопротивления	M^{Λ}	=	4336	CM ³
		\overline{W}_{z}^{2}	=	1641	см ³
Материал полок	сталь С 255 С255 ГОСТ 27772-2015				
	Расчетное сопротивление	R_y	=	230	МΠа
	Расчетное сопротивление сдвигу	Rs	=	133	МΠа
Материал стенки	сталь С 235 С235 ГОСТ 27772-2015				
	Расчетное сопротивление	R_{y}	=	230	МΠа
	Расчетное сопротивление сдвигу	Rs	=	133	МΠа
	Модуль упругости	E			

ООО Техсофт, Москва

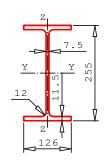

Позиция t341		0	ıa 226
l '	всех модулей	Страни	28.10.2024
1 '		Дата	
Разраб. Разработчик	СТАТИКА/341	версия	2025.000
	Коэффициент Пуассона	v =	0.30
	Коэффициент условий работы	$\gamma_{\text{C}} =$	1.00
Результаты расчета	балки согласно п.20.6.3 СП 294.13	25800.2	2017
	Усилие в сжатом поясе	$N_f =$	1021 кН
	Напряжение в сжатом поясе	$\sigma_{\rm C} =$	89.4 МПа
	Коэффициент устойчивости	$\varphi_f =$	0.41
	Касательное напряжение в стенке	$\tau_{yz} =$	127.5 МПа
	Критическое напряжения в стенке	$\tau_{cr} =$	419.3 МПа
	М _у /(A _f *h ₁ *R _у УСЛОВИЕ (178) ВЫПОЛНЕНО	$*\gamma_{C}) =$	0.39 < 1
	$Q_z/(h_w*s*k_\lambda*R_s)$	$*\gamma_{\alpha}) =$	0.96 < 1
	условие (179) выполнено	• 0 /	
	$0,87/(R_{y}*\gamma_{c})*\sqrt{(\sigma_{y}^{2}+3*\tau_{c})}$	2) =	0.87 < 1
	УСЛОВИЕ (44) CП 16.13330.2017	, Выполн	HEHO
	$N_f/(\phi_f * A_f * R_y)$		
	УСЛОВИЕ (182) ВЫПОЛНЕНО		
	$ au_{ ext{yz}}/(au_{ ext{cr}})$ УСЛОВИЕ (185) ВЫПОЛНЕНО	$*\gamma_{C}) =$	0.30 < 1
	Предельная гибкость сжатого пояса	λ,, = =	0.80
	$\lambda_{\rm f} < \lambda_{\rm uf}$ УСЛОВИЕ (97) СП 16.13330		
	Прогиб в середине пролета		
	прогиб рассчитан по линейно-упруг		

Расчет выполнен модулем 341 программы СТАТИКА 2025 © 000 Техсофт

Поз. t342

Однопролетная балка

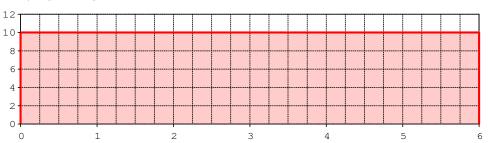
 $\frac{\text{Расчётная схема}}{\text{M} = 1 : 55}$

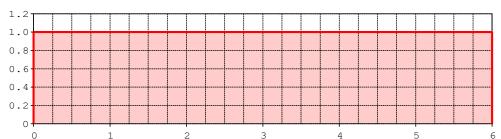


Длины пролётов [м] $l_1 = 6.00$

Жёсткое закрепление

Nº	Степени свободы					оды	Точка закрепления		
опоры	X	Y	Z	Rx	Ry	Rz	B	у[см]	Z [CM]
1	+	+	+	+				0.0	0.0
2		+	+	+				0.0	0.0


 $\frac{\text{Сечение}}{M = 1 : 10}$


Позиция Проект	t342 СТАТИКА тест	всех модулей			Страница Дата 28.10	227 .2024
Разраб.	Разработчик	СТАТИКА/342			Версия 2025.	.000
		Геометрическая жёсткость	I_z	=	385	см4
		на кручение	I+	=	19	cm^4
		Секториальный момент инерции	$I_{\boldsymbol{\omega}}$	=	56037	см ⁶
		Координаты центра кручения	y_m	=	-0.0	CM
			z_{m}	=	-0.0	CM
		Линейная плотность			37.4	кг/м
		Дополнительные параметры	i_m	=	10.9	СМ
			r_y	=	0.0	CM
			r_z	=	0.0	CM
			r_{φ}	=	0.0	
Матер	риал	Модуль упругости	E	=	2.06.105	МПа
1-	<u> </u>	Модуль сдвига	G		7.9.104	МПа
		Коэфф. линейного расширения	α	=	1.2.10-5	°C ⁻¹
		Расчетное сопротивление	R_V	=	240.0	МПа
		Коэффициент условий работы	γ̈́c	=	1.00	

Нагружение

Нагрузка вдоль оси Z, [кH/м]

Моменты вокруг осиX, [кНм/м]

Равномерно распределённая нагрузка

От	ДО	Направл.	p	Y	z
пролёта	пролёта		[кН/м]	[см]	[CM]
1	1	Z	10.00	10.0	10.0

В нагружении балки собственный вес не учитывается

Расчёт

по линейной теории

Реакции опор

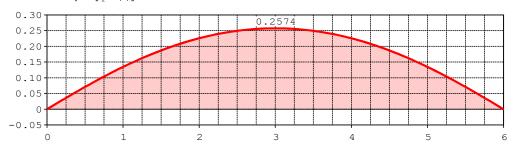
Опора	<i>Pz</i> [кН]	<i>Мх</i> [кНм]
1	-30.00	-3.00
2	-30.00	-3.00

 Позиция
 t342
 Страница
 228

 Проект
 CTATUKA тест всех модулей
 Дата
 28.10.2024

СТАТИКА/342

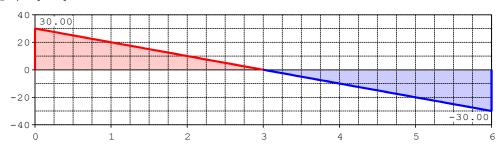
Перемещение w, [мм]


Разработчик

Разраб.

3

Версия 2025.000

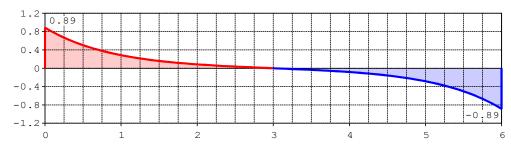

Угол поворота сечения heta, [рад]

Перемещения

X[M]	w[mm]	heta[рад]	
0.00	0.00	0.0000	
0.50	4.11	0.0709	
1.00	7.92	0.1346	
1.50	11.14	0.1871	
2.00	13.59	0.2258	
2.50	15.12	0.2494	
3.00	15.64	0.2574	
3.50	15.12	0.2494	
4.00	13.59	0.2258	
4.50	11.14	0.1871	
5.00	7.92	0.1346	
5.50	4.11	0.0709	
6.00	0.00	0.0000	

Поперечная сила Qz, [кН]

Крутящий момент чистого кручения Mt, [кНм]

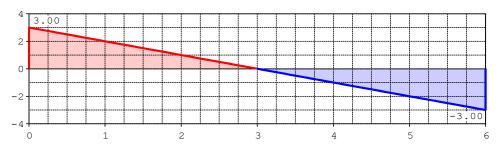


 Позиция
 t342
 Страница
 229

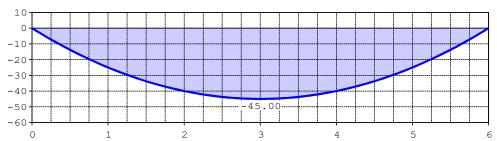
 Проект
 CTATUKA тест всех модулей
 дата
 28.10.2024

СТАТИКА/342

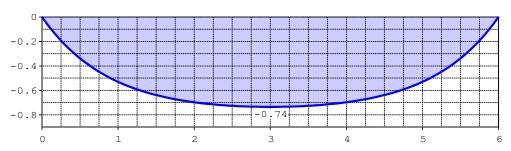
Крутящий момент стеснённого кручения Mh , [кНм]



Версия 2025.000


Крутящий момент Mx, [кНм]

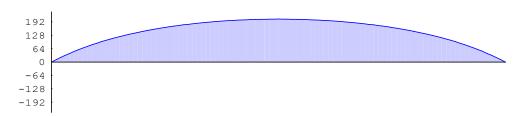
Разработчик


Разраб.

Изгибающий момент My, [кНм]

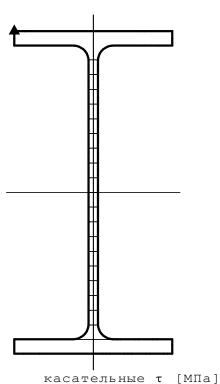
Бимомент, [кHm²]

Внутренние усилия


X[M]	<i>Qz</i> [кН]	Мх[кНм]	<i>Му</i> [кНм]	<i>В</i> [кНм ²]
0.00	30.00	3.00	0.00	0.00
0.50	25.00	2.50	-13.75	-0.34
1.00	20.00	2.00	-25.00	-0.53
1.50	15.00	1.50	-33.75	-0.64
2.00	10.00	1.00	-40.00	-0.70
2.50	5.00	0.50	-43.75	-0.73
3.00	0.00	0.00	-45.00	-0.74
3.50	-5.00	-0.50	-43.75	-0.73
4.00	-10.00	-1.00	-40.00	-0.70
4.50	-15.00	-1.50	-33.75	-0.64
5.00	-20.00	-2.00	-25.00	-0.53
5.50	-25.00	-2.50	-13.75	-0.34
6.00	-30.00	-3.00	0.00	0.00

 Позиция
 t342
 Страница
 230

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024


 Разраб.
 Разработчик
 СТАТИКА/342
 Версия
 2025.000

 $\frac{\text{Расчет на прочность}}{\text{Напряжения}}$ балки 1-го класса по п. 8.2.1 СП 16.13330.2017. М = 1 :50

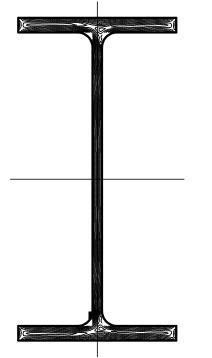
Максимум нормальных напряжений по формуле (43) достигается в сечении с координатой х = 3.00м $\sigma_{\rm x}\,/\,({\rm R_y}^*\gamma_{\rm C})$ = 0.86 условие выполнено

M = 1 : 3 Нормальные напряжения в сечении x = 3.00 M

Напряжения М = 1 :50

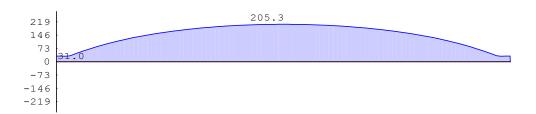
> 111 74 37 0 -37 -74 -111

Максимум касательных напряжений по формуле (42) с учетом двухосного изгиба и стененного кручения достигается в сечении с координатой х = 3.00м $\tau/(R_S * \gamma_C)$ = 0.13 условие выполнено


Касательные напряжения в сечении х = 3.00м

M = 1 : 3

 Позиция
 t342
 Страница
 231

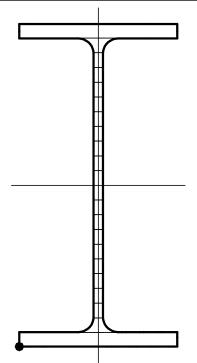

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/342
 Версия
 2025.000

Напряжения М = 1 :50

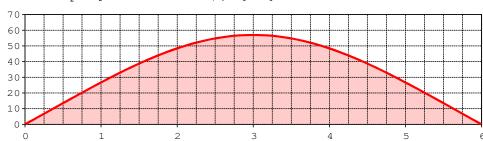
эквивалентные $\sigma_{ exttt{9}}$ [МПа]

Максимум эквивалентных напряжений по формуле (44) достигается в сечении с координатой х = 3.00м 0.87* σ_9 /(R_y * γ_c) = 0.74 условие выполнено


M = 1 : 3

Эквивалентные напряжения в сечении x = 3.00 м

 Позиция
 t342
 Страница
 232


 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

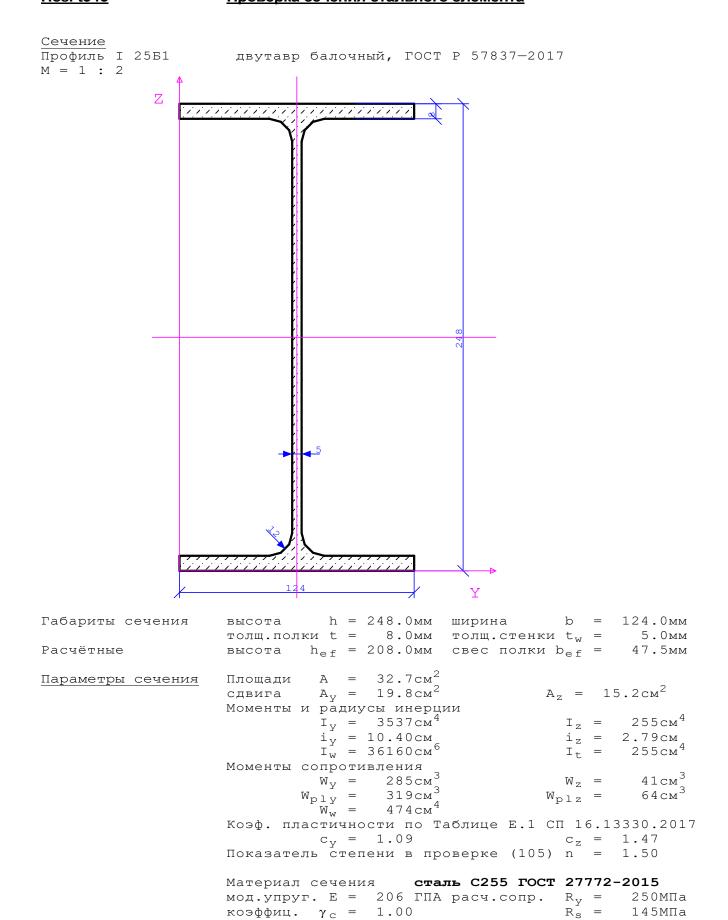
Разработчик СТАТИКА/342 Версия 2025.000

Расчет устойчивости балки 1-го класса по п. $8.4.1\ {\rm CH}\ 16.13330.2017.$

Перемещение v (форма потери устойчивости), [мм]

Угол поворота сечения heta (форма потери устойчивости), [рад]

Момент потери устоичивости $M_{\text{Cr}} = 82.3 \text{ кH*M}$ Коэффициент $\phi_{\text{b}} = 0.73$ Изгибающий момент $M_{\text{y}} = -45.0 \text{ кH*M}$ Бимомент $B_{\omega} = 0.7 \text{ кH*M}^2$ $(M_{\text{y}}/(\phi_{\text{b}}*W_{\text{Cy}}) + B_{\omega}/W_{\text{C}\omega})/(R_{\text{y}}*\gamma_{\text{C}}) = 1.06 > 1$ УСЛОВИЕ (70) НЕ ВЫПОЛНЕНО!


**** ВНИМАНИЕ *** Не все проверки выполнены удовлетворительно

Расчет выполнен модулем 342 программы СТАТИКА 2025 © 000 Техсофт

Позиция t345
Проект СТАТИКА тест всех модулей СТАТИКА тест всех модулей Дата 28.10.2024
Разраб. Разработчик СТАТИКА/345 Версия 2025.000

Поз. t345

Проверка сечения стального элемента

 Позиция
 t345
 Страница
 234

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/345
 Версия
 2025.000

Шарнирно опёртая балка с равномерной нагрузкой Расчётная длина балки $l_1 = 6.0 \text{ M}$

Усилия в сечении

Nº	M_{V}	M_z	Bw	Q _V	Qz	F	b _F
	[кНм]	[кНм]	[кНм ²]	[ĸĤ]	[ĸH]	[ĸH]	[CM]
1	60.0	10.0	4.0	40.0	10.0	0.0	0.0

Расчёт элемента

типа **балка 3 класса** по разделу 8 СП 16.13330.2017. Расчётная длина балки $l_1 = 6.0 \text{ м}$ Проверка прочности полок $Q_y/2A_fR_s\gamma_c = 0.14$ Проверка прочности сечения $\beta = 1.00$

 $(M_y/\beta c_y W_y + M_z/c_z W_z)/R_y \gamma_c = 1.59$

Устойчивость балки

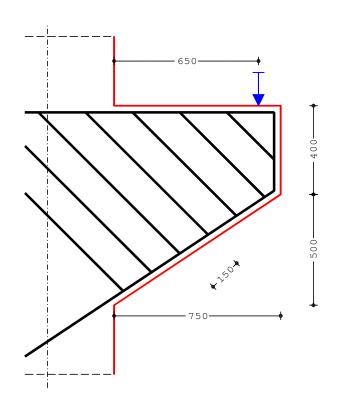
$$M_{cr} = 25.2 \text{kHm} \qquad \phi_b = 0.32 \\ (M_y/\phi_b W_y + M_z/W_z + B_w/W_w)/R_y \gamma_c = 3.59$$

Проверка устойчивости стенки и поясных листов. Условная гибкость:

стенки λ_{w} = 0.00 свеса полки λ_{f} = 0.26 α_{f} = 0.80 α = 0.00 M/[R $_{y}\gamma_{c}h_{ef}^{2}t_{w}(\alpha_{f}+\alpha)$] = 0.00

**** ВНИМАНИЕ *** Не выполняется условие прочности сечения

**** ВНИМАНИЕ *** Не выполняется условие устойчивости элемента


Расчет выполнен модулем 345 программы СТАТИКА 2025 © ООО Техсофт

Поз. t351

Расчёт короткой консоли

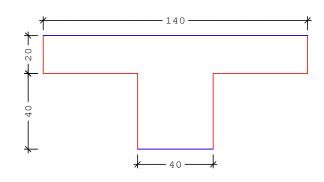
 $\frac{\text{Расчётная схема}}{\text{M} = 1 : 17}$

Позиция	t351		Страниц	a 235
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/351	Версия	2025.000

Размеры консоли	длина $1 = 750$ мм, ширина $b = 400$ высота консоли у колонны $h = 900$	MM MM
	c kpak $h_1 = 400$	MM
Нагружение	нормативное значение $Q_n = 400$	кН
	длительная часть $Q_{\mathbf{\Pi}} = 300$	кН
	коэффициент безопасности нагрузки $\gamma_{ m f}$ = 1.20	
	расстояние до колонны а = 650	MM
	длина зоны приложения нагрузки $l_{\text{sup}} = 200$	MM
Арматура	по результатам расчёта	
Продольная сверху	4 стержня диаметром $d = 20$	MM
		см ²
Поперечная	наклонные под 45° хомуты с шагом $S = 150$	MM
	из 2-х стержней диаметром $d_s = 12$	MM
	площадь арматуры $A_{sw}/s = 0.15$	CM
Потистино с интерит	толщина защитного слоя бетона $a_3 = 20$	MM
Допустимая ширина	раскрытия трещин непродолжительных $w_s = 0.40$ продолжительных $w_1 = 0.20$	MM MM
	продолжительных w1- 0.20	MM
Расчёт прочности	по СП 63.13330.2018 и п. 3.34 СНиП 2.03.01-84	ł * .
	Материалы: бетон В 25 (тяжелый)	
	арматурная сталь: продольная/хомуты А 500/А 40	
	Предельное значение момента $M_u = 449$ к $M = \gamma_f * 1_0 * Q_n = 360 < M_u$ УСЛОВИЕ ВЫПОЛНЕ	сни
	$M - \gamma_f = 1Q = Q_n - 300 \times M_u$ YCJIODYLE BBIIIOJIRE	hO
	Ширина сжатой наклонной полосы $l_b = 0.15$	СМ
	угол наклона полосы к горизонтали $\theta = 49.24$ °	
	коэффициент $\phi = 1 + 5 * \alpha * A_{SW} / (S*b) = 1.13$	
	$Q_n * \gamma_f < 0.8 * \varphi * R_b * b * l_b * sin \theta = 599$	кН
	УСЛОВИЕ ВЫПОЛНЕНО	
Трещиностойкость 		сНм
Расчётная ширина	раскрытия трещин: продолжительного $a_{n} = 0.13$	MM
	непродолжительного а _н = 0.20	MM
	ООО Техсофт, Москва	

 Позиция
 t351
 Страница
 236

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024


 Разраб.
 Разработчик
 СТАТИКА/351
 Версия
 2025.000

Расчет выполнен модулем 351 программы СТАТИКА 2025 © 000 Техсофт

Поз. t400

Расчёт ж/б полки тавра

Сечение

Ширина ребра	b_w	=	40.0	CM
Высота сечения	h	=	60.0	CM
Ширина полки	bπ	=	140.0	CM
Высота полки	h_{π}	=	20.0	CM
Расстояние до ц.т. арматуры	а _в	=	0.0	СМ
	$a_{\rm H}$	=	0.0	СМ
Площадь арматуры	A _{sв}	=	20.00	см2
	Asu	=	6.00	см2

Расчет

Согласно MSZ EN 1992-1-1

Бетон

Продольная арматура	S500
Предел прочности бетона	$f_{cd} = 16.67$ MNa $f_{ctd} = 1.20$ MNa
Предел текучести арматуры	$f_{yd} = 434.8$ MNa

C25/30

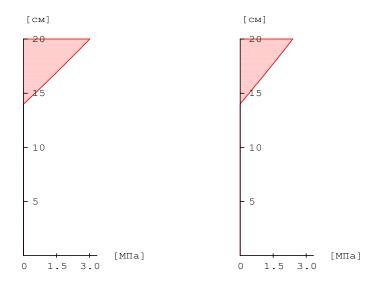
Напряжение сдвига

М	V	F _{d1}	F _{d2}	Δx	v _{Ed}
[кНм]	[ĸH]	[ĸH]	[ĸH]	[M]	[МПа]
120.0	500.0	73.0	57.8	0.05	1.52

Напряжения в полке и составляющие Fd

М	$\sigma_{\rm c,max}$	$\sigma_{ extsf{s}}$	F_{dc}	F _{ds}
[кНм]	[МПа]	[МПа]	[ĸH]	[ĸH]
120.0	3.01	37.9	45.9	27.1
95.0	2.40	29.9	36.4	21.4

Примечание. В свесе полки принято $A_s = 7.14$ см2

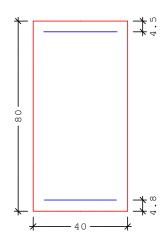

 Позиция
 t400
 Страница
 237

 Проект
 CTATИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 CTATИКА/400
 Версия
 2025.000

Эпюры напряжений

в бетоне полки на концах расчетного участка

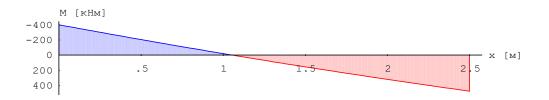

Требуемая площадь арматуры $A_{sf}/s_{f}=$ 3.50 cm2/MПроверка условия (6.21) $v_{Ed}h_f$ / (cot $\theta_f(A_{sf}/s_f)f_{vd}$) = **1.000** <= 1 Проверка условия (6.22) v_{Ed} / $(vf_{cd}sin\theta_{f}cos\theta_{f})$ = **0.422** <= 1 0.540 $\cot \theta_{f}$ = 2.000 $\sin\theta_{f}^{-} =$ 0.894 $cos\theta_f =$ 0.447

Расчет выполнен модулем 400 программы СТАТИКА 2025 © 000 Техсофт

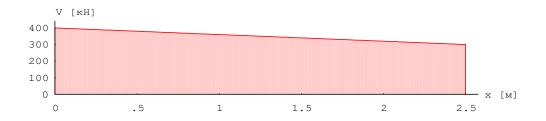
Поз. t401

Подбор поперечной арматуры (MSZ EN 1992)

Сечение



Ширина b = 40.0 см Высота h = 80.0 см См Диаметр продольной арматуры d_{SB} = 20 мм d_{SH} = 25 мм


	401 СТАТИКА тест в	всех моду	лей				Стр	аница а 28.1 0	238 0.2024
Разраб. Р	азработчик		CTAT	ИКА/401			Вер	сия 2025	.000
		Толщина	защитного	слоя			m, B = m, H =	35 35	MM MM
		Расстоян	ие до ц.т	. армату	уры	а _в а _н		4.5 4.8	CM CM
Площадь продоль	ь ьной арматуры	Участок	l [м]	n _B	n _H		А _{sв} [см2		А _{вн} [см2]
		1 2	1.00	4 2	4 6		12.5		19.63 29.45
Нагрузн	ки	Усилия о	т основно	й комбиі	нации	воз	дейст	вий	
		Поперечн	ий момент ая сила ная нагру	зка		M_{\circ}	=	400.0 400.0 40.00	кНм кН кН/м
Расчет		Согласно	MSZ EN 1	992-1-1					
			ая армату ая армату	-		C25 S50 S40	0		

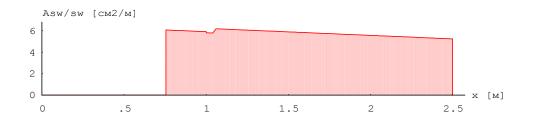
Предел прочности бетона f_{cd} = 16.67 МΠа fywd = 347.8МΠа Предел текучести арматуры

Изгибающий момент

Поперечная сила

Проверка прочности сечения над опорой по условию $V_{\text{Ed}} <= V_{\text{Rd,max}}$ (6.5)

$$V_{Rd,max} = 0.5bdvf_{cd} = 1359$$
 кH d = 75.5 см v = 0.540


 $V_o / V_{Rd,max} =$ **0.294** <= 1 Условие прочности

Требуемая площадь поперечной арматуры

X	M	V	V _{Rd,c}	Z	cotθ	V _{Rd,max}	V _{Rd,s}	A _{sw} /s
[M] 0.76	[кНм] -109.4	[кН] 369.8	[кН] 119.8	[см] 70.0	[-] 2.50	[KH] 869.5	[KH] 369.8	[CM2/M] 6.07
0.76	-72.6	365.8	119.8	70.0	2.50	869.8	365.8	6.00
0.96	-36.2	361.8	119.8	70.1	2.50	870.0	361.8	5.94
1.00	-20.0	360.0	119.8	70.1	2.50	870.1	360.0	5.91
1.00	-20.0	360.0	98.5	71.3	2.50	884.6	360.0	5.81

ООО Техсофт, Москва

Позиция Проект	t401 СТАТИКА те	CT BCAY M	юлупей				Страница Дата 28. 1	239 10.2024
Разраб.	Разработчи		.одулол	СТАТИ	1KA/401			5.000
1.10	15.8	356.0	158.9	66.5	2.50	826.0	356.0	6.15
1.20	51.2	352.0	158.9	66.5	2.50	825.5	352.0	6.09
1.30	86.2	348.0	158.9	66.5	2.50	825.0	348.0	6.02
1.40	120.8	344.0	158.9	66.4	2.50	824.4	344.0	5.96
1.50	155.0	340.0	158.9	66.4	2.50	823.9	340.0	5.89
1.60	188.8	336.0	158.9	66.3	2.50	823.4	336.0	5.83
1.70	222.2	332.0	158.9	66.3	2.50	822.8	332.0	5.76
1.80	255.2	328.0	158.9	66.2	2.50	822.2	328.0	5.69
1.90	287.8	324.0	158.9	66.2	2.50	821.6	324.0	5.63
2.00	320.0	320.0	158.9	66.1	2.50	821.1	320.0	5.56
2.10	351.8	316.0	158.9	66.1	2.50	820.5	316.0	5.50
2.20	383.2	312.0	158.9	66.0	2.50	819.8	312.0	5.43
2.30	414.2	308.0	158.9	66.0	2.50	819.2	308.0	5.37
2.40	444.8	304.0	158.9	65.9	2.50	818.6	304.0	5.30
2.50	475.0	300.0	158.9	65.9	2.50	817.9	300.0	5.24

Наибольшая площадь

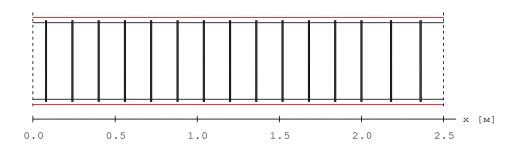
 $\max A_{sw}/s = 6.18 cm2/m$

Увеличение площади продольной арматуры при учете усилия ΔF_{td} (6.18)

Участок	Х	Δ M	$M + \Delta M$	Δ A $_{ ext{S}}$ B	ΔA _{s н}
	[м]	[кНм]	[кНм]	[см2]	[см2]
1	0.76	-323.8	-433.2	0.70	
2	1.00	-320.7	-340.7	4.12	

Примечание. Δ M = Δ F_{td}z = 0.5 V_{Ed} zcot θ

Требуемая площадь продольной арматуры


Участок	A _{sb}	А _{зн} [см2]
1	13.27	[OM2]
2	10 40	

Конструирование

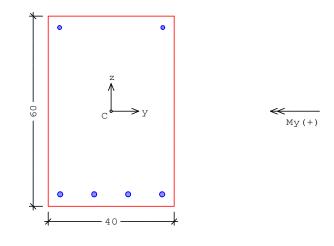
_d _{sw}	Число	s_{max}	Δ s	a 1
[MM]	ветвей	[CM]	[CM]	
8	2	30		s/2

Подобранная поперечная арматура

OT X	до х	Число	S	A _{sw} /s
[м]	[M]	хомутов	[CM]	[см2/м]
0.000	2.000	13	16	6.28
2 000	2 360	2	1.8	5 5 9

Расчет выполнен модулем 401 программы СТАТИКА 2025 © ООО Техсофт

 Позиция
 t402
 Страница
 240


 Проект
 CTATИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 CTATИКА/402
 Версия
 2025.000

Поз. t402

Расчет по трещиностойкости (MSZ EN 1992)

Сечение

	Ширина		b	=	40.0	CM
	Высота		h	=	60.0	CM
Верхняя арматура	Число стержней		n _s	=	2	_
	Диаметр стержней		ds	=	12	MM
	Толщина защитного с	поя	C	=	30	MM
	Площадь арматуры		As	=	2.26	см2
Нижняя арматура	Число стержней		n _s	=	4	_
			ds	=	16	MM
	Толщина защитного с	поя	С	=	30	MM
	Площадь арматуры		As	=	8.04	см2

Расчет

согласно MSZ EN 1992-1-1

Бетон **C25/30** Арматура **S500**

Среднее значение предела прочности

бетона при растяжении $f_{\text{ctm}} = 2.60$ МПа

Предельная деформация бетона при растяжении $\epsilon_{\text{ctu}} = f_{\text{ctm}} \; / \; E_{\text{cm}} = \; 0.084$

Предельная ширина раскрытия трещин

 $w_{\text{max}} = 0.40$ MM

Коэффициенты (7.11)

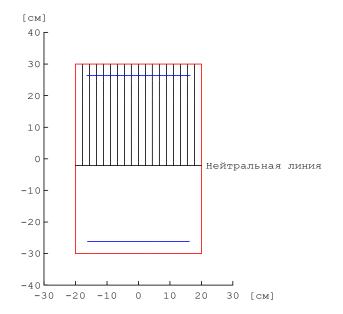
kt	k ₁	k ₃	k ₄
0.4	0.8	3.4	0.425

Усилия при образовании трещин

Nd	M_{vd}	N _C	M _{vc}
[ĸH]	[кĤм]	[ĸH]	[кНм]
	100 0		63 5

Результаты расчета усилий при образовании трещин

ООО Техсофт, Москва


 Позиция
 t402
 Страница
 241

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/402
 Версия
 2025.000

Сжатая зона

сечения непосредственно перед образованием трещин

Расстояние от нижней стороны сечения до нейтральной линии = 27.88

Кривизна κ = 0.00030 1/м

СМ

Деформации бетона

Верхняя	сторона	сечения	Нижняя стор	она сечения
ε [%.]		σ [M∏a]	ε [%.]	σ [ΜΠα]
-0.097	7	-2.36	0.084	2.60

Деформации арматуры

Верхняя	арматура	нижняя	арматура
ε [%.]	σ [МПа]	ε [%.]	σ [ΜΠα]
-0.086	-17.2	0.072	14.5

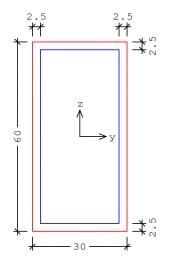
Ширина раскрытия трещин при определении $s_{r,max}$ по формуле (7.11)

$\sigma_{ extsf{s}}$ [MNa]	X _t [CM]	h _{c,ef} [см]	A _{c,eff} [cm2]	А _s [см2]	d _s [мм]	С [мм]	k ₂	S _{r,max}	W _k [мм]
238.3	48.1	9.5	380.0	8.04	16.0	30	0.500	231	0.210

Трещиностойкость сечения обеспечена

Расчет выполнен модулем 402 программы СТАТИКА 2025 © 000 Техсофт

 Позиция
 t403
 Страница
 242


 Проект
 CTATИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 CTATИКА/403
 Версия
 2025.000

Поз. t403

Подбор поперечной арматуры

Сечение

Ширина	b	=	30.0	СМ
Высота	h	=	60.0	СМ

Расстояние до ц.т. арматуры а = 2.5 см

Нагрузки Усилия от основной комбинации воздействий

<u>Расчет</u> Согласно ТКП EN 1992-1-1

БетонC25/30Продольная арматура\$500Поперечная арматура\$400

Предел прочности бетона $f_{cd} = 16.67$ МПа Предел текучести арматуры $f_{ywd} = 347.8$ МПа

Предельные усилия

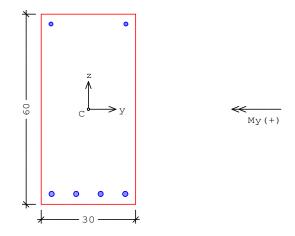
$\mathtt{cot} \theta$	T _{Rd,max}	V _{y,Rd,max}	V _{z,Rd,max}
[-]	[кНм]	[KH]	[KH]
2.50	62.1	460.9	481.8

 $T / T_{Rd,max} = 0.081$ $V_y / V_{y,Rd,max} = 0.043$ $V_z / V_{z,Rd,max} = 0.042$

Условие прочности (6.29) Т / $T_{Rd,max} + V_y$ / $V_{y,Rd,max} = 0.124 <= 1$

Арматура, требуемая для восприятия крутящего момента

Поперечная арматура $A_{sw}/s = 0.29 \text{ cm}2/\text{m}$ Продольная арматура $A_{s} = 2.01 \text{ cm}2$


Расчет выполнен модулем 403 программы СТАТИКА 2025 © ООО Техсофт

t404 Позиция 243 Страница 28.10.2024 СТАТИКА тест всех модулей Проект Дата Разработчик **СТАТИКА/404** Версия 2025.000 Разраб.

Поз. t404

Расчет по трещиностойкости

Сечение

	Ширина	b	=	30.0	CM
	Высота	h	=	60.0	CM
Верхняя арматура	Число стержней Диаметр стержней	n _s d _s	=	2 12	_ MM
	Толщина защитного слоя Площадь арматуры	C _{nom} A _s	=	25 2.26	MM CM2
Нижняя арматура	Число стержней Диаметр стержней Толщина защитного слоя Площадь арматуры	n _s d _s c _{nom} A _s	= = =	4 16 25 8.04	_ мм мм см2

согласно ТКП EN 1992-1-1

Расчет

C25/30 Бетон

S500 Арматура

Среднее значение предела прочности

МΠа бетона при растяжении 2.60 f_{ctm}

Предельная деформация бетона при растяжении $\varepsilon_{\text{ctu}} = f_{\text{ctm}} / E_{\text{cm}} =$ 0.084

Предельная ширина раскрытия трещин

Wmax 0.40 MM

응.

Усилия при образовании трещин

N _d	Myd	N _C	Мус
[ĸH]	[кНм]	[ĸH]	[кНм]
	100.0		49.0

Ширина раскрытия трещин при определении $s_{r,max}$ по формуле (7.11)

$σ_s$	х _t [см]	h _{c,ef} [CM]	A _{c,eff} [cm2]	А _s [см2]	d _s [мм]	С [мм]	k ₂	S _{r,max} [MM]	W _k [мм]
238.2	46.4	8.2	247.5	8.04	16.0	25	0.500	169	0.168

Трещиностойкость сечения обеспечена

Расчет выполнен модулем 404 программы СТАТИКА 2025 © ООО Техсофт

ООО Техсофт, Москва

 Позиция
 t405
 Страница
 244

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/405
 Версия
 2025.000

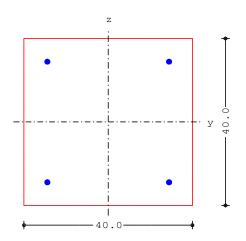
Поз. t405

Железобетонная колонна (Eurocode 2)

Расчетная	схема
Lacacinan	CACIMA

Длина колонны

L = 4.00


M

Закрепления

	В плоскости Ү	В	плоскости	Z
Вверху	шарнирное		шарнирно	o e
Внизу	жесткое		жесткое	

Сечение

Ширина b = 40.0 см Высота h = 40.0 см

Воздействия

Nº	Тип воздействия	ип воздействия Описание					
1	Постоянное	Постоянное воздействие					
		постоянное -					
2	Переменное	Категория А: жилые здания					
		переменное Категория-А					

Коэффициент упр. надежностью $K_{\text{FI}} = 1.0$

При комбинировании применяется формула (6.10)

Характеристики

$N_{\bar{0}}$	Ysup	γinf	Ψ_0	Ψ_1	Ψ_2	Группа	Знак
1	1.35	1.00					
2	1.50		0.70	0.50	0.30		
3 *	1.35	1.00					

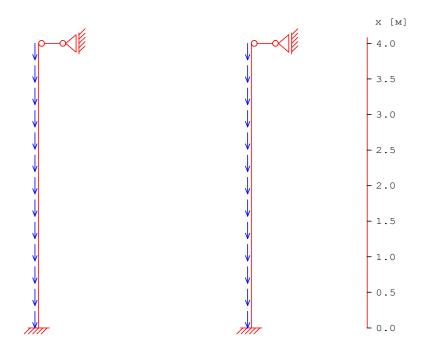
* собственный вес колонны

Вертикальные силы

Nº	X	V	e _v	e _z
	[M]	[ĸH]	[CM]	[CM]
1	4.00	1000.0		
2	4.00	10.0	25.0	25.0

Горизонтальные силы и моменты

Nº	X	H_{V}	$_{\rm H_{ z}}$	M_{V}	M_z
	[M]	[ĸĤ]	[ĸH]	[кНм]	[кНм]
1	4.00			100.0	


Позиция t405 245 Страница Проект СТАТИКА тест всех модулей 28.10.2024 Дата Разработчик **СТАТИКА/405** Разраб. Версия 2025.000 Воздействие 1 Плоскость У Плоскость Z x [M] 4.0 - 3.5 - 3.0 - 2.5 -2.0 - 1.5 - 1.0 - 0.5 L 0.0 Воздействие 2 Плоскость Ү Плоскость Z x [M] - 4.0 - 3.5 - 3.0 - 2.5 -2.0 - 1.5 - 1.0 - 0.5 L 0.0

 Позиция
 t405
 Страница
 246

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/405
 Версия
 2025.000

Воздействие 3 Плоскость У Плоскость Z

Расчет согласно ТКП EN 1992-1-1, 5.7, 5.8.6

Учет эффектов второго порядка для плоскостей Y и Z Учет несовершенств по форме потери устойчивости

Учет деформаций ползучести бетона

МатериалыБетонC25/30Арматура\$500

Для бетона применяется диаграмма (3.14)

Удельный вес железобетона γ = 25.0 кH/м3

Влажность воздуха окружающей среды = 50 % Возраст бетона в момент нагружения = 28 сут

Коэффициент ползучести

2A _c /u	β (f _{cm})	β (t ₀)	ϕ_{RH}	φ
[MM]	[-]	[–]	[-]	[-]
200.0	2.925	0.488	1.855	2.650

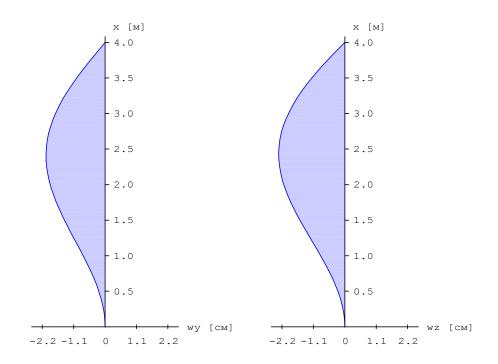
Выбор комбинаций

K	Номер	воздей	ствия	(Коз	ффи	ициент)
1	1	(1.35)	2 (1	.50)	3	(1.35)
2	1	(1.35)	3 (1	.35)		

Расчет для комбинации воздействий К = 1

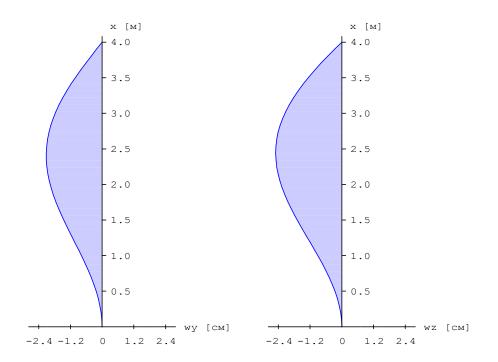
Погрешность расчета

 ε = 0.02


К 1 Начальные прогибы

Х	wyo	WzO	МУП	$W_{Z\Pi}$
[м]	[CM]	[CM]	[CM]	[CM]
4.00	0.00	0.00	0.00	0.00
3.33	-1.24	-1.24	-0.04	-0.24
2.67	-1.94	-1.94	-0.07	-0.32
2.00	-1.86	-1.86	-0.06	-0.28
1.33	-1.17	-1.17	-0.04	-0.17
0.67	-0.36	-0.36	-0.01	-0.05
0.00	0.00	0.00	0.00	0.00

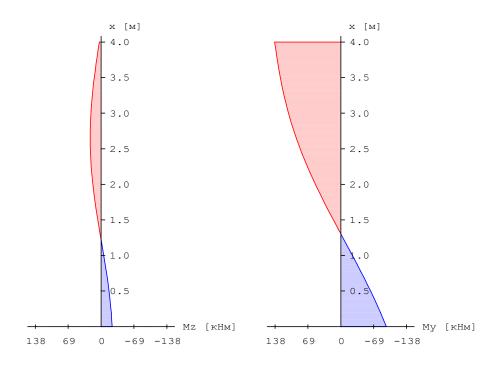
 Позиция
 t405
 Страница
 247


 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/405
 Версия
 2025.000

К 1 Прогибы

Х	W _V	W _Z	d _v	dz
[M]	[cm]	[CM]	[рад]	[рад]
4.00	0.00	0.00	0.02798	0.02125
3.33	-1.31	-1.62	0.01928	0.01650
2.67	-2.05	-2.44	0.00502	0.00501
2.00	-1.96	-2.30	-0.00876	-0.00709
1.33	-1.23	-1.43	-0.01563	-0.01339
0.67	-0.38	-0.44	-0.01220	-0.01053
0.00	0.00	0.00	0.0000	0.00000


К 1 Усилия

X	N	M _V	Mz	H _V	Hz
[м]	[ĸH]	[кНм]	[кНм]	[ĸĤ]	[кН]
4.00	1365.0	138.8	3.8	-6.7	-58.5
3.33	1368.6	121.9	17.2	-6.7	-58.5
2.67	1372.2	94.2	22.9	-6.7	-58.5

ООО Техсофт, Москва

Позиция	t405		Страниц	a 248
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/405	Версия	2025.000

2.00	1375.8	53.2	17.2	-6.7	-58.5
1.33	1379.4	2.3	2.7	-6.7	-58.5
0.67	1383.0	-50.3	-13.4	-6.7	-58.5
0.00	1386.6	-95.5	-23.1	-6.7	-58.5

К 1 Предельные усилия

Х	Nu	Myu	Mzu	γu	ε _{c, min}	ε _{s,max}	а	A _{s,tot}
[M]	[ĸH]	[кНм]	[кНм]		[%.]	[응.]	[CM]	[см2]
4.00	1397.5	142.1	3.8	1.024	-3.50	1.47	4.90	3.20
3.33	1525.9	135.9	19.1	1.115	-3.50	1.21	4.90	3.20
2.67	1748.7	120.0	29.1	1.274	-3.50	0.79	4.90	3.20
2.00	2141.2	82.8	26.8	1.556	-3.50	0.13	4.90	3.20
1.33	2745.7	4.5	5.5	1.991	-2.75	-1.33	4.90	3.20
0.67	2177.8	-79.3	-21.1	1.575	-3.50	0.02	4.90	3.20
0.00	1746.0	-120.2	-29.1	1.259	-3.50	0.79	4.90	3.20

Требуемая арматура	Площадь на каждый угол	As	=	0.80	см ²
	Общая площадь арматуры	As	,tot=	3.20	см ²
	Коэффициент армирования	ρ	=	0.20	왕

	Коэффици	ент армирования	ŀ	5,00	=	0.20	િ
Конструирование	Данные дл	ля подбора армач	гуры				
	d _{mіn} [мм]	d _{mах} [мм]		n_{max}			а _{min} [мм]
	8	40		20			20
	Диаметр і	поперечной армат	гуры (d _{sw}	=	8	ММ
	Мин. толі	щина защитного с	слоя (Cmin	=	25	MM
	Допускае	мое отклонение	4	1 C	=	10	MM
Подобранная							
арматура	Диаметр а	арматуры		d _s	=	12	MM
	Число сте	ержней	r	ltot	=	4	_
	Площадь а	арматуры	I	As, to	t =	4.52	см ²
	Коэффицие	ент армирования	f)	=	0.28	용
	Защитный	слой бетона	(Cnom	=	35	MM

Позиция t405
Проект CTATИКА тест всех модулей

 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разработчик
 СТАТИКА/405
 Версия
 2025.000

Стержни: 4 ϕ 12 Хомут: ϕ 8 Защитный слой:

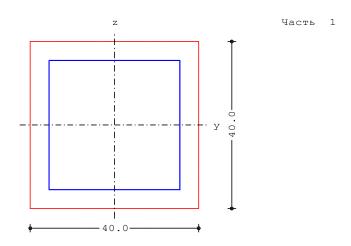
Страница

249

Расчет выполнен модулем 405 программы СТАТИКА 2025 © 000 Техсофт

Поз. t406

Разраб.


Многоярусная колонна общего вида

Расчетная схема

Часть	OT X	до х	Длина	Смещен	ие у/г	Сеч
	[M]	[м]	[M]	[CM]	[CM]	
1	0.00	6.00	6.00			1

Сечения

Nº	Форма	Арматура	b/D	h/D ₁
			[CM]	[CM]
1	Прямоугольник	По контуру	40.0	40.0

Закрепления

	В плоскости У	В плоскости Z
Сверху	шарнирное	шарнирное
Снизу	шарнирное	шарнирное

Нагрузки

Nº	Вид нагрузки	γf	Группа	Знак
1	Постоянная	1.10		

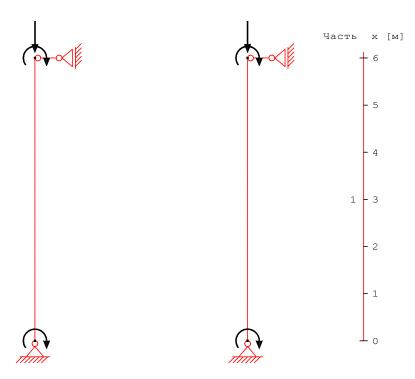
Вертикальные силы

$N_{\tilde{0}}$	X	V	e _v	e _z
	[M]	[ĸH]	[cm]	[см]
1	6.00	1000.0		

 Позиция
 t406
 Страница
 250

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/406
 Версия
 2025.000


Горизонтальные силы и моменты

Nº	X	H _V	Ηz	M _V	M_z
	[M]	[ĸĤ]	[ĸH]	[кНм]	[кНм]
1	0.00			50.0	50.0
	6.00			50.0	50.0

Нагрузка 1

в плоскости Ү

в плоскости Z

Расчет

Согласно СП 63.13330.2018 Бетон.и железобетон.кон.

Бетон В 25 (тяжелый) Коэффициент условий работы $\gamma_b = 0.765$ - Сопротивление бетона $\gamma_b R_b = 11.09$ МПа Для бетона применяется трехлинейная диаграмма

Продольная арматура Сопротивление арматуры **A500** R_s = 435

МΠа

 ${
m R}_{
m SC} = 400 {
m M}\Pi{
m a}$ Для арматуры применяется двухлинейная диаграмма

Поперечная арматура

A400

Сопротивление арматуры

 $R_{sw} = 280$ MNa

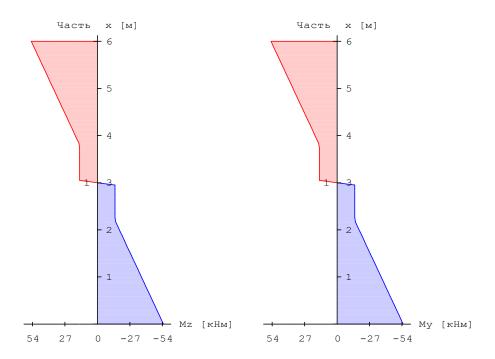
Гибкости в пл. Y, Z

от х [м]	до х [м]	$\lambda_{_{ m V}}$	λ_z
0.00	6.00	52.0	52.0

Расчет

для комбинации нагрузок К = 1

К 1 Усилия от полной нагрузки и ее длительной части (с учетом \mathbf{e}_{a})


X	N	M_{V}	Mz	Nı	M _{vl}	Mzl
[м]	[ĸH]	[кН́м]	[кНм]	[ĸH]	[кҤ́м]	[кНм]
6.00	1100.00	55.00	55.00	1100.00	55.00	55.00
4.50	1100.00	27.50	27.50	1100.00	27.50	27.50
3.00	1100.00	0.00	0.00	1100.00	0.00	0.00
1.50	1100.00	-27.50	-27.50	1100.00	-27.50	-27.50
0.00	1100.00	-55.00	-55.00	1100.00	-55.00	-55.00

 Позиция
 t406
 Страница
 251

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/406
 Версия
 2025.000

Моменты в плоскости Y в плоскости Z

К 1 Расчетный момент в плоскости У

Х	10	φ_1	δ _e	D	Ncr	η	$\eta * M_z$
[M]	[M]	[-]	[-]	[МНм2]	[ĸH]	[-]	[кНм]
6.00	6.00	2.000	0.150	13.60	3727.2	1.419	78.0
4.50	6.00	2.000	0.150	13.60	3727.2	1.419	39.0
3.00	6.00	2.000	0.150	13.60	3727.2	1.419	0.0
1.50	6.00	2.000	0.150	13.60	3727.2	1.419	-39.0
0.00	6.00	2.000	0.150	13.60	3727.2	1.419	-78.0

К 1 Расчетный момент в плоскости Z

X	10	φ1	δ _e	D	N _{cr}	η	η*M _V
[м]	[м]	[-]	[-]	[МНм2]	[ĸH]	[-]	[кНм]
6.00	6.00	2.000	0.150	13.60	3727.2	1.419	78.0
4.50	6.00	2.000	0.150	13.60	3727.2	1.419	39.0
3.00	6.00	2.000	0.150	13.60	3727.2	1.419	0.0
1.50	6.00	2.000	0.150	13.60	3727.2	1.419	-39.0
0.00	6.00	2.000	0.150	13.60	3727.2	1.419	-78.0

К 1 Предельные усилия

X	Nu	M _{vu}	Mzu	γ _u	$\epsilon_{\text{b,min}}$	ε _{s,max}	A _{s,tot}	μ
[M]	[ĸH]	[кҤ́м]	[кНм]	[-]	[% .]	[% .]	[см2]	[%]
6.00	1099.9	78.0	78.0	1.00	-3.50	1.77	10.48	0.66
4.50	1560.6	55.4	55.4	1.42	-3.50	0.67	10.48	0.66
3.00	2194.1	0.0	0.0	1.99	-2.00	-2.00	10.48	0.66
1.50	1560.6	-55.4	-55.4	1.42	-3.50	0.67	10.48	0.66
0.00	1099.9	-78.0	-78.0	1.00	-3.50	1.77	10.48	0.66

Требуемая арматура

OT X	до х	Сечение	Арматура	а	A _{s,tot}	μ
[м]	[M]			[CM]	[см2]	[응]
0.00	6.00	1 Прям.	По конт.	2.70	10.48	0.66

По расчету на действие поперечной силы для обеспечения прочности поперечная арматура не требуется.

 Позиция
 t406
 Страница
 252

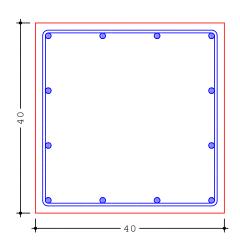
 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/406
 Версия
 2025.000

Конструирование	OT X	до х	d_{min}	d_{max}	n_{max}	a _{min}	d_{sw}
	[M]	[M]	[MM]	[MM]		[MM]	[MM]
	0.00	6.00	12	28	12	25	6

Минимальная толщина защитного слоя для продольной арматуры min $a_3=20$ мм для поперечной арматуры min $a_{3w}=15$

Размещение стержней


OT X	до х	Сечение	Арматура	n	а _з
[M]	[M]				[MM]
0.00	6.00	1 Прямоуг.	На угол	1	15
			На b-сторону	2	
			На h-сторону	2	

Подобранная арматура

ОТ X	до х	d _s	Анкер.	n _{tot}	A _{s,tot}	μ
[M]	[м]	[мм]	[мм]		[CM2]	[%]
0.00	6.00	12	376	12	13.57	0.85

Длина анкеровки определена для сжатых стержней.

Сечение 1

Стержни: 12 ϕ 12 Хомут: ϕ 6 Защитный слой: аз = 15 мм

Расчет выполнен модулем 406 программы СТАТИКА 2025 © 000 Техсофт

Поз. t407

Расчет ж/б колонны по огнестойкости

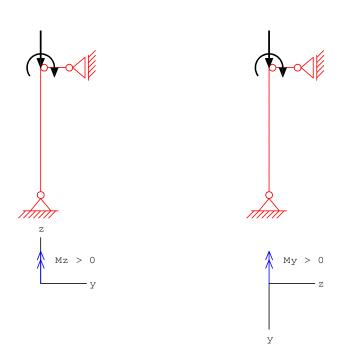
Расчетная схема	Длина колонны		1	=	6.00	M
Закрепления	В	плоскости Ү		В	плоскост	ги Z
	Вверху	шарнирное			шарнир	оное
	Внизу	шарнирное			шарнир	оное
Сечение	Ширина Высота		b h	=	40.0 40.0	CM CM
Арматура	Диаметр стержней Число стержней Толщина защитного	слоя	d _s n a _s	= = =	18 12 30	MM - MM

t407 Позиция 253 Страница 28.10.2024 СТАТИКА тест всех модулей Проект Дата Разработчик **СТАТИКА/407** Версия 2025.000 Разраб.

Относительно центральных осей бетонного сечения Нагрузки

Вертикальная сила

= 500.0


кН

Горизонтальные силы и моменты

	H _V	Ηz	M _V	Mz
	[ĸĤ]	[ĸH]	[кНм]	[кНм]
Вверху			100.0	100.0

в плоскости Ү

в плоскости Z

Расчет

Согласно СП 468.1325800.2019, СП 63.13330.2018

Применяется метод расчета согласно СП 468, 8.6

Изменение температуры среды при пожаре принимается согласно ГОСТ 30247.0-94

В 25 (тяжелый)

на силикатном заполнителе

Плотность бетона

Бетон сухой

= 2300 кг/м3

Продольная арматура

A500

Сопротивления при нормальной температуре

 $R_{bn} = 18.50$ $R_{sn} = 500$ МΠа R_{sn} МΠа = 400R_{sc} МΠа

Модули упругости при нормальной температуре

 $E_b = 30.0$ ГΠа = 200.0ГΠа Es

 Позиция
 t407
 Страница
 254

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/407
 Версия
 2025.000

Диаграмма для бетона при нормальной температуре

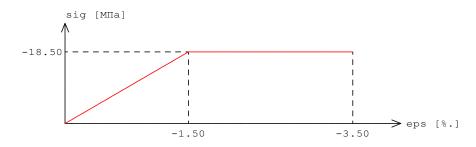
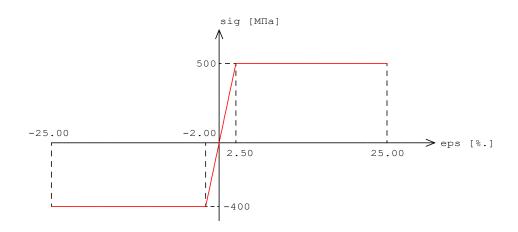



Диаграмма для арматуры при нормальной температуре

Коэффициент условий работы бетона

	T T 1							
Nº	T [°C]	γbt	Nº	T [°C]	γbt	Nº	T [°C]	γbt
1	100	1.00	2	200	0.98	3	300	0.95
4	400	0.85	5	500	0.80	6	600	0.60
7	700	0.20	8	800	0.00	9	900	0.00
10	1000	0.00	11	1100	0.00	12	1200	0.00

Параметры диаграммы сжатого бетона

T	[°C]	20	100	200	300	400	500	600
ϵ_{b1}	[%.]	1.5	1.9	2.6	3.8	4.9	6.8	10.7
Eb2	[%.]	3.5	4.4	6.1	8.8	11.4	15.8	25.0

Коэффициент редукции модуля упругости бетона ${\tt T^{\circ}C}$ 20 200 300 400 500 600 700 800 ${\tt \beta_b}$ 1.00 0.70 0.50 0.40 0.30 0.20 0.10 0.05

Коэффициент условий работы арматуры

Nº	Т	γ _{st}	Nº	Т	γ _{st}	Nº	Т	γ _{st}
	[°C]			[°C]			[°C]	
1	100	1.00	2	200	1.00	3	300	1.00
4	400	0.85	5	500	0.60	6	600	0.37
7	700	0.22	8	800	0.10	9	900	0.00
10	1000	0.00	11	1100	0.00	12	1200	0.00

Коэффициент	репукции	молуля	VIDVIOCTM	арматуры

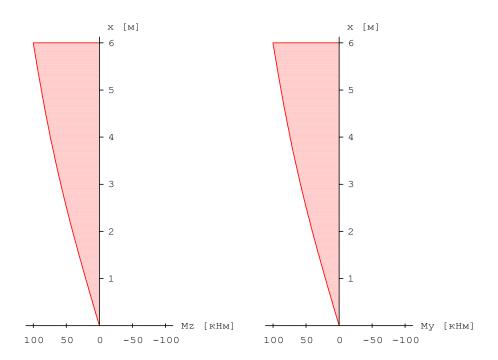
	$N_{\bar{0}}$	T	βs	$N_{\bar{0}}$	Т	βs	$N_{\bar{0}}$	Т	βs
		[°C]			[°C]			[°C]	
	1	100	1.00	2	200	0.92	3	300	0.90
	4	400	0.85	5	500	0.80	6	600	0.77
	7	700	0.72	8	800	0.65	9	900	0.00
1	0	1000	0.00	11	1100	0.00	12	1200	0.00

Расчет усилий по деформированной схеме проводится для плоскостей Y и ${\rm Z}$

 Позиция
 t407
 Страница
 255

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/407
 Версия
 2025.000


Линейный расчет усилий в колонне при нормальной температуре

Жесткости приведенного сечения $D_{\rm y} = 75.1$ МНм2 $D_{\rm z} = 75.1$ МНм2

Начальные прогибы, суммарные прогибы и моменты

X	WyO	WzO	Wy	Wz	M_{V}	M_z
[м]	[см]	[см]	[см]	[CM]	[кНм]	[кНм]
6.00	0.00	0.00	0.00	0.00	100.0	100.0
5.50	-0.35	-0.35	-0.47	-0.47	94.0	94.0
5.00	-0.67	-0.67	-0.89	-0.89	87.8	87.8
4.50	-0.94	-0.94	-1.23	-1.23	81.2	81.2
4.00	-1.15	-1.15	-1.49	-1.49	74.1	74.1
3.50	-1.29	-1.29	-1.63	-1.63	66.5	66.5
3.00	-1.33	-1.33	-1.67	-1.67	58.4	58.4
2.50	-1.29	-1.29	-1.60	-1.60	49.7	49.7
2.00	-1.15	-1.15	-1.43	-1.43	40.5	40.5
1.50	-0.94	-0.94	-1.16	-1.16	30.8	30.8
1.00	-0.67	-0.67	-0.82	-0.82	20.8	20.8
0.50	-0.35	-0.35	-0.42	-0.42	10.4	10.4
0.00	0.00	0.00	0.00	0.00	0.0	0.0

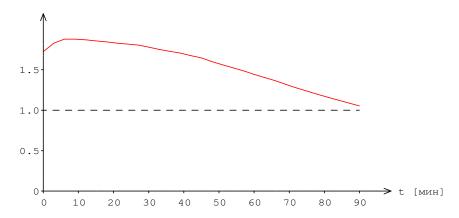
Моменты в плоскости Y в плоскости Z

Проверка прочности колонны при пожаре

Нагрев всесторонний

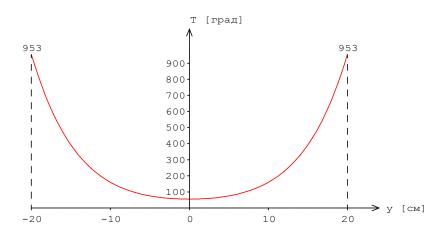
Расчетные усилия

N	$M_{ m V}$	Mz
[ĸH]	[кHм]	[кНм]
500.0	100.0	100.0


Коэффициент запаса прочности

t	Т среды	γ_{u}
[мин]	[°C]	
0	20	1.724
3	502	1.829
6	603	1.879
9	663	1.879
12	705	1.871
15	739	1.857

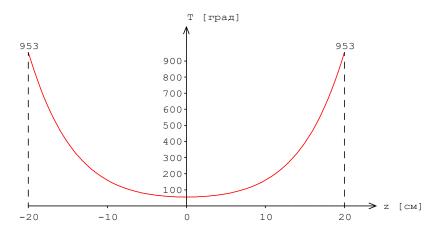
Позиция	t407		Страниц	a 256
Проект	СТАТИКА тест всех модулей			28.10.2024
Разраб.	Разработчик	СТАТИКА/407	Версия	2025.000


18	766	1.844
21	789	1.829
24	809	1.816
27	826	1.804
30	8 4 2	1.780
33	856	1.751
36	869	1.729
39	881	1.707
42	892	1.675
45	902	1.645
48	912	1.602
51	921	1.561
5 4	930	1.524
57	938	1.486
60	945	1.443
63	953	1.404
66	960	1.365
69	966	1.320
72	973	1.278
75	979	1.237
78	985	1.198
81	990	1.161
8 4	996	1.125
8 7	1001	1.090
90	1006	1.053

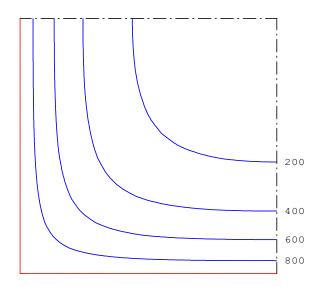
Коэффициент запаса прочности $\gamma_{\,\mathrm{u}}$

Температурное поле при t = 90 мин

Температура Т на оси у



 Позиция
 t407
 Страница
 257


 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/407
 Версия
 2025.000

Температура Т на оси z

Изотермы

Нелинейный расчет усилий в колонне при t = 90 мин

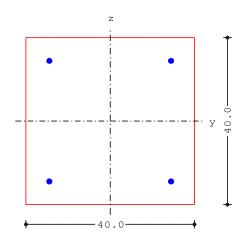
Усилия в колонне превышают предельные усилия

Огнестойкость колонны не обеспечена

Расчет выполнен модулем 407 программы СТАТИКА 2025 © 000 Техсофт

 Позиция
 t408
 Страница
 258

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024


 Разраб.
 Разработчик
 СТАТИКА/408
 Версия
 2025.000

Поз. t408

Железобетонная колонна (MSZ EN 1992)

Расчетная схема	Длина колонны		L =	=	4.00	M
Закрепления		В плоскости Ү		В	плоскости	Z
	Вверху	шарнирное			шарнирн	oe
	Внизу	жесткое			жесткое	

Сечение Ширина b = 40.0 см Высота h = 40.0 см

Воздействия

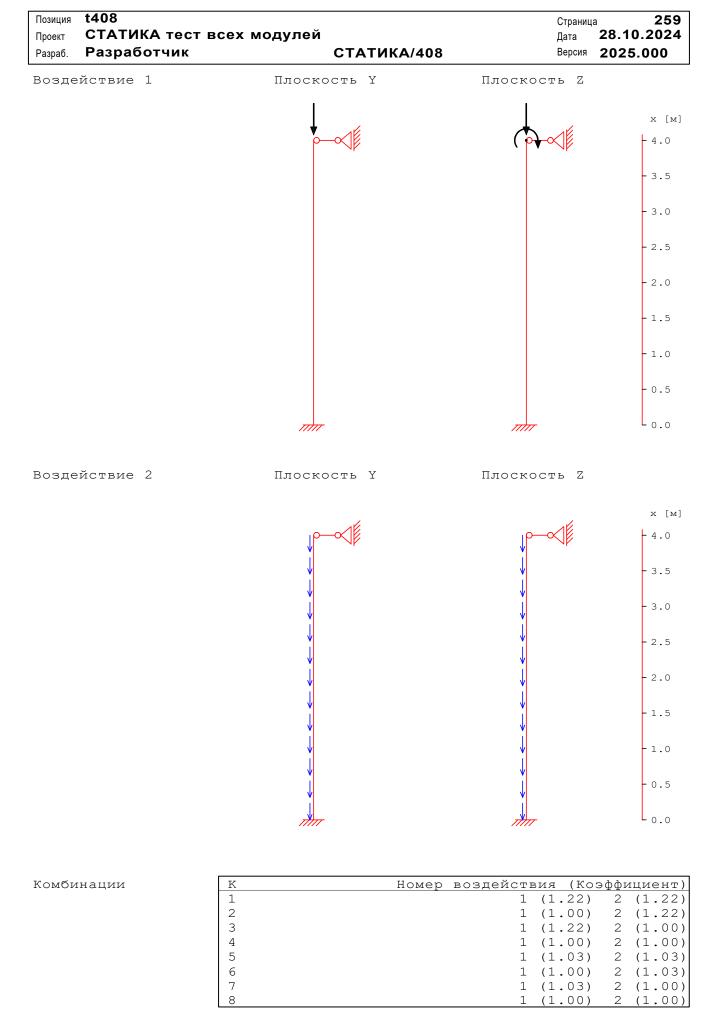
Nº	Тип воздействия	Описание
1	Постоянное	Постоянное воздействие
		постоянное -

Коэффициент упр. надежностью $K_{FI} = 0.9$

При комбинировании применяются формулы (6.10a,b)

Характеристики

Nº	γ _{sup}	γinf	Ψ_0	Ψ_1	Ψ2	Группа	Знак
	1.35	1.00					
2*	1.35	1.00					


^{*} собственный вес колонны

Вертикальные силы

Nº	X	V	e _v	e _z
	[M]	[ĸH]	[CM]	[CM]
1	4 - 00	1000.0		

Горизонтальные силы и моменты

Nº	X	H_{y}	H_{z}	M_{y}	M_z
	[M]	[ĸĤ]	[ĸH]	[кНм]	[кНм]
1	4.00			100.0	

 Позиция
 t408
 Страница
 260

 проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/408
 Версия
 2025.000

<u>Расчет</u> согласно MSZ EN 1992-1-1, 5.7, 5.8.6

Учет эффектов второго порядка для плоскостей Y и Z Учет несовершенств по форме потери устойчивости

Учет деформаций ползучести бетона

 Материалы
 Бетон
 C25/30

 Арматура
 \$500

Для бетона применяется диаграмма (3.14)

Удельный вес железобетона γ = 25.0 кH/м3

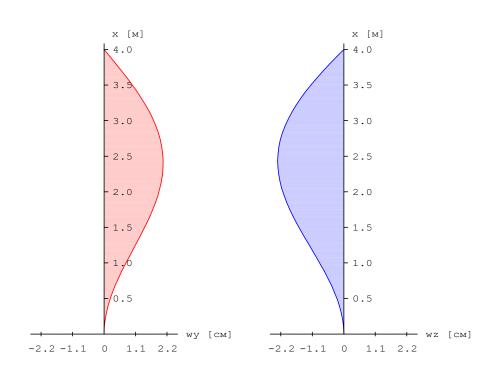
Влажность воздуха окружающей среды = 50 % Возраст бетона в момент нагружения = 28 сут

Коэффициент ползучести

2A _c /u	β (f _{cm})	β (t ₀)	ϕ_{RH}	φ
[MM]	[-]	[-]	[-]	[-]
200.0	2.925	0.488	1.855	2.650

Выбор комбинаций

K	Номер	воздействия	(Коэс	ффν	ициент)
1		1 (1	.22)	2	(1.00)
2		1 (1	.22)	2	(1.22)
3		1 (1	.00)	2	(1.00)

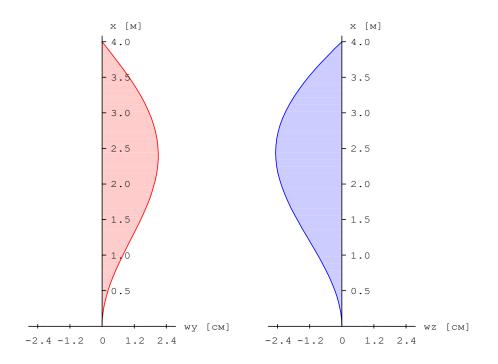

Расчет для комбинации воздействий К = 1

Погрешность расчета

 ε = 0.01

К 1 Начальные прогибы

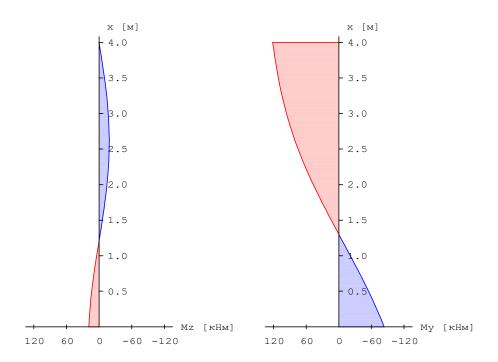
×	wyo	WzO	wyn	WZII
[м]	[CM]	[CM]	[CM]	[CM]
4.00	0.00	0.00	0.00	0.00
3.33	1.24	-1.24	0.04	-0.24
2.67	1.94	-1.94	0.06	-0.32
2.00	1.86	-1.86	0.06	-0.28
1.33	1.17	-1.17	0.04	-0.17
0.67	0.36	-0.36	0.01	-0.05
0.00	0.00	0.00	0.00	0.00


 Позиция
 t408
 Страница
 261

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/408
 Версия
 2025.000

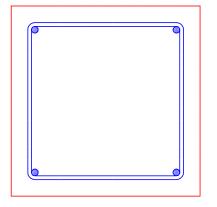
К 1 Прогибы


X	W _V	W _Z	d _v	d _z
[M]	[cm]	[CM]	[ра́д]	[рад]
4.00	0.00	0.00	0.02742	-0.02106
3.33	1.30	-1.59	0.01906	-0.01641
2.67	2.03	-2.41	0.00502	-0.00500
2.00	1.95	-2.27	-0.00863	0.00704
1.33	1.22	-1.41	-0.01544	0.01332
0.67	0.38	-0.44	-0.01206	0.01047
0.00	0.00	0.00	0.0000	0.00000

К 1 Усилия

X	N	My	Mz	Hy	$_{\rm H_{ z}}$
[м]	[ĸH]	[кНм]	[кНм]	[ĸĤ]	[ĸH]
4.00	1215.0	121.5	0.0	4.6	-51.2
3.33	1217.7	106.8	-12.7	4.6	-51.2
2.67	1220.3	82.6	-18.6	4.6	-51.2
2.00	1223.0	46.8	-14.5	4.6	-51.2
1.33	1225.7	2.2	-2.6	4.6	-51.2
0.67	1228.3	-43.8	10.8	4.6	-51.2
0.00	1231.0	-83.3	18.6	4.6	-51.2

К 1 Предельные усилия


Х	Nu	M _{yu}	M_{zu}	γu	$\epsilon_{\text{c,min}}$	ε _{s,max}	а	A _{s,tot}
[м]	[ĸH]	[кН́м]	[кНм]		[%.]	[%.]	[CM]	[см2]
4.00	1473.8	147.4	0.0	1.213	-3.50	1.23	5.00	4.80
3.33	1605.6	140.8	-16.8	1.319	-3.50	1.04	5.00	4.80
2.67	1822.6	123.4	-27.8	1.493	-3.50	0.68	5.00	4.80
2.00	2206.3	84.4	-26.2	1.804	-3.50	0.07	5.00	4.80
1.33	2810.4	5.1	-5.9	2.293	-2.71	-1.37	5.00	4.80
0.67	2246.0	-80.2	19.8	1.829	-3.50	-0.05	5.00	4.80
0.00	1823.3	-123.5	27.5	1.481	-3.50	0.68	5.00	4.80

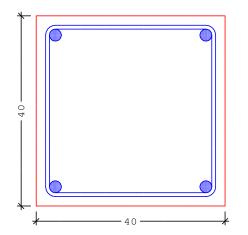
0.00 1823.3 -12	3.5 27.5 1.481 -3.50	0.68 5	.00	4.80
Требуемая арматура	Площадь на каждый угол Общая площадь арматуры Коэффициент армирования	$A_s = A_s, tot = \rho = 0$	1.20 4.80 0.30	см ² см ²
Конструирование	Данные для подбора арматуры			
	d_{min} d_{max} [MM]	n _{max}		а _{mіn} [мм]
	8 40	20		20
	Диаметр поперечной арматуры	d _{sw} =	8	ММ
	Мин. толщина защитного слоя	c _{min} =	25	MM
	Допускаемое отклонение	Δ C =	10	MM
Подобранная	П	-1	1 /	
арматура	Диаметр арматуры Число стержней	d _s = n _{tot} =	1 4 4	MM -
	Площадь арматуры	$A_{s,tot} =$	6.16	см ²
	Коэффициент армирования	ρ =	0.38	용
	Защитный слой бетона	$c_{nom} =$	35	MM

 Позиция
 t408
 Страница
 263

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/408
 Версия
 2025.000

Стержни: 4 **Ф**14 Хомут: **Ф**8 Защитный слой: cnom = 35 мм

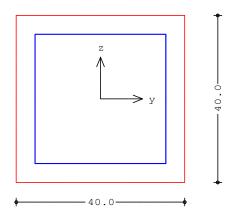

Расчет выполнен модулем 408 программы СТАТИКА 2025 © 000 Техсофт

<u>Поз. t409</u>	Конструировани	е арматуры в і	колон	<u>іне</u>			
Сечение							
	Ширина сечения	I		b	=	40.0	СМ
	Высота сечения	I		h	=	40.0	CM
	Общая площадь	арматуры		A _{s,to}	t=	18.00	см ²
Данные для подбора	d _{min}	d _{max}		n _{max}			a _{min}
арматуры	[MM]	[MM]		1 0			[MM]
	12	28		10			20
	Диаметр хомута			d_{sw}	=	8	ММ
	Минимальная то					0.0	
	для продольной			аз		20	MM
	для поперечной	и арматуры	mın	a _{sw}	=	15	MM
Выбранные стержни	Место	n	d,	_ [MM]		As	[см2]
	На угол	1		25			4.91
	Общее число ст	гержней		n _{tot}	=	4	_
	Защитный слой	для хомута		аз	=	20	ММ
	Общая площадь	арматуры		A _{s,to}	t=	19.63	cm^2

 Позиция
 t409
 Страница
 264

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/409
 Версия
 2025.000



Стержни: $4 \, \phi \, 25$ Хомут: $\phi \, 8$ Защитный слой: аз = 20 мм

Расчет выполнен модулем 409 программы СТАТИКА 2025 © 000 Техсофт

Поз. t410

Одноярусная колонна общего вида

Закрепления

	В плоскости Ү	В плоскости Z
Вверху	шарнирное	шарнирное
Внизу	шарнирное	шарнирное

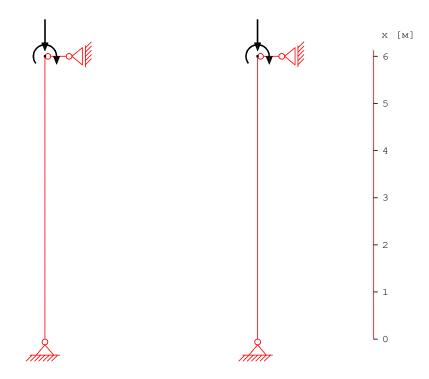
Нагрузки

Nº	Вид нагрузки	γf	Группа	Знак
1	Постоянная	1.10		

Вертикальные силы

N ₀	Х	V	e _v	e _z
	[M]	[ĸH]	[cm]	[CM]
1	6.00	500.0		

Горизонтальные силы и моменты


Nº	Х	H _V	Ηz	M _V	Mz
	[M]	[ĸĤ]	[ĸH]	[кНм]	[кНм]
1	6.00			100.0	100.0

 Позиция
 t410
 Страница
 265

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/410
 Версия
 2025.000

Нагрузка 1 в плоскости Y в плоскости Z

Расчёт

Согласно СП 63.13330.2018 Бетон.и железобетон.кон.

Бетон В 25 (тяжелый) Коэффициент условий работы γ_b = 1.000 - Сопротивление бетона $\gamma_b R_b$ = 14.50 МПа Для бетона применяется трёхлинейная диаграмма

Продольная арматура А500

Сопротивление арматуры $R_{\text{S}}=435$ МПа $R_{\text{SC}}=400$

Для арматуры применяется двухлинейная диаграмма

Поперечная арматура А400

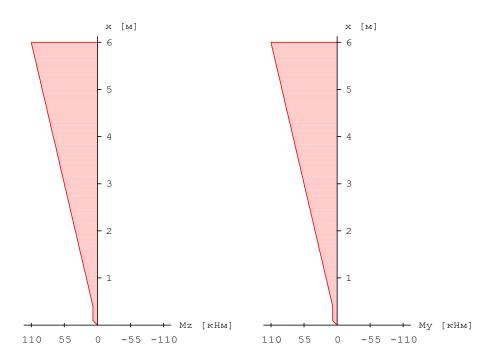
Сопротивление арматуры $R_{sw} = 280$ МПа

Вычисление минимального коэффициента продольного армирования

Гибкость в плоскости Y $\lambda_{\rm Y} = 52.0$ - Гибкость в плоскости Z $\lambda_{\rm Z} = 52.0$ - Мин.коэффициент армирования $\mu_{\rm min} = 0.35$

Расчёт для комбинации нагрузок К = 1

 ${\tt K}=1$ Усилия от полной нагрузки и от её длительной части (с учётом ${\tt e_a})$


X	N	M_{V}	M_z	Nı	M _{vl}	Mzl
[M]	[ĸH]	[кНм]	[кНм]	[ĸH]	[кҤ́м]	[кНм]
6.00	550.00	110.00	110.00	550.00	110.00	110.00
4.50	550.00	82.50	82.50	550.00	82.50	82.50
3.00	550.00	55.00	55.00	550.00	55.00	55.00
1.50	550.00	27.50	27.50	550.00	27.50	27.50
0.00	550.00	0.00	0.00	550.00	0.00	0.00

 Позиция
 t410
 Страница
 266

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/410
 Версия
 2025.000

Моменты в плоскости Y в плоскости Z

К = 1 Расчётный момент в плоскости У

x	10	ϕ_1	δ_{e}	D	Ncr	η	η M $_z$
[M]	[м]	[-]	[-]	[МНм2]	[ĸH]	[-]	[кНм]
6.00	6.00	2.000	0.500	12.05	3304.8	1.200	132.0
4.50	6.00	2.000	0.375	13.17	3609.4	1.180	97.3
3.00	6.00	2.000	0.250	14.78	4052.6	1.157	63.6
1.50	6.00	2.000	0.150	16.72	4584.2	1.136	31.2
0.00	6.00	2.000	0.150	16.72	4584.2	1.136	0.0

К = 1 Расчётный момент в плоскости Z

X	10	φ1	δ _e	D	N _{cr}	η	η M $_{ m V}$
[M]	[м]	[-]	[-]	[МНм2]	[ĸH]	[-]	[кНм]
6.00	6.00	2.000	0.500	12.05	3304.8	1.200	132.0
4.50	6.00	2.000	0.375	13.17	3609.4	1.180	97.3
3.00	6.00	2.000	0.250	14.78	4052.6	1.157	63.6
1.50	6.00	2.000	0.150	16.72	4584.2	1.136	31.2
0.00	6.00	2.000	0.150	16.72	4584.2	1.136	0.0

 ${\rm K}$ = 1 Предельные усилия ${\rm N}_{\rm u}$ = ${\gamma}_{\rm u}{\rm N}$, ${\rm M}_{{\rm y}{\rm u}}$ = ${\gamma}_{\rm u}{\rm M}_{{\rm y}}$, ${\rm M}_{{\rm z}{\rm u}}$ = ${\gamma}_{\rm u}{\rm M}_{{\rm z}}$

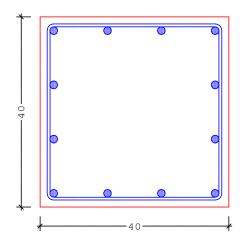
Г	X	NT	M	M	NT	T./I	M	27
	Α.	IN	M_{Y}	M_z	Nu	М _{уи}	M_{zu}	γu
	[M]	[ĸH]	[кНм]	[кНм]	[ĸH]	[кНм]	[кНм]	[-]
	6.00	550.0	132.0	132.0	549.8	131.9	131.9	1.00
	4.50	550.0	97.3	97.3	761.9	134.8	134.8	1.39
	3.00	550.0	63.6	63.6	1144.9	132.5	132.5	2.08
	1.50	550.0	31.2	31.2	1879.7	106.8	106.8	3.42
	0.00	550.0	0.0	0.0	3217.8	0.0	0.0	5.85

Требуемая арматура Расстояние до ц.т. арматуры а = 3.00 см

Площадь на каждую b-сторону $A_{s1} = 5.61 \text{ cm}^2$ на каждую h-сторону $A_{s2} = 5.61 \text{ cm}^2$ Общая площадь арматуры $A_{s,tot} = 22.45 \text{ cm}^2$ Коэффициент армирования $\mu_{tot} = 1.40$ %

dmin	dmax	nmax	<u>amin</u>
[MM]	[MM]		[MM]
12	28	12	25

Диаметр хомута $d_{sw}=6$ мм Минимальная толщина защитного слоя для продольной арматуры min $a_{sw}=20$ мм для поперечной арматуры min $a_{sw}=15$


Выбранные стержни

Место	n	d _s [мм]	А _s [см2]
На угол	1	16	2.01
На b-сторону	2	16	4.02
На h-сторону	2	16	4.02

Общее число стержней	n _{tot}	=	12	_
Защитный слой для хомута	аз	=	15	MM

Длина анкеровки сжатых стержней = 462 мм

Общая площадь арматуры $\text{A}_{\text{s,tot}} = 24.13 \qquad \text{cm}^2$ Коэффициент армирования $\mu_{\text{tot}} = 1.51 \qquad \text{\%}$

Стержни: 12 ϕ 16 Хомут: ϕ 6 Защитный слой: аз = 15 мм

Выбор нормативных комбинаций нагрузок для расчёта по трещиностойкости

ſ	K	х[м]	Критерий	Нагрузка(Коэффициент)
	1	6.00	max My	1 (1.00)

Усилия от полной нормативной нагрузки и от её длительной части

K	N	My	M_{Z}	Nl	Myl	M _{zl}
	[ĸH]	[кНм]	[кНм]	[ĸH]	[кНм]	[кНм]
1	500.00	100.00	100.00	500.00	100.00	100.00

Предельная ширина Непродолжительное раскрытие $a_{\text{c1,u}} = 0.40$ мм раскрытия трещин Продолжительное раскрытие $a_{\text{c2,u}} = 0.30$ мм

Результаты расчёта по трещиностойкости

K	N _{crc}	My,crc	M _{z,crc}	g	a _{crc,1}	a _{crc,2}
	[ĸH]	[кНм]	[кНм]	[-]	[MM]	[MM]
1	500.00	42.10	42.10	0.421	0.412	0.412

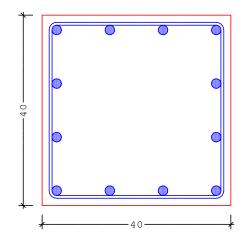
 $\mathrm{M}_{\mathrm{Y},\mathrm{crc}}$ = gM $_{\mathrm{Y}}$, $\mathrm{M}_{\mathrm{Z},\mathrm{crc}}$ = gM $_{\mathrm{Z}}$ - изгибающие моменты при образовании трещин

Подбор арматуры по ограничению ширины раскрытия трещин

Выбранные стержни	Место	n	d _s [мм]	А _s [см2]
	На угол	1	20	3.14
	На b-сторону	2	20	6.28

$\Delta \Delta \Delta$	Техсофт. Москі	0 0
	TEXCOMI. MICCRI	3 a

 Позиция
 t410
 Страница
 268


 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/410
 Версия
 2025.000

Длина анкеровки сжатых стержней = 505 мм

Общая площадь арматуры Коэффициент армирования

 $A_{s,tot} = 37.70 cm^2$ $\mu_{tot} = 2.36$

Стержни: $12 \, \phi \, 20$ Хомут: $\phi \, 6$ Защитный слой: аз = 15 мм

Результаты расчёта по трещиностойкости

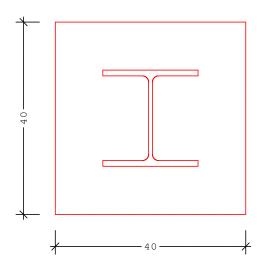
K	N _{crc}	M _{y,crc}	M _{z,crc}	g	a _{crc,1}	a _{crc,2}
	[ĸH]	[кНм]	[кНм]	[-]	[MM]	[MM]
1	500.00	44.26	44.26	0.443	0.269	0.269

Трещиностойкость колонны обеспечена

Выбор комбинаций нагрузок для расчёта на действие поперечных сил

K	х[м]	Критерий	Нагрузка(Коэффициент)
1	0.00	max lOvl	1 (1.10)

К = 1 Усилия


X	N	$M_{ m V}$	${ m M}_{ m Z}$	Q _v	Qz
[M]	[ĸH]	[кНм]	[кНм]	[ĸĤ]	[ĸH]
6.00	550.00	110.00	110.00	-18.33	-18.33
4.50	550.00	82.50	82.50	-18.33	-18.33
3.00	550.00	55.00	55.00	-18.33	-18.33
1.50	550.00	27.50	27.50	-18.33	-18.33
0.00	550.00	0.00	0.00	-18.33	-18.33

Поперечная арматура не требуется

Расчет выполнен модулем 410 программы СТАТИКА 2025 © 000 Техсофт

Позиция **t411** 269 Страница 28.10.2024 Проект СТАТИКА тест всех модулей Дата Разработчик СТАТИКА/411 Версия 2025.000 Разраб. Поз. t411 Сталежелезобетонная колонна

1103. t411	Сталежелезобет	онная колонна				
Расчетная схема	Длина колонны		1	=	6.00	М
Закрепления	вверху внизу	В плоскости Y шарнирное шарнирное		В :	_	ости Z нирное нирное
Сечение	Ширина Высота		b ₀ h ₀		40.0	CM CM
	Двутавр 20К2 Ширина Высота Толщина полок Толщина стенки	1	b h t _f t _w	= 2 = 2	0 0	20-93 MM MM MM MM

Нагрузки

Nº	Вид нагрузки	γf	Группа	Знак
1	Постоянная	1.10		

Вертикальные силы

N ₀	X	V	e _v	e _z
	[M]	[ĸH]	[cm]	[см]
1	6.00	2500.0		

Горизонтальные силы и моменты

$N_{\bar{0}}$	Х	Η _V	H_z	M_{V}	M_z
	[M]	[ĸĤ]	[ĸH]	[кНм]	[кНм]
1	0.00			50.0	50.0
	6.00			50.0	50.0

Нагрузка 1

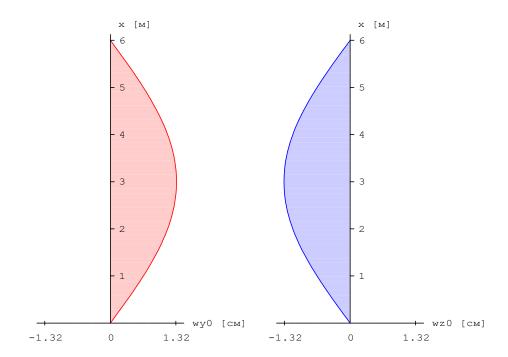
в плоскости Ү

в плоскости Z

Комбинации нагрузок

К	Номера	нагрузок	И	коэффициенть
1				1 (1 10)

Расчет для комбинации нагрузок К = 1


Начальные прогибы

X	w_{V0}	WzO
[M]	[cm]	[CM]
6.00	0.00	0.00
4.50	0.94	-0.94
3.00	1.33	-1.33
1.50	0.94	-0.94
0.00	0.00	0.00

Позиция **t411** 271 Страница Проект СТАТИКА тест всех модулей 28.10.2024 Дата Разработчик **СТАТИКА/411** Версия 2025.000

Начальные прогибы в плоскости Ү

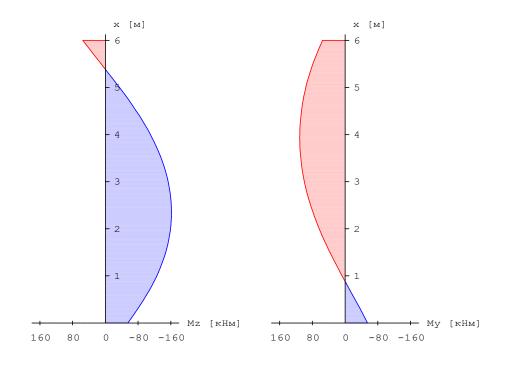
в плоскости Z

Нелинейный расчет

Погрешность расчета

 $\varepsilon = 0.24$

용


К 1 нелин.расчет Усилия

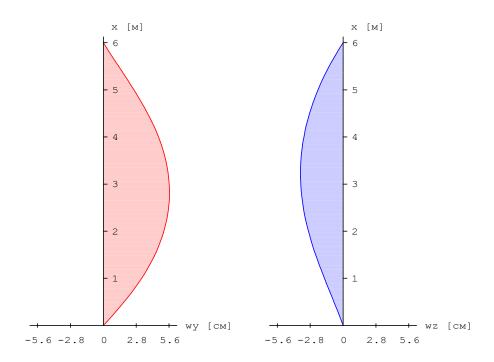
X	N	M_{V}	M_z	Q_{V}	Qz
[M]	[ĸH]	[кНм]	[кНм]	[ĸĤ]	[кН]
6.00	2750.0	55.0	55.0	-86.6	51.1
4.50	2750.0	106.6	-75.8	-76.4	14.5
3.00	2750.0	99.5	-153.5	-24.8	-24.4
1.50	2750.0	37.0	-147.5	33.8	-56.7
0.00	2750.0	-55.0	-55.0	84.7	-59.1

Моменты

в плоскости Ү

в плоскости Z

Позиция	t411		Страниц	a 272
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/411	Версия	2025.000


К	1	нелин.расчет
Пη	001	гибы

Х	W_{∇}	W_Z	d_{v}	dz
[M]	[см]	[CM]	[рад]	[рад]
6.00	0.00	0.00	0.02534	-0.02489
4.50	3.77	-2.86	0.01204	-0.02118
3.00	5.61	-3.60	-0.00209	-0.00244
1.50	4.39	-2.34	-0.01384	0.01889
0.00	0.00	0.00	-0.01473	0.03739

Прогибы

в плоскости Ү

в плоскости Z

К 1 нелин.расчет Предельные усилия

Х	N _u	M _{vu}	M _{zu}	γ _u
[M]	[ĸH]	[кҤ́м]	[кНм]	
6.00	2620.2	52.4	52.4	0.95
4.50	2195.0	85.1	-60.5	0.80
3.00	1755.9	63.5	-98.0	0.64
1.50	1982.9	26.7	-106.4	0.72
0.00	2620.2	-52.4	-52.4	0.95

 $N_u = \gamma_u N$, $M_{yu} = \gamma_u M_y$, $M_{zu} = \gamma_u M_z$

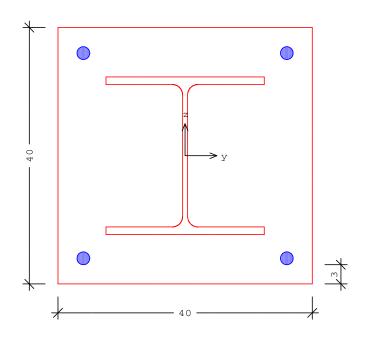
Наименьший коэффициент запаса

K	Х	Nu	M _{yu}	M_{zu}	γu
	[м]	[ĸH]	[кНм]	[кНм]	
1	2.75	1747.9	59.0	-100.8	0.64

Несущая способность колонны не обеспечена

Расчет выполнен модулем 411 программы СТАТИКА 2025 © ООО Техсофт

 Позиция
 t412
 Страница
 273


 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/412
 Версия
 2025.000

Поз. t412

Расчет сталежелезобетонной колонны по огнестойкост

Расчетная схема	Длина ко	ОЛОННЫ		1	=	6.00	М
Закрепления		Вп	плоскости Ү		I	3 плоск	ости Z
	Вверху		шарнирное			шар	нирное
	Внизу		шарнирное			шар	нирное
Сечение	Ширина			b	=	40.0	СМ
	Высота			h	=	40.0	CM
Арматура	Диаметр Толщина	стержней защитного	слоя	ds аз	=	20 30	MM MM
Профиль	Двутавр Ширина	25K1		b		P 5783	7-2017
	Высота			h	=	246	MM
	Толщина	полок		t	=	12.0	MM
	Толщина	стенки		s	=	8.0	MM

Нагрузки

Относительно центральных осей бетонного сечения

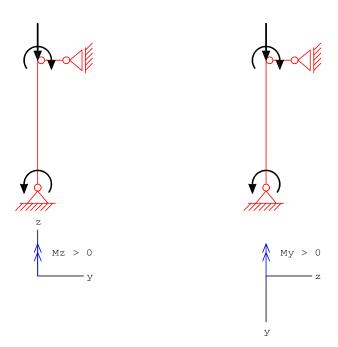
Вертикальная сила

V = 1000.0 kH

Горизонтальные силы и моменты

	H_V	$_{\rm H_{Z}}$	M_{V}	Mz
	[ĸĤ]	[ĸH]	[кНм]	[кНм]
Вверху			50.0	50.0
Внизу			-50.0	-50.0

 Позиция
 t412
 Страница
 274


 Проект
 CTATUKA тест всех модулей
 дата
 28.10.2024

в плоскости У

СТАТИКА/412

в плоскости Z

Версия 2025.000

Расчет

Разработчик

Разраб.

Согласно СП 468.1325800.2019, СП 63.13330.2018, СП 266.1325800.2016

Применяется метод расчета согласно СП 468, 8.6

Изменение температуры среды при пожаре принимается согласно ГОСТ 30247.0-94

Бетон **В 25 (тяжелый)** на силикатном заполнителе Плотность бетона ρ = 2300 кг/м3 Бетон сухой

Продольная арматура А500

Сталь С 375

Сопротивления при нормальной температуре

 $R_{bn} = 18.50$ MMa $R_{sn} = 500$ MMa $R_{sc} = 400$ MMa $R_{yn} = 355$ MMa

Модули упругости при нормальной температуре

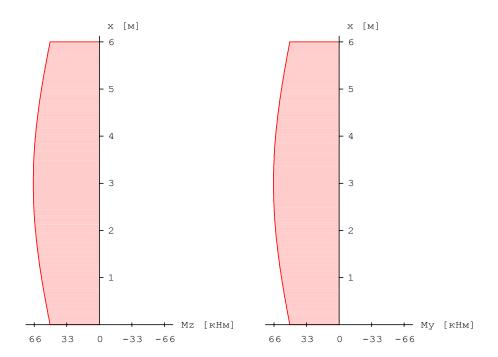
 $E_{b} = 30.0$ ГПа $E_{s} = 200.0$ ГПа E = 206.0 ГПа

Расчет усилий по деформированной схеме проводится для плоскостей Y и Z

Линейный расчет усилий в колонне при нормальной температуре

Жесткости приведенного сечения $D_{y} = 88.8$ МНм2 $D_{z} = 76.8$ МНм2

 Позиция
 t412
 Страница
 275


 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/412
 Версия
 2025.000

Начальные прогибы, суммарные прогибы и моменты

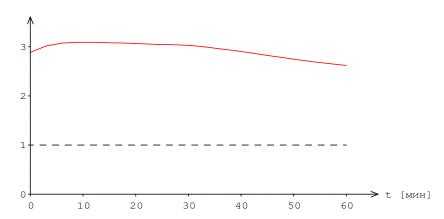
					D./I	ħΛ
X	wyo	W _Z O	Wy	Wz	My	M _Z
[M]	[CM]	[CM]	[CM]	[CM]	[кHм]	[кНм]
6.00	0.00	0.00	0.00	0.00	50.0	50.0
5.80	-0.14	-0.14	-0.19	-0.18	51.8	51.9
5.60	-0.28	-0.28	-0.37	-0.35	53.5	53.7
5.40	-0.41	-0.41	-0.54	-0.52	55.2	55.4
5.20	-0.54	-0.54	-0.71	-0.69	56.9	57.1
5.00	-0.67	-0.67	-0.87	-0.84	58.4	58.7
4.80	-0.78	-0.78	-1.02	-0.99	59.9	60.2
4.60	-0.89	-0.89	-1.16	-1.12	61.2	61.6
4.40	-0.99	-0.99	-1.28	-1.24	62.4	62.8
4.20	-1.08	-1.08	-1.39	-1.35	63.5	63.9
4.00	-1.15	-1.15	-1.49	-1.44	64.4	64.9
3.80	-1.22	-1.22	-1.56	-1.52	65.2	65.7
3.60	-1.27	-1.27	-1.63	-1.58	65.8	66.3
3.40	-1.30	-1.30	-1.67	-1.62	66.2	66.7
3.20	-1.33	-1.33	-1.70	-1.65	66.5	67.0
3.00	-1.33	-1.33	-1.71	-1.65	66.6	67.1
2.80	-1.33	-1.33	-1.70	-1.65	66.5	67.0
2.60	-1.30	-1.30	-1.67	-1.62	66.2	66.7
2.40	-1.27	-1.27	-1.63	-1.58	65.8	66.3
2.20	-1.22	-1.22	-1.56	-1.52	65.2	65.7
2.00	-1.15	-1.15	-1.49	-1.44	64.4	64.9
1.80	-1.08	-1.08	-1.39	-1.35	63.5	63.9
1.60	-0.99	-0.99	-1.28	-1.24	62.4	62.8
1.40	-0.89	-0.89	-1.16	-1.12	61.2	61.6
1.20	-0.78	-0.78	-1.02	-0.99	59.9	60.2
1.00	-0.67	-0.67	-0.87	-0.84	58.4	58.7
0.80	-0.54	-0.54	-0.71	-0.69	56.9	57.1
0.60	-0.41	-0.41	-0.54	-0.52	55.2	55.4
0.40	-0.28	-0.28	-0.37	-0.35	53.5	53.7
0.20	-0.14	-0.14	-0.19	-0.18	51.8	51.9
0.00	0.00	0.00	0.00	0.00	50.0	50.0

Моменты в плоскости У в плоскости Z

Проверка прочности колонны при пожаре

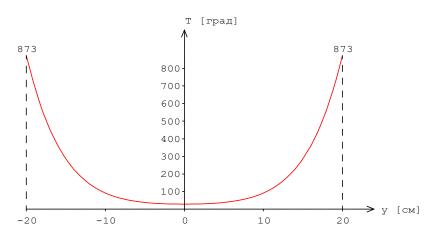
Нагрев всесторонний

Позиция	t412		Страниц	a 276
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/412	Версия	2025.000


Расчетные усилия

N	$M_{ m V}$	Mz
[KH]	[кHм]	[кНм]
1000.0	66.6	67.1

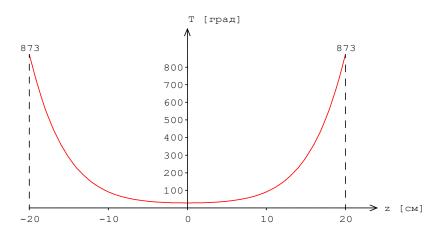
Коэффициент запаса прочности


t	Т среды	γu
[мин]	[° C]	
0	20	2.886
3	502	3.016
6	603	3.076
9	663	3.093
12	705	3.092
15	739	3.083
18	766	3.073
21	789	3.061
24	809	3.051
27	826	3.041
30	842	3.029
33	856	3.000
36	869	2.958
39	881	2.919
42	892	2.873
4 5	902	2.824
48	912	2.778
51	921	2.734
5 4	930	2.692
57	938	2.656
60	945	2.618

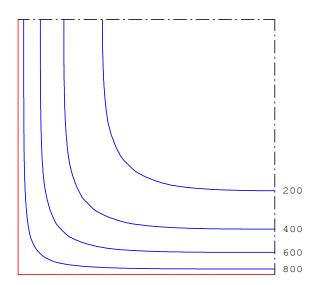
Коэффициент запаса прочности $\gamma_{\,\mathrm{u}}$

Температурное поле при t = 60 мин

Температура Т на оси у



 Позиция
 t412
 Страница
 277


 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/412
 Версия
 2025.000

Температура Т на оси z

изотермы

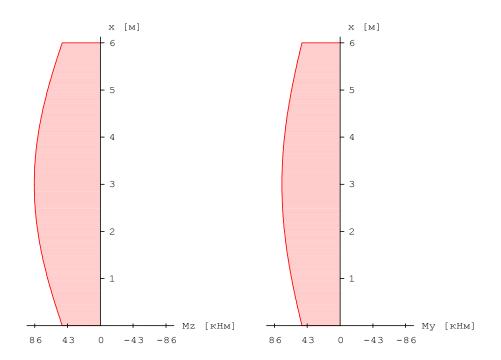
Параметры диаграммы для стали

Температура,	сопрот	ивление, в	модуль упругости	•
Т	γst	βst	R _{ynt}	Εt
[°C]	[-]	[-]	[МПа]	[ГПа]
251 1	.000	0.849	355.0	175.0

 $R_{ynt} = \gamma_{st}R_{yn}$, $E_{t} = \beta_{st}E$ γ_{st} , β_{st} принимаются по EN 1994-1-2, Table 3.2

Нелинейный расчет усилий в колонне при t = 60 мин

Погрешность расчета


 ε = 0.16

Начальные прогибы, суммарные прогибы и моменты

Х	w _{v0}	WzO	W _V	W _Z	M _v	Mz
[м]	[CM]	[CM]	[CM]	[CM]	[кНм]	[кНм]
6.00	0.00	0.00	0.00	0.00	50.0	50.0
5.80	-0.14	-0.14	-0.42	-0.29	52.9	54.2
5.60	-0.28	-0.28	-0.82	-0.58	55.8	58.2
5.40	-0.41	-0.41	-1.20	-0.85	58.5	62.0
5.20	-0.54	-0.54	-1.57	-1.11	61.1	65.7
5.00	-0.67	-0.67	-1.91	-1.36	63.6	69.1
4.80	-0.78	-0.78	-2.23	-1.59	65.9	72.3
4.60	-0.89	-0.89	-2.52	-1.80	68.0	75.2
4.40	-0.99	-0.99	-2.78	-1.99	69.8	77.8

Позиция	t412		×		Страниц	
Проект	СТАТИКА тест Разработчик	всех модуј		KA (442	Дата Версия	28.10.2024
Разраб.	<u> газраоотчик</u>		СТАТИ	KA/412	Берсия	2025.000
4.20	-1.08	-1.08	-3.02	-2.15	71.5	80.1
4.00	-1.15	-1.15	-3.21	-2.30	72.9	82.1
3.80	-1.22	-1.22	-3.38	-2.41	74.1	83.7
3.60	-1.27	-1.27	-3.51	-2.51	75.1	85.0
3.40	-1.30	-1.30	-3.60	-2.57	75.7	86.0
3.20	-1.33	-1.33	-3.66	-2.61	76.1	86.5
3.00	-1.33	-1.33	-3.68	-2.63	76.3	86.7
2.80	-1.33	-1.33	-3.66	-2.61	76.1	86.5
2.60	-1.30	-1.30	-3.60	-2.57	75.7	86.0
2.40	-1.27	-1.27	-3.51	-2.51	75.1	85.0
2.20	-1.22	-1.22	-3.38	-2.41	74.1	83.7
2.00	-1.15	-1.15	-3.21	-2.30	72.9	82.1
1.80	-1.08	-1.08	-3.02	-2.15	71.5	80.1
1.60	-0.99	-0.99	-2.78	-1.99	69.8	77.8
1.40	-0.89	-0.89	-2.52	-1.80	68.0	75.2
1.20	-0.78	-0.78	-2.23	-1.59	65.9	72.3
1.00	-0.67	-0.67	-1.91	-1.36	63.6	69.1
0.80	-0.54	-0.54	-1.57	-1.11	61.1	65.7
0.60	-0.41	-0.41	-1.20	-0.85	58.5	62.0
0.40	-0.28	-0.28	-0.82	-0.58	55.8	58.2
0.20	-0.14	-0.14	-0.42	-0.29	52.9	54.2
0.00	0.00	0.00	0.00	0.00	50.0	50.0

Моменты в плоскости Y в плоскости Z

Расчетные усилия

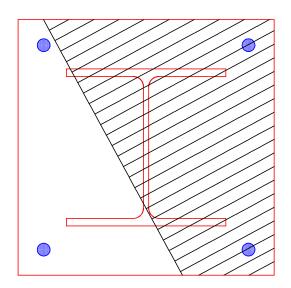
N	$M_{ m V}$	Mz
[ĸH]	[кНм]	[кНм]
1000.0	76.3	86.7

Проверка прочности

Предельные усилия $N_{ij} = \gamma_{ij}N$, $M_{vij} = \gamma_{ij}M_{v}$, $M_{zij} = \gamma_{ij}M_{z}$

предельные,	y C J 10 1 J 1 7 1 1 1 1 1 1	1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 11 - 17 / 7 11	1 11 7		
N	M_{V}	M_z	Ňu	M _{vu}	M_{zu}	γu
[ĸH]	[кНм]	[кНм]	[ĸH]	[кҤ́м]	[кНм]	
1000.0	76.3	86.7	2244.5	171.2	194.6	2.245

Нейтральная линия


У1	z ₁	У2	z ₂
[CM]	[CM]	[CM]	[CM]
-16.02	20.00	5.68	-20.00

Позиция t412
Проект СТАТИКА тест всех модулей

Разраб. Разработчик СТАТИКА/412

Страница 279 Дата 28.10.2024 Версия 2025.000

Сжатая зона при действии предельных усилий

Кривизны κ_{y} / κ_{z} = -0.01300 / -0.02397 1/м

Деформация

 $\varepsilon (y,z) = -0.1300z - 0.2397y - 1.239, ^{\circ}/_{\circ \circ}$

Деформации бетона на контуре сечения

Максимал	ьная дефо	рмация	Минимал	ьная дефо	рмация
ε	σ	Т	3	σ	T
[%.]	[МПа]	[°C]	[%.]	[MПa]	[°C]
6.16	0.00	919	-8.63	-0.01	919

Предельная деформация бетона

У	Z	T	ϵ_{b2}	d	ϵ_{b2}/d
[CM]	[CM]	[°C]	[%.]	[M]	[1/м]
9.68	7.90	111	-4.59	0.168	-0.02727

у, z - координаты точки, в которой достигается предельная деформация с учетом температуры d - расстояние от нейтральной линии до точки (y,z)

Деформации арматуры

Максимальная деформация			Минимал	ьная дефо	рмация
ε	σ	T	3	σ	T
[%.]	[МПа]	[°C]	[%.]	[M∏a]	[°C]
4.68	256.2	538	-7.16	-205.0	538

Деформации стали

Максимал	ьная дефо	рмация	Минимај	тьная дефо	рмация
ε	σ	T	ε	σ	T
[%.]	[МПа]	[°C]	[%.]	[МПа]	[°C]
3.34	355.0	251	-5.82	-355.0	251

Усилия

	N	M_{V}	M_z
	[ĸH]	[кНм]	[кНм]
в бетоне	1121.65	38.06	81.05
в арматуре	22.77	8.79	37.57
в стали	1100.10	124.35	75.99
суммарные	2244.51	171.20	194.61

Огнестойкость колонны обеспечена

Расчет выполнен модулем 412 программы СТАТИКА 2025 © 000 Техсофт

 Позиция
 t413
 Страница
 280

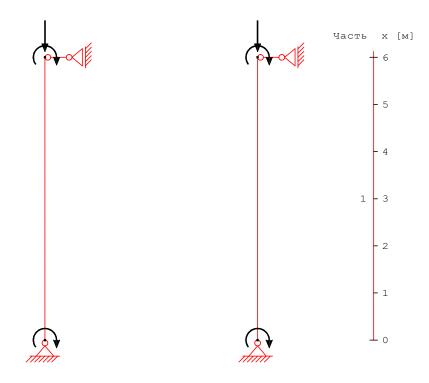
 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/413
 Версия
 2025.000

Поз. t413

Проверка железобетонной колонны

<u>Поз. t413</u>	Провер	ка желез	<u>обетонной</u>	колонны			
Расчетная схема	Часть	OT X	до х	Длина	Смеще	ение у/z	Сеч
		[M]	[M]	[M]	[CM]	[CM]	
	1	0.00	6.00	6.00			1
Сечение	Ширина			b	=	40.0	СМ
Сечение	ширина Высота			h h		40.0	CM
		р армату	ZDEI	d,			MM
			уры Ного слоя			30	MM
	•	z	•	Част			
Закрепления	CRANYV	40.0	В плоск		1	В плоско	
	Сверху		шар	нирное		шарн	ирное
	Снизу		шар	нирное		шарні	ирное
Нагрузки	<u>№</u>		нагрузки Эянная		γ _f 1.10	Группа	Знак
Вертикальные силы	Nº	X		V	e,	v	e _z
		[M]]	[ĸH]	[ci	м.]	[см]
	1	6.00		1000.0			
Горизонтальные силы	Nº	Х	Н.,	H	I	M	M _z


$N_{\bar{0}}$	X	Н _У	$_{\rm H_{ Z}}$	My	M_{Z}
	[м]	[ĸH]	[ĸH]	[кНм]	[кНм]
1	0.00			50.0	50.0
	6.00			50.0	50.0

 Позиция
 t413
 Страница
 281

 проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/413
 Версия
 2025.000

Нагрузка 1 в плоскости У в плоскости Z

Расчет

Согласно СП 63.13330.2018 Бетон.и железобетон.кон.

Бетон В 25 (тяжелый) Коэффициент условий работы γ_b = 0.810 — Сопротивление бетона $\gamma_b R_b$ = 11.75 МПа Для бетона применяется трехлинейная диаграмма

Продольная арматура А500

Сопротивление арматуры $R_{\text{S}}=435$ МПа $R_{\text{SC}}=400$

двухлинейная диаграмма

52.0

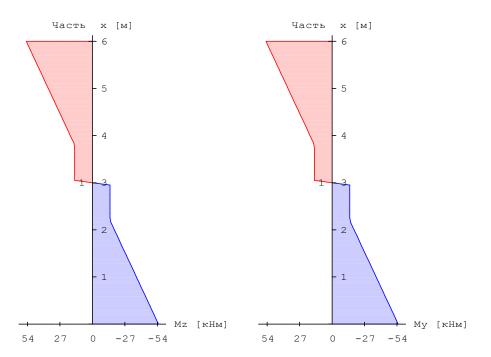
Линейный расчет колонны по недеформированной схеме

Опасная комбинация Номера нагрузок и коэффициенты 1 (1 10)

Гибкости в пл. Y, Z от x [м] до x [м] λ_{y} 0.00 6.00 52.0

Для арматуры применяется

Усилия от полной нагрузки и ее длительной части (с учетом ${f e}_a$)


X	N	M_{V}	M_z	N _l	M _{vl}	M_{z1}
[M]	[ĸH]	[кНм]	[кНм]	[ĸH]	[кҤ́м]	[кНм]
6.00	1100.00	55.00	55.00	1100.00	55.00	55.00
4.50	1100.00	27.50	27.50	1100.00	27.50	27.50
3.00	1100.00	0.00	0.00	1100.00	0.00	0.00
1.50	1100.00	-27.50	-27.50	1100.00	-27.50	-27.50
0.00	1100.00	-55.00	-55.00	1100.00	-55.00	-55.00

 Позиция
 t413
 Страница
 282

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/413
 Версия
 2025.000

Моменты в плоскости Y в плоскости Z

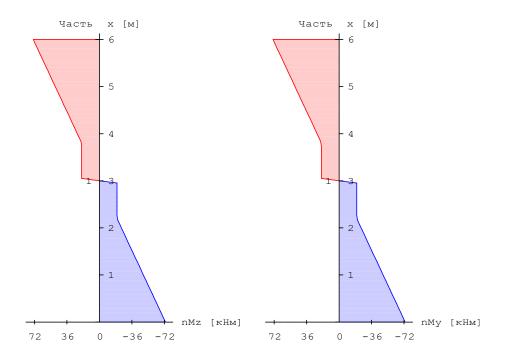
Расчетный момент в плоскости У

X	10	φ_1	δ _e	D	N _{cr}	η	$\eta * M_z$
[M]	[M]	[-]	[-]	[МНм2]	[ĸH]	[-]	[кНм]
6.00	6.00	2.000	0.150	16.05	4399.7	1.333	73.3
4.50	6.00	2.000	0.150	16.05	4399.7	1.333	36.7
3.00	6.00	2.000	0.150	16.05	4399.7	1.333	0.0
1.50	6.00	2.000	0.150	16.05	4399.7	1.333	-36.7
0.00	6.00	2.000	0.150	16.05	4399.7	1.333	-73.3

<u>Расчетный момент в плоскости Z</u>

Х	10	φ1	δ _e	D	N _{cr}	η	η*M _V
[м]	[м]	[-]	[-]	[МНм2]	[ĸH]	[-]	[кНм]
6.00	6.00	2.000	0.150	16.05	4399.7	1.333	73.3
4.50	6.00	2.000	0.150	16.05	4399.7	1.333	36.7
3.00	6.00	2.000	0.150	16.05	4399.7	1.333	0.0
1.50	6.00	2.000	0.150	16.05	4399.7	1.333	-36.7
0.00	6.00	2.000	0.150	16.05	4399.7	1.333	-73.3

 Позиция
 t413
 Страница
 283


 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/413
 Версия
 2025.000

Расчетные моменты

в плоскости У

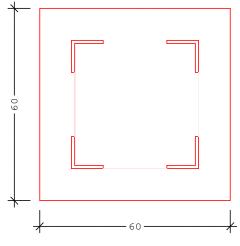
в плоскости Z

Предельные усилия

$N_{u} = \gamma_{u} N_{r}$	$M_{VU} = \gamma_{U} \eta M_{V}$	$M_{Z,U} = $	$\gamma_{11} \eta M_{Z}$	
Х	Nu	M_{yu}	M_{zu}	γu
[M]	[ĸH]	[кЁм]	[кНм]	[-]
6.00	1360.7	90.7	90.7	1.237
4.50	1836.7	61.2	61.2	1.670
3.00	2487.4	0.0	0.0	2.261
1.50	1836.7	-61.2	-61.2	1.670
0.00	1360.7	-90.7	-90.7	1.237

Прочность колонны обеспечена

Расчет выполнен модулем 406 программы СТАТИКА 2025 © 000 Техсофт


Поз. t414 Сталежелезобетонная колонна (жесткая арматура)

Расчетная схема	Длина колонны		1	=	4.00	М
Закрепления		В плоскости У		В	плоск	ости Z
	вверху	шарнирное			шар	нирное
	внизу	шарнирное			шар	нирное
Сечение	Ширина Высота		b ₀ h ₀	= =	60.0	CM CM
Уголок	Ширина полки Толщина полки		b t	= =	100	MM MM
	Расстояние от	уголка до конту	pa a	сечени	я 10.0	СМ

 Позиция
 t414

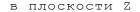
 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

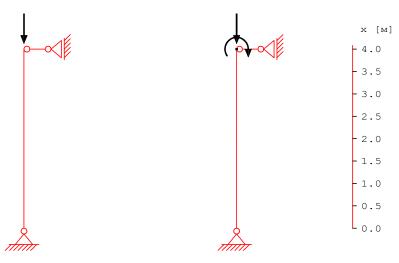
 Разраб.
 Разработчик
 СТАТИКА/414
 Версия
 2025.000

Нагрузки

Nº	Вид нагрузки	γf	Группа	Знак
1	Постоянная	1.10		

Вертикальные силы


$N_{\bar{0}}$	X	V	ey	e _z
	[м]	[ĸH]	[CM]	[см]
1	4.00	3000.0		


Горизонтальные силы и моменты

Nº	Х	Ну	Ηz	My	M_Z
	[M]	[ĸH]	[ĸH]	[кНм]	[кНм]
1	4.00			200.0	

Нагрузка 1

Материалы

 Бетон
 В 25 (тяжелый)

 Арматура
 А500

Сопротивление бетона $R_{\rm b} = 14.50$ МПа Сопротивление арматуры $R_{\rm s} = 435$ МПа $R_{\rm sc} = 400$ МПа

Коэффициент условий работы

Для бетона применяется трехлинейная диаграмма Для арматуры применяется двухлинейная диаграмма

 γ_b

1.000

Модуль упругости бетона $E_{\rm b}=30.0$ ГПа Модуль упругости арматуры $E_{\rm s}=200$ ГПа

 Позиция
 t414
 Страница
 285

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/414
 Версия
 2025.000

Сталь С 255

Сопротивление стали $R_{y}=250$ МПа Модуль упругости стали E=206 ГПа Коэффициент условий работы $\gamma_{c}=1.000$ - Предельная деформация стали $\epsilon_{lim}=25.00$ %.

<u>Расчет</u> Согласно СП 63.13330.2018, СП 266.1325800.2016

Расчет по деформированной схеме для плоскости ${\tt Z}$ Учет несовершенств по форме потери устойчивости

Гибкость в плоскости Z $\lambda_z = 23.1$

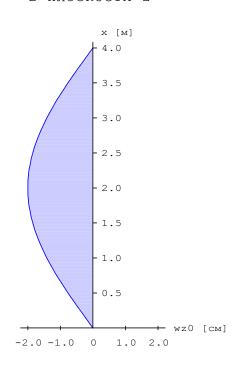
Жесткости

Плоск.	$\mathtt{E_{b}I_{b}}$	Ε _s Ι _s	EI _{st}	ΕI
	[МНм2]	[МНм2]	[МНм2]	[МНм2]
Z	317.09	0.00	47.43	364.52
Y	317.09	0.00	47.43	364.52

Примечание. Учитывается вытеснение бетона арматурой

Комбинации нагрузок

К	Номера	нагрузок	И	коэффи	циенты	
1				1	(1.10)	


Расчет для комбинации нагрузок К = 1

К 1 Начальные прогибы

X	w _{y0}	W _Z 0
[M]	[cm]	[CM]
4.00	0.00	0.00
3.64	0.00	-0.56
3.27	0.00	-1.08
2.91	0.00	-1.51
2.55	0.00	-1.82
2.18	0.00	-1.98
1.82	0.00	-1.98
1.45	0.00	-1.82
1.09	0.00	-1.51
0.73	0.00	-1.08
0.36	0.00	-0.56
0.00	0.00	0.00

Начальный прогиб

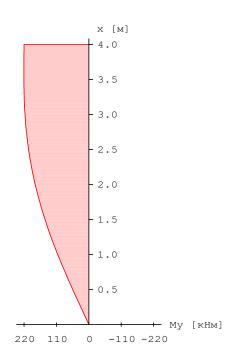
в плоскости Z

 Позиция
 t414
 Страница
 286

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/414
 Версия
 2025.000

Нелинейный расчет


Погрешность расчета

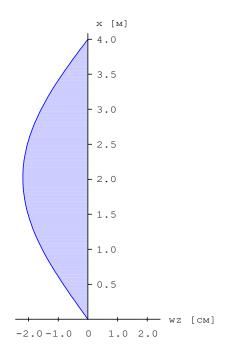
 ϵ = 0.00

К 1 нелин.расчет Усилия

X	N	M_{V}	M_z	Q _V	Qz
[м]	[ĸH]	[кНм]	[кНм]	[ĸĤ]	[кН]
4.00	3300.0	220.0	0.0	0.0	4.2
3.64	3300.0	221.0	0.0	0.0	0.5
3.27	3300.0	219.9	0.0	0.0	-7.1
2.91	3300.0	215.4	0.0	0.0	-18.3
2.55	3300.0	206.2	0.0	0.0	-32.2
2.18	3300.0	191.7	0.0	0.0	-47.8
1.82	3300.0	171.4	0.0	0.0	-63.8
1.45	3300.0	145.4	0.0	0.0	-79.0
1.09	3300.0	114.2	0.0	0.0	-92.3
0.73	3300.0	78.7	0.0	0.0	-102.5
0.36	3300.0	40.1	0.0	0.0	-108.9
0.00	3300.0	0.0	0.0	0.0	-111.1

Момент в плоскости ${\tt Z}$

К 1 нелин.расчет Прогибы


X	Wy	W $_{\rm Z}$	dy	dz
[м]	[см]	[см]	[рад]	[рад]
4.00	0.00	0.00	0.01794	0.00000
3.64	0.00	-0.64	0.01683	0.00000
3.27	0.00	-1.21	0.01450	0.00000
2.91	0.00	-1.68	0.01111	0.00000
2.55	0.00	-2.01	0.00690	0.00000
2.18	0.00	-2.17	0.00219	0.00000
1.82	0.00	-2.16	-0.00266	0.00000
1.45	0.00	-1.98	-0.00727	0.00000
1.09	0.00	-1.64	-0.01129	0.00000
0.73	0.00	-1.17	-0.01439	0.00000
0.36	0.00	-0.61	-0.01634	0.00000
0.00	0.00	0.00	-0.01700	0.00000

 Позиция
 t414
 Страница
 287

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/414
 Версия
 2025.000

Прогиб в плоскости Z

К 1 нелин.расчет Предельные усилия

X	Nu	M _{yu}	M_{zu}	γu
[M]	[ĸH]	[кҤм]	[кНм]	
4.00	5215.1	347.7	0.0	1.58
3.64	5208.7	348.8	0.0	1.58
3.27	5215.9	347.5	0.0	1.58
2.91	5245.6	342.3	0.0	1.59
2.55	5305.8	331.6	0.0	1.61
2.18	5402.9	313.9	0.0	1.64
1.82	5541.1	287.8	0.0	1.68
1.45	5722.3	252.2	0.0	1.73
1.09	5940.8	205.6	0.0	1.80
0.73	6214.6	148.2	0.0	1.88
0.36	6580.5	80.0	0.0	1.99
0.00	7120.0	0.0	0.0	2.16

 $N_u = \gamma_u N$, $M_{yu} = \gamma_u My$, $M_{zu} = \gamma_u M_z$

Наименьший коэффициент запаса

K	х [м]	N _u [кН]	М _{уи} [кНм]	М _{z u} [кНм]	γ _u
1	3.60	5208.7	348.8	0.0	1.58

Несущая способность колонны обеспечена

Расчет выполнен модулем 414 программы СТАТИКА 2025 © 000 Техсофт

 Позиция
 t415
 Страница
 288

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

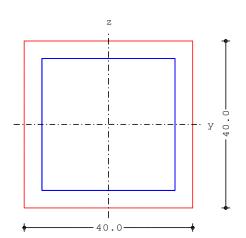
 Разраб.
 Разработчик
 СТАТИКА/415
 Версия
 2025.000

Поз. t415

Колонна (сейсмика, пульсации ветра)

Расчетная схема

Длина колонны

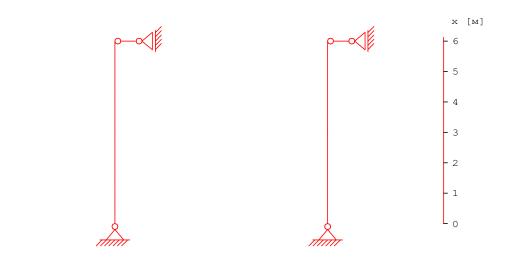

= 6.00

M

СМ

Ширина и высота сечения

b = h = 40.0



Закрепления

	В	плоскости Ү	В	плоскости	Z
Сверху		шарнирное		шарнирно	ре
Снизу		шарнирное		шарнирно	ре

в плоскости Ү

в плоскости Z

Нагрузки

Nº	Вид нагрузки	γf	Группа	Знак
1	Постоянная	1.10		

Вертикальные силы

Nº	X	V	e _y	e _z
	[M]	[ĸH]	[CM]	[CM]
1	6.00	100.0	5.0	5.0

Горизонтальные силы и моменты

Nº	X	Н _У	Ηz	My	M_z
	[M]	[ĸĤ]	[ĸH]	[кНм]	[кНм]
1	3.00	4.0	6.0		

Позиция **t415** 289 Страница СТАТИКА тест всех модулей 28.10.2024 Проект Дата Разработчик **СТАТИКА/415** Версия 2025.000

Расчет

Согласно СП 63.13330.2018 Бетон.и железобетон.кон.

Бетон	H		в 25	кет)	келый)	
Коэфф	рициент ус	словий работы	γb	=	0.765	_
Сопро	отивление	бетона	$\gamma_b R_b$	=	11.09	МΠа
Для	бетона	применяется	трехлине	ейная	н диагр	амма

Продольная	арматура	A500
------------	----------	------

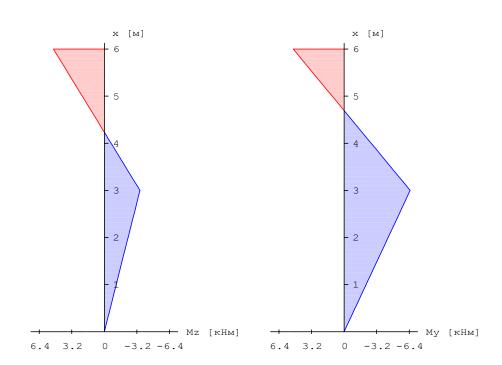
Сопротивление	е арматуры	Rs	=	435	МПа
		Rsc	=	400	МПа

Для арматуры применяется двухлинейная диаграмма

Поперечная арматура	A400
Сопротивление арматуры	$R_{sw} = 280$ M Π a

Гибкость в плоскости Ү 52.0 λ_{y} Гибкость в плоскости Z 52.0 λ_z

Выбранная комбинация

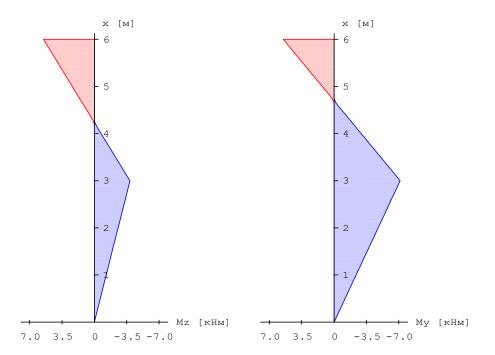

Номера	нагрузок	И	коэффи	ициенты
			1	(1.10)

Усилия от нагрузки 1

X	N	M _V	M_z
[M]	[ĸH]	[кНм]	[кНм]
6.00	100.00	5.00	5.00
4.50	100.00	-0.75	0.75
3.00	100.00	-6.50	-3.50
1.50	100.00	-3.25	-1.75
0.00	100.00	0.00	0.00

Нагрузка 1: моменты в плоскости У

в плоскости Z

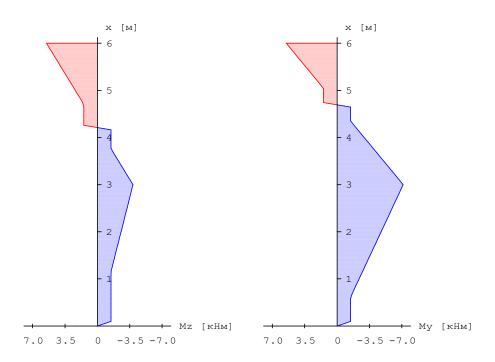

Наибольшие усилия от комбинаций нагрузок

X	N ₊	M _{V+}	M _{z+}	N_	M _v _	М _z _
[M]	[ĸH]	[кҤ́м]	[кНм]	[ĸH]	[кҤ́м]	[кНм]
6.00	110.00	5.50	5.50	0.00	0.00	0.00
4.50	110.00	0.00	0.83	0.00	-0.83	0.00
3.00	110.00	0.00	0.00	0.00	-7.15	-3.85
1.50	110.00	0.00	0.00	0.00	-3.58	-1.93
0.00	110.00	0.00	0.00	0.00	0.00	0.00

Позиция **t415** 290 Страница 28.10.2024 СТАТИКА тест всех модулей Проект Дата Разработчик **СТАТИКА/415** Версия 2025.000

Огибающие эпюры М в плоскости Ү

в плоскости Z


Расчет для выбранной комбинации нагрузок

Усилия от полной нагрузки и ее длительной части (с учетом ${f e}_a$)

ſ	Х	N	$M_{ m V}$	M_z	Nı	M _{vl}	M_{z1}
	[M]	[ĸH]	[кНм]	[кНм]	[ĸH]	[кҤ́м]	[кНм]
	6.00	110.00	5.50	5.50	110.00	5.50	5.50
	4.50	110.00	-1.47	1.47	110.00	-1.47	1.47
	3.00	110.00	-7.15	-3.85	110.00	-7.15	-3.85
	1.50	110.00	-3.58	-1.93	110.00	-3.58	-1.93
	0.00	110.00	0.00	0.00	110.00	0.00	0.00

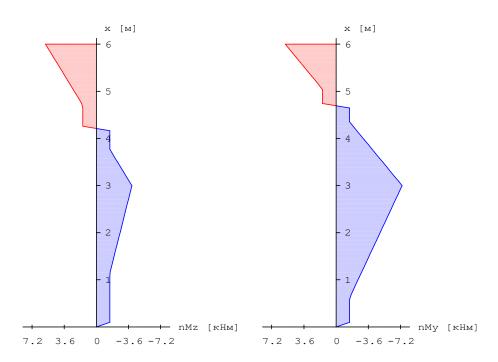
Моменты

в плоскости У в плоскости Z

Позиция t415 291 Страница Дата 28.10.2024 СТАТИКА тест всех модулей Проект Разраб. Разработчик **СТАТИКА/415** Версия 2025.000

Расчетный момент в плоскости Ү

X	10	φ_1	δ _e	D	N _{cr}	η	$\eta * M_z$
[M]	[M]	[-]	[-]	[МНм2]	[ĸH]	[-]	[кНм]
6.00	6.00	2.000	0.150	12.19	3343.1	1.034	5.7
4.50	6.00	2.000	0.150	12.19	3343.1	1.034	1.5
3.00	6.00	2.000	0.150	12.19	3343.1	1.034	-4.0
1.50	6.00	2.000	0.150	12.19	3343.1	1.034	-2.0
0.00	6.00	2.000	0.150	12.19	3343.1	1.034	0.0


Расчетный момент в плоскости Z

Х	10	ϕ_1	δ _e	D	N_{cr}	η	η*Μ _Υ
[M]	[M]	[-]	[-]	[МНм2]	[ĸH]	[-]	[кНм]
6.00	6.00	2.000	0.150	12.19	3343.1	1.034	5.7
4.50	6.00	2.000	0.150	12.19	3343.1	1.034	-1.5
3.00	6.00	2.000	0.162	11.91	3264.1	1.035	-7.4
1.50	6.00	2.000	0.150	12.19	3343.1	1.034	-3.7
0.00	6.00	2.000	0.150	12.19	3343.1	1.034	0.0

Расчетные моменты

в плоскости Ү

в плоскости Z

Предельные усилия

Х	Nu	M _{vu}	Mzu	γ _u	ε _{b, min}	ε _{s,max}
[M]	[ĸH]	[кҤ́м]	[кНм]	[-]	[%.]	[%.]
6.00	1184.1	61.2	61.2	10.76	-3.50	1.36
4.50	1736.2	-23.9	23.9	15.78	-3.50	-0.14
3.00	1170.8	-78.8	-42.4	10.64	-3.50	1.35
1.50	1538.9	-51.7	-27.8	13.99	-3.50	0.38
0.00	1998.7	0.0	0.0	18.17	-2.00	-2.00

Требуемая арматура Расстояние до ц.т. арматуры а = 2.90 CM

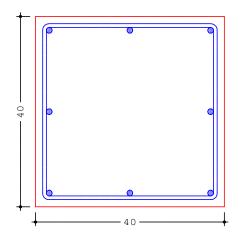
> Площадь на каждую b-сторону на каждую h-сторону Общая площадь арматуры Коэффициент армирования Площадь арматуры определяется по нижней границе

 $A_{s1} =$ 1.40 см² $A_{s2} =$ 1.40 см2 5.60 $A_{s,tot} =$ 용 $\mu_{\text{tot}} =$ 0.35

t415 Позиция 292 Страница СТАТИКА тест всех модулей 28.10.2024 Проект Дата Разраб. Разработчик **СТАТИКА/415** Версия 2025.000

> По расчету на действие поперечной силы для обеспечения прочности поперечная арматура не требуется.

Конструирование	٤


d_{min}	[MM]	d_{max}	[MM]		n_{max}		a_{min}	[MM]
12		28			12			25
	етр хомута мальная тол	пщина	защит	ного	d _{sw} слоя	=	8	ММ
	тродольной топеречной	-		min min	_	= =	20 15	MM MM

Выбранные стержни

Место	n	d _s [мм]	А _s [см2]
На угол	1	12	1.13
На b-сторону	1	12	1.13
На h-сторону	1	12	1.13
	-		

Оощее число стержнеи	Ntot	=	8	_
Защитный слой для хомута	a _s	=	15	MM
Длина анкеровки сжатых стержн	ей	=	302	MM

Общая площадь арматуры	A _{s,tot} =	9.05	см ²
Коэффициент армирования	$\mu_{\text{tot}} =$	0.57	용

Стержни: 8 **Ø**12 Хомут: **Ø**8 Защитный слой: аз = 15 мм

Расчет выполнен модулем 415 программы СТАТИКА 2025 © 000 Техсофт

Поз. t416

Сталежелезобетонная колонна (сейсмика,пульсации)

Расчетная схема

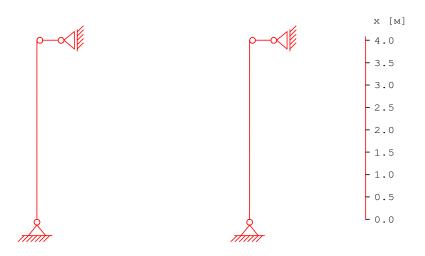
Длина колонны

4.00 1

Μ

Закрепления

	В плоскости Ү	В плоскости Z
вверху	шарнирное	шарнирное
внизу	шарнирное	шарнирное


 Позиция
 t416
 Страница
 293

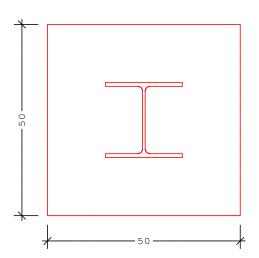
 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/416
 Версия
 2025.000

в плоскости Ү

в плоскости Z

b₀


Сечение

Ширина Высота

Двутавр 20К1 Ширина Высота Толщина полок Толщина стенки h_0 50.0 CMFOCT P 57837-2017 b = 199 MM h = 196MM 10.0 tf MM 6.5 t_w MM

50.0

CM

Нагрузки

Nº	Вид нагрузки	γf	Группа	Знак
1	Постоянная	1.10		
2	Ветровая	1.40		

Вертикальные силы

$N_{\tilde{0}}$	V
	[кН]
1	2000.0

Горизонтальные силы и моменты

Nº	X	H_{V}	$_{\rm H_{ z}}$	M_{V}	M_z
	[M]	[ĸĤ]	[ĸH]	[кНм]	[кНм]
2.1	4.00			80.0	80.0
2.2	4.00			50.0	50.0
2.3	4.00			25.0	25.0

За номером нагрузки указан номер формы колебаний

Позиция	t416		Страниц	a 294
Проект	СТАТИКА тест всех модулей			28.10.2024
Разраб.	Разработчик	СТАТИКА/416	Версия	2025.000

<u>Материалы</u>	Бетон Арматура	В 25 (тяжелый) А500
	Сопротивление бетона Сопротивление арматуры	$R_{b} = 14.50$ MIIa $R_{s} = 435$ MIIa $R_{sc} = 400$ MIIa
	Коэффициент условий работы	$\gamma_b = 1.000 -$
	- · · ·	ехлинейная диаграмма ухлинейная диаграмма
	Модуль упругости бетона Модуль упругости арматуры	E _b = 30.0 ГПа E _s = 200 ГПа
	Сталь	C 255
	Сопротивление стали Модуль упругости стали Коэффициент условий работы Предельная деформация стали	R_{y} = 250 MMTa E = 206 Γ Ha γ_{c} = 1.000 $-$ ϵ_{lim} = 25.00 %.
Расчет	Согласно СП 63.13330.2018, СП	266.1325800.2016
	Учитывается влияние прогиба в	плоскости Z
Гибкость колонны	Расчетная длина Гибкост в пл. Y в пл. Y [м] [м] 4.00	ь в пл. Z [-] 28.7

Определение усилий от отдельных нагрузок

Определение наибольших усилий от комбинаций нагрузок

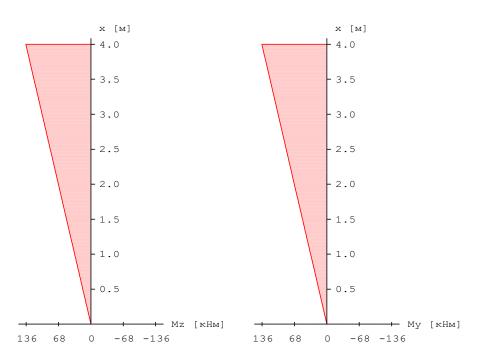
Выбор наиболее опасной комбинации нагрузок

Комбинация нагрузок и коэффициенты

1 (1.10) 2+ (1.40) За номером указан знак пульсационной составляющей

Проверка несущей способности колонны

Усилия от комбинации нагрузок и от её длительной части


J CHIJIVIA	OI KOMOMITAI	ции пагрузот	C M OI CC	длитсльнои	части	
x	N	M_{V}	M_z	N_{\perp}	M_{vl}	Mzl
[M]	[ĸH]	[кНм]	[кНм]	[ĸH]	[кҤ́м]	[кНм]
4.00	2200.00	136.63	136.63	2200.00	0.00	0.00
3.64	2200.00	124.21	124.21	2200.00	0.00	0.00
3.27	2200.00	111.79	111.79	2200.00	0.00	0.00
2.91	2200.00	99.37	99.37	2200.00	0.00	0.00
2.55	2200.00	86.95	86.95	2200.00	0.00	0.00
2.18	2200.00	74.53	74.53	2200.00	0.00	0.00
1.82	2200.00	62.11	62.11	2200.00	0.00	0.00
1.45	2200.00	49.69	49.69	2200.00	0.00	0.00
1.09	2200.00	37.26	37.26	2200.00	0.00	0.00
0.73	2200.00	24.84	24.84	2200.00	0.00	0.00
0.36	2200.00	12.42	12.42	2200.00	0.00	0.00
0.00	2200.00	0.00	0.00	2200.00	0.00	0.00

 Позиция
 t416
 Страница
 295

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/416
 Версия
 2025.000

Моменты в плоскости У в плоскости Z

Жесткости

Плоскость	E _b I _b	E _s I _s	EI _{st}
Z	155.13	0.00	7.70
Y	155.86	0.00	2.71

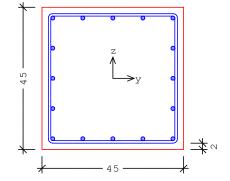
Расчетный момент в плоскости Z

	<u> </u>	113100100171				
Х	ϕ_1	δ_{e}	D	N _{cr}	η	η M $_{_{ abla}}$
[м]	[-]	[-]	[МНм2]	[ĸH]	[-]	[кНм]
4.00	1.80	0.15	29.79	18378.6	1.136	155.2
3.64	1.82	0.15	29.60	18256.2	1.137	141.2
3.27	1.83	0.15	29.39	18131.4	1.138	127.2
2.91	1.85	0.15	29.19	18003.9	1.139	113.2
2.55	1.86	0.15	28.98	17873.8	1.140	99.2
2.18	1.88	0.15	28.76	17740.9	1.142	85.1
1.82	1.90	0.15	28.54	17605.2	1.143	71.0
1.45	1.92	0.15	28.32	17466.6	1.144	56.8
1.09	1.94	0.15	28.09	17324.9	1.145	42.7
0.73	1.96	0.15	27.85	17180.1	1.147	28.5
0.36	1.98	0.15	27.61	17032.1	1.148	14.3
0.00	2.00	0.15	27.37	16880.8	1.150	0.0

Предельные усилия и κ оэффициент запаса

X	Nu	M_{yu}	M_{zu}	γu
[м]	[ĸH]	[кНм]	[кНм]	
4.00	2434.9	171.8	151.2	1.11
3.64	2615.1	167.9	147.7	1.19
3.27	2810.6	162.5	142.8	1.28
2.91	3019.4	155.4	136.4	1.37
2.55	3238.6	146.0	128.0	1.47
2.18	3464.0	134.0	117.3	1.57
1.82	3690.6	119.1	104.2	1.68
1.45	3915.4	101.2	88.4	1.78
1.09	4136.7	80.3	70.1	1.88
0.73	4353.3	56.4	49.2	1.98
0.36	4575.5	29.7	25.8	2.08
0.00	4831.7	0.0	0.0	2.20

 $N_u = \gamma_u N$, $M_{yu} = \gamma_u My$, $M_{zu} = \gamma_u M_z$


Несущая способность колонны обеспечена

Позиция	t416		Страниц	a 296
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/416	Версия	2025.000

Расчет выполнен модулем 416 программы СТАТИКА 2025 © ООО Техсофт

<u>Поз. t420</u> <u>Группа колонн</u>

<u>Колонны</u>	Длина колонн	1	=	6.00	М
	Расчетная длина в пл. Y в пл. Z	l _{0y} l _{0z}	=	6.00 6.00	M M
	Ширина сечения Высота сечения	b h	=	4 5 4 5	CM CM
	Число стержней Диаметр стержней Диаметр хомута Толщина защитного слоя	n _s d _s d _{sw} a ₃	= = =	16 12 8 20	– ММ ММ
	Площадь арматуры Коэффициент армирования	${f A_s} \ {f \mu_s}$	=	18.10 0.89	см2 %

Стержни: 16 **Ø**12

Хомут: ϕ 8

Защитный слой: 20 мм

Расчет

Согласно СП 63.13330.2018 Бетон.и железобетон.кон.

Бетон	в	25 (тяжелый)
Коэффициент услови:	й работы γ_{b}	= 0.765 -
Сопротивление бето:	на $\gamma_b R_b$	= 11.09 МПа
Для бетона прим	еняется трехлі	инейная диаграмма
Арматура	A50	00
Сопротивление арма	туры R _s	= 435 МПа
	Rs	$= 400$ M Π a
Для арматуры прим	еняется двухлі	инейная диаграмма

Проверка прочности колонн

Колонна	N	My	Mz	η_{y}	η_z	Коэффициент
	[ĸH]	[кНм]	[кНм]	_		надежности
1	500.0	100.0	100.0	1.123	1.123	1.188

Несущая способность колонны обеспечена

Расчет выполнен модулем 420 программы СТАТИКА 2025 © 000 Техсофт

ООО Техсофт, Москва

 Позиция
 t421
 Страница
 297

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/421
 Версия
 2025.000

Поз. t421 Расчет бетонного элемента

Сечение Прямоугольное сечение

Ширина b = 40.0 см Высота h = 80.0 см

Усилия относительно центральных осей бетонного сечения

N	M_{V}	M_z	N_{\perp}	M_{vl}	M_{z1}
[ĸH]	[кНм]	[кНм]	[ĸH]	[кні́м]	[кНм]
	50.0			50.0	

Расчет Согласно СП 63.13330.2018

Бетон В 25 (тяжелый) Коэффициент условий работы $\gamma_b = 0.900$ — Сопротивление бетона $\gamma_b R_b = 13.05$ МПа $\gamma_b R_{bt} = 0.95$ МПа

Для бетона применяется трехлинейная диаграмма

Предельные усилия

N_u	М _{уч}	M_{zu}	γu
[ĸH]	[кНм]	[кНм]	[-]
0.0	74.9	0.0	1.497

Нейтральная линия

у ₁ [см]	z ₁ [cm]	у2 [см]	z ₂ [cm]
0.00	50.60	40.00	50.60

Деформации бетона

Максимальная	деформация	Минимальная	деформация
ε [%.]	σ [MNa]	ε [%.]	σ [MΠa]
0.150	0.95	-0.087	-2.61

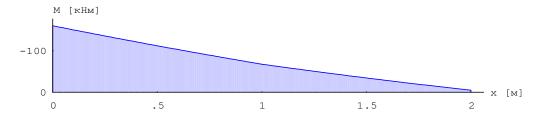
Прочность элемента обеспечена

Расчет выполнен модулем 421 программы СТАТИКА 2025 © ООО Техсофт

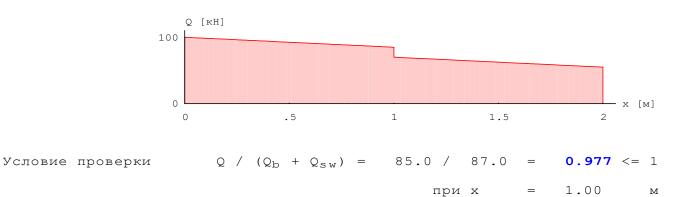
<u>Поз. t422</u> <u>Усиление наклонных сечений ж/б балки композитной а</u>

Балка

t422 Позиция 298 Страница СТАТИКА тест всех модулей 28.10.2024 Проект Дата Разработчик **СТАТИКА/422** Версия 2025.000 Разраб. -20b 20.0 Ширина сечения СМ Высота сечения 40.0 CMРасстояния до ц.т. арматуры 4.0 CMaн 4.0 CM d_{sw} 8 Диаметр хомутов MMЧисло ветвей хомута 2 n Шаг хомутов sw 20 СМ Длина приопорного участка 2.00 Усилия в опорном сечении Нагрузки Действующие усилия Проектные усилия M_{\circ} Qon Q_o M_{on} [кНм] [KH] [кНм] [KH] 160.0 100.0 180.0 130.0 Сосредоточенная Q Qn нагрузка [KH] [KH] [M] 20.0 1.00 15.0 Распределённая q q_n нагрузка [кН/м] [кН/м] 15.0 20.0 Согласно СП 63.13330.2018, СП 164.1325800.2014 Расчет В 25 (тяжелый) Коэффициент условий работы 1.000 γ_b A240 Стальная арматура Коэффициент условий работы 1.000 γs Характеристики композита

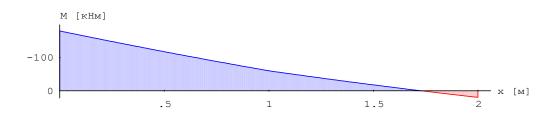

Тип	Вид	Эксплуатация	γf	γ _{f1}	γ _{f2}	γ_{f3}
Стеклокомпозит	Холст	В помещении	1.8	0.70	1.00	0.3
						_
	Число	слоёв композита		n	= 2	_
	Толши	на одного слоя		t _f	= 4.00	MM

Проект С	422 СТАТИКА тест Разработчик	всех мод	-	АТИКА/422		Ha	299 0.2024 5.000
Композ	итные хомуты	двухсто Высота	_	хомутов	h _{fw}	= 20.0	СМ
		-	вное соп упругост	ротивление и	R _{f,n} E _f	= 200.0 = 100	МПа ГПа
Учёт у	словия (6.79)	$R_{fw} <=$	$\gamma_{f4}R_{f}$				
R _b [МПа] 14.50	R _f [МПа] 77.8	R _{fw} [МПа] 58.3	L _f [MM] 8.8	k ₁ [-] 1.281	k ₂ [-] 0.956	γ _{f4} [-] 0.750	γ _{f4} R _f [MΠa] 58.3
		Расчётн	ое сопро	тивление	R _{fw}	= 58.3	МПа

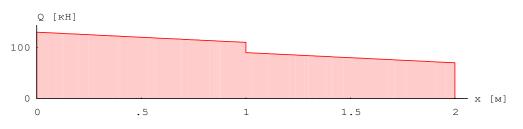

Расчётное сопротивление R_{fw}

Проверка несущей способности балки при действующих нагрузках

Изгибающий момент



Поперечная сила



Проверка несущей способности балки при проектных нагрузках

Изгибающий момент

Поперечная сила

ООО Техсофт, Москва

Позиция	t422		Страниц	a 300
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/422	Версия	2025.000

Условие проверки Q / (Q_b + Q_{sw}) = 110.0 / 87.0 = **1.265** > 1 при х = 1.00 м

Требуется усиление балки

Определение требуемой площади композитной арматуры

Площадь арматуры с учётом длины проекции наклонного сечения

Примечание. При определении требуемой площади арматуры учтено условие (6.86)

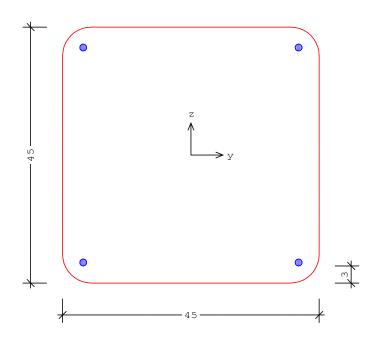
Проверка несущей способности усиленной балки при проектных нагрузках по условию Q / Q_u = Q / $(Q_b$ + Q_{sw} + Q_{fw}) <= 1 с учётом условия (6.85)

X	A _{fw} /s _f	С	Q	Qb	Qsw	Qfw	Q/Q _u
[M]	[см2/м]	[M]	[ĸH]	[ĸH]	[ĸH]	[ĸH]	[-]
0.360	10.46	0.360	122.8	113.4	23.1	8.3	0.848
0.688	10.46	0.684	116.2	59.7	43.8	15.8	0.974
0.967*	10.46	0.967	110.7	42.2	46.1	22.3	1.000
1.016	1.87	1.016	89.7	40.2	46.1	4.2	0.991
1.344	0.00	1.080	83.1	37.8	46.1	0.0	0.990
1.672	0.00	1.080	76.6	37.8	46.1	0.0	0.912
2.000	0.00	1.080	70.0	37.8	46.1	0.0	0.834

^{*} сечение с наибольшим значением $\mathrm{Q}/\mathrm{Q}_{\mathrm{u}}$

Несущая способность балки обеспечена

Расчет выполнен модулем 422 программы СТАТИКА 2025 © 000 Техсофт


<u>Поз. t423</u> <u>Усиление ж/б колонны композитной арматурой</u>

Расчётная схема	Длина колон	ны	1	=	6.00	М
Закрепления		В плоскости	Y	В	плоско	сти Z
	Вверху	шарнирно	е		шарн	ирное
	Внизу	шарнирно	е		шарн	ирное
Сечение	Ширина сече	ния	b	=	45.0	CM
	Высота сече	ния	h	=	45.0	CM
	Радиус закр	угления углов	r	=	5.0	CM
	Диаметр арм	атуры	ds	=	12	MM
	Толщина заш	итного слоя	a ₃	=	30	MM

 Позиция
 t423
 Страница
 301

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

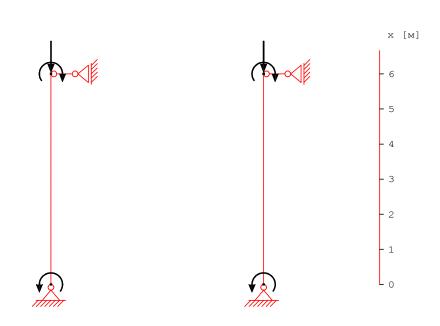
 Разраб.
 Разработчик
 СТАТИКА/423
 Версия
 2025.000

Нагрузки

N ₀	Вид нагрузки	γ _f
1	Постоянная	1.10

Вертикальные силы

N ₀	N
	[ĸH]
1	2500.0


Горизонтальные силы и моменты

Nº	X	H_{V}	$_{\rm H_{Z}}$	M_{V}	M_z
	[м]	[ĸĤ]	[ĸH]	[кНм]	[кНм]
1	0.00			-50.0	-50.0
	6.00			50.0	50.0

Нагрузка 1

в плоскости Ү

в плоскости Z

 Позиция
 t423
 Страница
 302

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/423
 Версия
 2025.000

Расчёт

Согласно СП 63.13330.2018, СП 164.1325800.2014

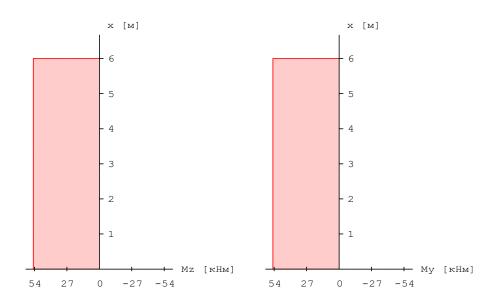
Бетон В 25 (тяжелый) Коэффициент условий работы γ_b = 1.000 — Сопротивление бетона $\gamma_b R_b$ = 14.50 МПа Для бетона применяется трёхлинейная диаграмма

 $\gamma_{\rm s} R_{\rm sc} = 350$ МПа Для арматуры применяется двухлинейная диаграмма

Композитная арматура

Тип	Вид	Эксплуатация	γf	γ _{f1}	γ _{f2}
Углекомпозит	Холст	В помещении	1.2	0.9	1.0
	Толщина од	ного слоя	t _f	= 0.50	ММ
	-	Нормативное сопротивление Сопротивление согласно (5.1)		=1500.0 =1125.0	МПа МПа

Выбор расчётной комбинации нагрузок


Расчётная комбинация Номер нагрузки (Коэффициент) 1 (1.10)

Определение усилий в колонне

Усилия от полной нагрузки и от её длительной части (с учётом еа)

х	N	M_{V}	M_z	Nl	M _{vl}	M _{zl}
[M]	[ĸH]	[кНм]	[кНм]	[ĸH]	[кҤ́м]	[кНм]
6.00	2750.00	55.00	55.00	2750.00	55.00	55.00
5.25	2750.00	55.00	55.00	2750.00	55.00	55.00
4.50	2750.00	55.00	55.00	2750.00	55.00	55.00
3.75	2750.00	55.00	55.00	2750.00	55.00	55.00
3.00	2750.00	55.00	55.00	2750.00	55.00	55.00
2.25	2750.00	55.00	55.00	2750.00	55.00	55.00
1.50	2750.00	55.00	55.00	2750.00	55.00	55.00
0.75	2750.00	55.00	55.00	2750.00	55.00	55.00
0.00	2750.00	55.00	55.00	2750.00	55.00	55.00

Изгибающие моменты в плоскости Y в плоскости Z

 Позиция
 t423
 Страница
 303

 Проект
 CTATИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 CTATИКА/423
 Версия
 2025.000

Определение расчётных изгибающих моментов

Учитывается влияние прогибов в плоскостях Y и Z

Расчётная длина в пл. Y $l_{0Y} = 6.00$ м в пл. Z $l_{0Z} = 6.00$ м

Расчётный момент в плоскости У

X	φ1	δ _e	D	N _{cr}	η	η M $_z$	η M _z /hN
[M]	[-]	[-]	[МНм2]	[ĸH]	[-]	[кНм]	[-]
6.00	2.000	0.150	18.85	5167.8	2.137	117.6	0.095
5.25	2.000	0.150	18.85	5167.8	2.137	117.6	0.095
4.50	2.000	0.150	18.85	5167.8	2.137	117.6	0.095
3.75	2.000	0.150	18.85	5167.8	2.137	117.6	0.095
3.00	2.000	0.150	18.85	5167.8	2.137	117.6	0.095
2.25	2.000	0.150	18.85	5167.8	2.137	117.6	0.095
1.50	2.000	0.150	18.85	5167.8	2.137	117.6	0.095
0.75	2.000	0.150	18.85	5167.8	2.137	117.6	0.095
0.00	2.000	0.150	18.85	5167.8	2.137	117.6	0.095

Расчётный момент в плоскости Z

Х	φ_1	δ _e	D	N _{cr}	η	η M $_{ m V}$	η M $_{ m V}$ /hN
[M]	[-]	[-]	[МНм2]	[ĸH]	[-]	[кНм]	
6.00	2.000	0.150	18.85	5167.8	2.137	117.6	0.095
5.25	2.000	0.150	18.85	5167.8	2.137	117.6	0.095
4.50	2.000	0.150	18.85	5167.8	2.137	117.6	0.095
3.75	2.000	0.150	18.85	5167.8	2.137	117.6	0.095
3.00	2.000	0.150	18.85	5167.8	2.137	117.6	0.095
2.25	2.000	0.150	18.85	5167.8	2.137	117.6	0.095
1.50	2.000	0.150	18.85	5167.8	2.137	117.6	0.095
0.75	2.000	0.150	18.85	5167.8	2.137	117.6	0.095
0.00	2.000	0.150	18.85	5167.8	2.137	117.6	0.095

Предельные усилия $N_u = \gamma_u N$, $M_{yu} = \gamma_u M_y$, $M_{zu} = \gamma_u M_z$

γu	M_{zu}	M_{yu}	N_u	X
	[кНм]	[кНм]	[ĸH]	[м]
0.769	90.4	90.4	2115.3	6.00
0.769	90.4	90.4	2115.3	5.25
0.769	90.4	90.4	2115.3	4.50
0.769	90.4	90.4	2115.3	3.75
0.769	90.4	90.4	2115.3	3.00
0.769	90.4	90.4	2115.3	2.25
0.769	90.4	90.4	2115.3	1.50
0.769	90.4	90.4	2115.3	0.75
0.769	90.4	90.4	2115.3	0.00

Требуется усиление колонны

Определение требуемой композитной арматуры

Усиление колонны проводится путём устройства обоймы из композитного материала

Периметр сечения u = 171.4 см Π лощадь сечения A = 2019.6 см2 U

Площадь поперечного сечения обоймы из композита $A_{\text{f}} \; = \; n_{\text{f}} t_{\text{f}} u \; = \; 25.7 \qquad \text{cm} 2$

Коэффициент армирования $\mu_{\text{f}} = A_{\text{f}} / A = 1.27$ % Коэффициент эффективности $k_{\text{ef}} = 0.393$ —

ООО Техсофт, Москва

 Позиция
 t423
 Страница
 304

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/423
 Версия
 2025.000

Характеристики диаграммы состояния сжатого бетона $R_{\text{b3}} = R_{\text{b}} + k_{\text{ef}} k_{\text{e}} R_{\text{f}} \mu_{\text{f}} = 20.14 \quad \text{МПа}$ $\epsilon_{\text{b3}} = 2.95 \quad \text{%.}$ $\epsilon_{\text{b2}} = 5.17 \quad \text{%.}$

Предельные усилия

$\gamma_{ m u}$	M_{zu}	M _{yu}	Nu	Х
	[кНм]	[кНм]	[ĸH]	[м]
1.057	124.2	124.2	2906.2	6.00
1.057	124.2	124.2	2906.2	5.25
1.057	124.2	124.2	2906.2	4.50
1.057	124.2	124.2	2906.2	3.75
1.057	124.2	124.2	2906.2	3.00
1.057	124.2	124.2	2906.2	2.25
1.057	124.2	124.2	2906.2	1.50
1.057	124.2	124.2	2906.2	0.75
1.057	124.2	124.2	2906.2	0.00

Мин.коэффициент надёжности $\gamma_u = 1.057$ - при х = 0.00 м

Деформации бетона

Максимальная	деформация	Минимальная	деформация
ε [%.]	σ [MNa]	ε [%.]	σ [ΜΠα]
1.74	0.00	-5.17	-20.14

Деформации стали

Максимальная	деформация	Минимальная	деформация
ε [%.]	σ [MΠa]	ε [%.]	σ [MΠa]
1.39	277.39	-4.82	-350.00

Несущая способность колонны обеспечена

Расчет выполнен модулем 423 программы СТАТИКА 2025 © 000 Техсофт

Поз. t425 Каменные конструкции

Вид расчета Расчет кладки на смятие

Расчетный случай Смятие стены при опирании

Смятие стены при опирании конца балки на распределительную плиту через прокладку

Толщина стены h = 60.0

Расстояние между осями балок b = 150.0 см

СМ

Длина балки 1 = 6.00 м

Жесткость балки ЕІ = 10.000 МНм2 Закрепление другого конца балки защемление

Распределенные нагрузки на балку

Nº	OT X	до х	q
	[M]	[M]	[кН/м]
1	0 00	6 00	50 00

Материал распределительной плиты железобетон Класс бетона B20 Класс арматуры A240 lp 50.0 Длина плиты CM bp 40.0 Ширина плиты = CMhp 25.0 = Высота плиты СМ 27.5 Начальный модуль упругости E_b ГΠа ln Длина прокладки = 20.0 CMbn Ширина прокладки 15.0 СМ

ООО Техсофт, Москва

 Позиция
 t425
 Страница
 305

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/425
 Версия
 2025.000

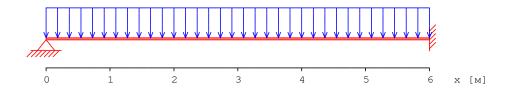
Расчет

Согласно СП 15.13330.2012 с Изменениями № 1,2,3

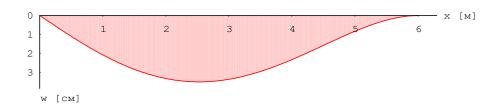
 Марка кирпича
 150

 Марка раствора
 75

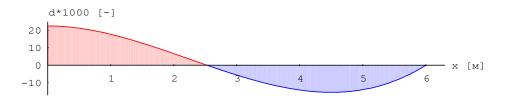
Расчетное сопротивление R принимается по таблице 2

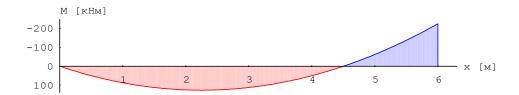

R = 2.000 МПа

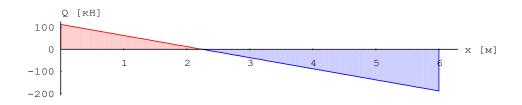
Упругая характеристика


 $\alpha = 1000$

Определение усилия в опорном сечении балки


Нагружение балки


Прогиб балки


Поворот сечения

Изгибающий момент

Поперечная сила

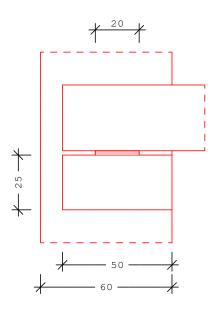
 Позиция
 t425
 Страница
 306

 Проект
 CTATИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 CTATИКА/425
 Версия
 2025.000

Опорная реакция

 $Q_0 = 112.5$


кН

Проверка прочности при смятии согласно Пособию к СНиП II-22-81, 4.18

Модуль упругости плиты $E_p = 0.85 E_b = 23.38$ ГПа Модуль упругости кладки $E = 0.5 \alpha R_u = 2.00$ ГПа Временное сопротивление кладки $R_u = 4.00$ МПа

Высота пояса кладки, эквивалентного по жесткости распределительной плите

распределительной плите $H_0 = 2 (E_p I_p / Ed)^{1/3} = 2 (E_p h_p^3 / 12E)^{1/3} = 49.56$ см

Фиксирующая прокладка размещается по центральным осям распределительной плиты

Давление на распределительную плиту под прокладкой принимается равномерным

Распределение напряжений под плитой вдоль оси балки по таблице 6

Схема	a	b	d	σ_{max}	ψ_1
табл.6	[см]	[см]	[CM]	[M∏a]	[-]
8	25.00	20.00	40.00	0.608	0.925

$$a = l_p/2$$
, $b = l_n$, $d = b_p$

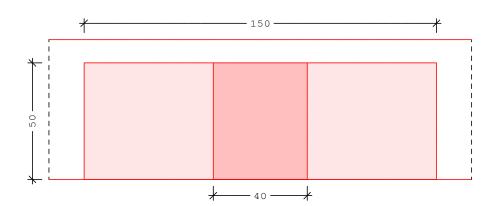

Распределение напряжений под плитой вдоль оси стены по таблице 6

Схема	a	b	d	σ_{max}	Ψ2
табл.6	[CM]	[CM]	[CM]	[МПа]	[-]
8	20.00	15.00	50.00	0.593	0.948

$$a = b_p/2$$
, $b = b_n$, $d = l_p$

Позиция t425 307 Страница СТАТИКА тест всех модулей 28.10.2024 Проект Дата Разработчик **СТАТИКА/425** Версия 2025.000 Разраб.

Площадь смятия \mathbf{A}_{C} и расчетная площадь \mathbf{A}

Данные для расчета на смятие

A _C	А	ξ	ξ ₁	Ψ	d	R _c
[см2]	[см2]	[-]	[-]	[-]	[-]	[МПа]
2000.0	7500.0	1.554	2.00	0.877	1.062	3.107

 $\psi = \psi_1 \psi_2$ - коэффициент полноты эпюры давления

Условие прочности

 $Q_0 / (\psi dR_c A_c) = 0.194 <= 1$

Прочность кладки обеспечена

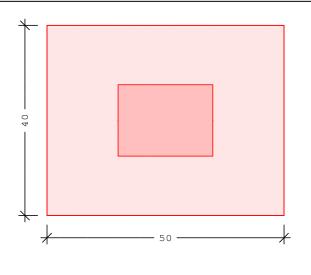
Проверка допустимости напряжений под плитой согласно Пособию, 4.22

Условие (28)
$$\sigma_{\text{max}}/\text{(0.8}\xi R_{\text{u}}) = 0.608/\text{(0.8} * 1.554 * 4.00) = 0.122 <= 1$$

Расчет на смятие распределительной плиты согласно СП 63.13330.2018

Расчетные сопротивления
$$R_{\rm b} = 11.50 \,$$
 МПа $R_{\rm s} = 210 \,$ МПа Размеры площади смятия $c_{\rm x} = 20.0 \,$ см $c_{\rm y} = 15.0 \,$ см

Предельная сила при отсутствии косвенной арматуры


$$N_b = \psi R_b,_{1oc} C_x C_y = 712.6$$
 кН $\psi = 1.00$ - $R_b,_{1oc} = \phi_b R_b = 23.75$ МПа $\phi_b = 0.8 (A_b,_{max}/C_x C_y)^{1/2} = 2.07$ - $A_b,_{max} = 2000$ см2

Площадь смятия $c_x c_y$ и расчетная площадь A_b , max

 Позиция
 t425
 Страница
 308

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/425
 Версия
 2025.000

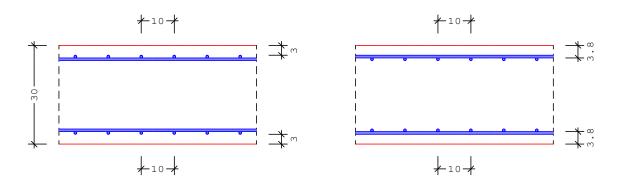
Условие прочности (8.80)

 $Q_0 / N_b = 0.158 <= 1$

По расчету на смятие арматура не требуется

Расчет выполнен модулем 425 программы СТАТИКА 2025 © 000 Техсофт

Поз. t427	Подбор продольной арматуры в плитах и стенах EN
1103. t -1 27	riogoop ripogoribrion apinaryphi b risiniax ii orciiax En


Плита	Высота плиты	h	=	30.0	СМ
	Диаметр арматуры верхней по оси х нижней по оси х верхней по оси у нижней по оси у	d _{sx,B} d _{sx,H} d _{sy,B} d _{sy,H}	= =		MM MM MM
	Шаг арматуры верхней по оси х нижней по оси х верхней по оси у нижней по оси у	S _{X,B} S _{X,H} S _{Y,B} S _{Y,H}	= =	10 10 10	CM CM CM
	Погонная площадь арматуры верхней по оси х нижней по оси х верхней по оси у нижней по оси у	A _{sx, H}	= =	5.03 5.03 5.03 5.03	см2/м
	Толщина защитного слоя верхнего нижнего	C _{nom, I}		3 0 3 0	MM MM

 Позиция
 t427
 Страница
 309

 проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/427
 Версия
 2025.000

Сечения плиты, нормальные к осям х и у

Расчет

согласно MSZ EN 1992-1-1

Бетон Арматура C20/25 S500

Проверка прочности при действии моментов Мх, Му, Мху

Условия прочности $M_{\rm x}/M_{\rm xu} <= 1$, $M_{\rm v}/M_{\rm vu} <= 1$

K	M _×	N×	My	Ny	M _{×u}	M _{yu}	M_x/M_{xu}	M_y/M_{yu}
	[кНм/м]	[кН/м]	[кНм/м]	[кН/м]	[кНм/м]	[кНм/м]		
1	10.0	0.0	10.0	0.0	59.4	59.0	0.168	0.170

Условие прочности

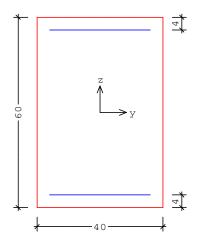
$$M_{xy} \cdot M_{xy}$$
 / $(|M_{xu} - M_{x}| \cdot |M_{yu} - M_{y}|) <= 1$

	K	M_{\times}	M_{V}	M _{X V}	Условие
		[кНм/м]	[кНм/м]	[кНм/м]	прочности
ſ	1	10.0	10.0	10.0	0.041 <= 1

Прочность плиты обеспечена

Расчет выполнен модулем 427 программы СТАТИКА 2025 © 000 Техсофт

Поз. t428


Усиление ж/б элемента композитной арматурой

Сечение

 Позиция
 t428
 Страница
 310

 проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/428
 Версия
 2025.000

40.0 Ширина сечения b CM60.0 Высота сечения CM cm^2 Площадь стальной арматуры $A_{s\, s}$ 5.00 см² A_{sH} 10.00 4.00 Расстояние до ц.т. арматуры $a_{\mathtt{B}}$ СМ 4.00 СМ $a_{\rm H}$

Усилия

Относительно центральных осей бетонного сечения

ſ	Действующие усилия		Проектные	усилия
	N	M	Nn	Mn
	[KH]	[кНм]	[ĸH]	[кНм]
ſ		100.0		300.0

Расчет

Согласно СП 63.13330.2018, СП 164.1325800.2014

Бетон В 25 (тяжелый) Коэффициент условий работы $\gamma_b = 1.000$ — Сопротивление бетона $\gamma_b R_b = 14.50$ МПа Для бетона применяется трехлинейная диаграмма

Стальная арматура **А500** Коэффициент условий работы $\gamma_s = 1.000$ — Сопротивление арматуры $\gamma_s R_s = 435$ МПа $\gamma_s R_{sc} = 400$ МПа Для арматуры применяется двухлинейная диаграмма

Композитная арматура

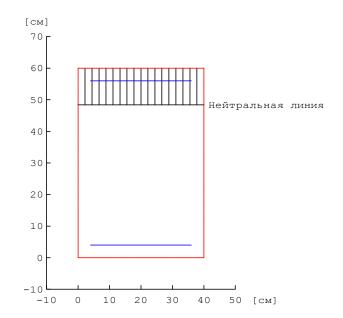
Тип	Вид	Эксплуатация	γf	γ _{f1}	γ _{f2}	γf3
Углекомпозит	Ламинат	В помещении	1.2	0.95	0.900	0.8
	Число	слоёв композита		n	= 3	_
	Толщин	а одного слоя		t _f	= 0.20	MM
	Сопрот	ивление арматур		$R_{f,n}$	=1000.0	МΠа
		$R_f = \gamma$	flyf2Rf	n / γ_f	= 712.5	МΠа
	Модуль	упругости		Εf	= 150	ГΠа
	Предел	ьная деформация		ε _{f,ul}	t = 4.750	응.

Проверка несущей способности элемента при действующих усилиях

Предельные усилия

N	M	Nu	Mu	γu
[ĸH]	[кНм]	[ĸH]	[кНм]	
0.0	100.0	0.0	229.9	2.299
$N_u = \gamma_u N_u$	$M_u = \gamma_u M$			

ООО Техсофт, Москва


 Позиция
 t428
 Страница
 311

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/428
 Версия
 2025.000

Определение деформаций от действующих усилий

Сжатая зона

Деформация

 $\varepsilon(z) = -0.02162z + 0.397$, %.

Деформация бетона

пенжиН	сторона	Верхняя	сторона
ε [%.]	σ [MΠa]	ε [%.]	σ [MΠa]
1.046	0.00	-0.251	-7.54
1일 = 0 1일 =	= 0 001		

Деформация стальной арматуры

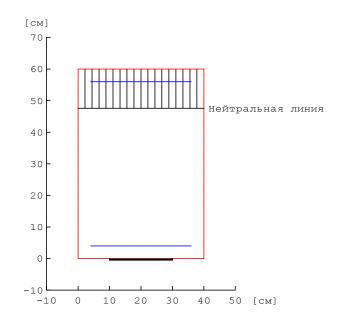
нижняя	арматура	Верхняя	арматура
ε [%.]	σ [M Π a]	ε [%.]	σ [M∏a]
0.959	191.9	-0.165	-33.0

Проверка несущей способности элемента при проектных усилиях

Предельные усилия

N _n [кН]	M _n	Nu	M _u	γ _u
[ĸH]	[кНм]	[ĸH]	[кНм]	
0.0	300.0	0.0	229.9	0.766
$N_{u} = \gamma_{u} N_{n},$	$M_u = \gamma_u M_n$			_

Требуется усиление элемента


Определение требуемой площади композитной арматуры

 Позиция
 t428
 Страница
 312

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

Разработчик СТАТИКА/428 Версия **2025.000**

Сжатая зона

Расстояние от нижней стороны до нейтральной линии $a_0 = 47.6$ см

Деформация

 $\varepsilon(z) = -0.12184z + 2.141, %$

Деформация бетона

	Нижняя	сторона	Верхняя	сторона
	ε [%.]	σ [MNa]	ε [%.]	σ [MΠa]
I	5.796	0.00	-1.514	-12.85

Деформация стальной арматуры

Нижняя	арматура	Верхняя	арматура
ε [%.]	σ [MПа]	ε [%.]	σ [MΠa]
5.309	435.0	-1.027	-205.4

Деформация композитной арматуры

ε [%.]	σ [MΠa]
4.750*	712.5

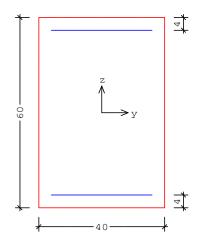
^{*} Предельная деформация

Требуемая площадь арматуры $A_{f} = 2.00$ см²

Расчет выполнен модулем 428 программы СТАТИКА 2025 © ООО Техсофт

Поз. t429 Усиление ж/б балки композитной арматурой

Расчётная схема Однопролётная балка


Длина балки 1 = 6.00 м

 Позиция
 t429
 Страница
 313

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

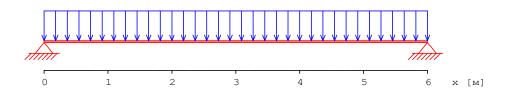
 Разраб.
 Разработчик
 СТАТИКА/429
 Версия
 2025.000

Сечение

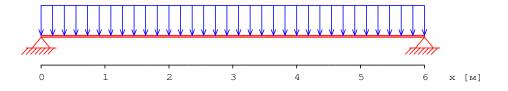
Ширина сечения Высота сечения b = 40.0 CM h = 60.0 CM

Стальная арматура

OT X	до х	A _{s B}	A _{s H}	а _в	а _н
[M]	[M]	[CM2]	[CM2]	[CM]	[CM]
0.00	6.00	5.00	10.00	4.00	4.00


Нагрузки

Nº	Вид нагрузки	γ _f
1	Постоянная	1.10


Распределенные нагрузки

N ₀	OT X	до х	q	q_n
	[M]	[M]	[кН/м]	[кН/м]
1	0.00	6.00	10.00	50.00

Действующая нагрузка 1

Проектная нагрузка 1

 Позиция
 t429
 Страница
 314

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/429
 Версия
 2025.000

Расчет

Согласно СП 63.13330.2018, СП 164.1325800.2014

Бетон В 25 (тяжелый) Коэффициент условий работы $\gamma_b = 1.000$ — Сопротивление бетона $\gamma_b R_b = 14.50$ МПа Для бетона применяется трехлинейная диаграмма

Для арматуры применяется двухлинейная диаграмма

Композитная арматура

Тип	Вид	Эксплуатация	γf	γ _{f1}	γ _{f2}	γ _{f3}
Углекомпозит	Ламинат	В помещении	1.2	0.95	0.785	0.8
	Число	слоёв композита		n	= 3	-
	Толщин	а одного слоя		t _f	= 0.30	MM
	Нормат	ивное сопротивле	ение	$R_{f,n}$	=1000.0	МΠа
	Сопрот	ивление согласно	o (5.1)	R _f	= 621.8	МΠа
				R _{f,II}	= 746.2	МΠа
			(5.3)	R _{fl}	= 597.0	МΠа
	Модуль	упругости		Εf	= 150	ГПа

Проверка несущей способности балки при действующих нагрузках

Предельный момент $M_u = \gamma_u M$

OT X	до х	M_	M ₊	M _u _	M _{u+}	γ _u –	γ _{u+}
[M]	[M]	[кНм]	[кНм]	[кНм]	[кНм]		
0.00	6.00		49.5		229.9		4.645

Определение деформации на растянутой стороне сечения

Деформация

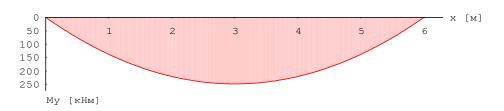
OT X	до х	Сторона	εο
[M]	[M]		[%.]
0.00	6.00	пижняя	0.471

Примечание. Учтено указание 6.1.6

Проверка несущей способности балки при проектных нагрузках

Предельный момент M_u = $\gamma_u M$

OT X	до х	M_{\perp}	M_{+}	M ₁₁ _	$M_{11} +$	γ _u –	γ _{u+}
[м]	[M]	[кНм]	[кНм]	[кНм]	[кНм]	-	
0.00	6.00		247.5		229.9		0.929


Требуется усиление балки

Определение требуемой площади композитной арматуры

 Расчетная комбинация
 Номер нагрузки (Коэффициент)

 1 (1.10)

Изгибающий момент от расчетной комбинации проектных нагрузок

ООО Техсофт, Москва

Позиция t429 Страница 315 Проект СТАТИКА тест всех модулей дата 28.10.2024 Разраб. Разработчик СТАТИКА/429 Версия 2025.000

Требуемая площадь	OT X	до х	Арматура	Af
композитной арматуры	[M]	[M]		[см2]
	0.00	6.00	нижняя	0.75

Размещение арматуры

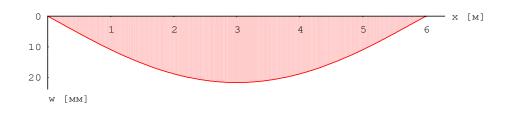
Определение прогиба балки при действии проектных нагрузок

 Норматив. комбинация
 Номер нагрузки (Коэффициент)

 1 (1.00)

Момент при образовании трещин

OT X	до х	M_{max}	M_{crc}
[M]	[M]	[кНм]	[кНм]
0.00	6.00	225.0	73.5

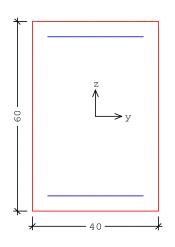

Кривизна

от нормативной комбинации проектных нагрузок

Прогиб

от нормативной комбинации проектных нагрузок

Прогиб балки f = 21.6 мм


Расчет выполнен модулем 429 программы СТАТИКА 2025 © ООО Техсофт

t430 Позиция 316 Страница СТАТИКА тест всех модулей 28.10.2024 Проект Дата Разработчик **СТАТИКА/430** Версия 2025.000 Разраб.

Поз. t430

Сечение с композитной арматурой

Сечение

Ширина сечения Высота сечения b 40 60 CMCM

Усилия

K	N	M_{V}
	[KH]	[кНм]
1		300.0

Расчет

Согласно СП 63.13330.2018, СП 295.1325800.2017

Бетон Коэффициент условий работы Сопротивление бетона Для бетона

0.900 γ_b $\gamma_b R_b$ = 13.05 МΠа применяется трехлинейная диаграмма

В 25 (тяжелый)

=

Композитная арматура

Нормативное сопротивление Расчетное сопротивление Модуль упругости

 R_{fn} = 900МΠа = 700 R_{f} МΠа = 100 E_f ГΠа

Подбор арматуры по условиям прочности и трещиностойкости

Данные для подбора

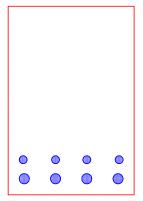
d _{min}	d _{mах} [мм]	n_{max}	а _{min} [мм]
10	32	4	0

Подобранная арматура

Место	Ряд	n	df	Af
			[MM]	[см2]
Внизу	1-й	4	32	32.17
	2-й	4	25	19.63

Защитный слой внизу

35 азн


MM

 Позиция
 t430
 Страница
 317

 проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/430
 Версия
 2025.000

Подобранная арматура

Стержни: 1-й ряд 4 ϕ 32 2-й ряд 4 ϕ 25 Защитный слой: азн = 35 мм

Проверка прочности сечения с подобранной арматурой

Расстояние до ц.т. арматуры $a_{\rm H} = 7.39$ см

Предельные усилия

K	N _u	M _{yu}	γ _u
	[ĸH]	[кни]	
1	0.0	526.2	1.754

Прочность сечения обеспечена

Проверка трещиностойкости сечения

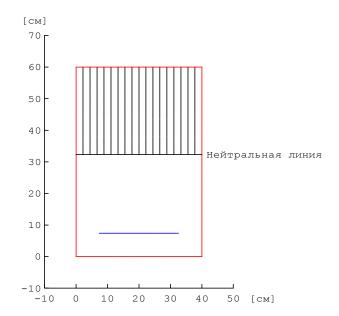
Предельная ширина Непродолжительное раскрытие $a_{\text{crc1}} = 0.40$ мм раскрытия трещин Продолжительное раскрытие $a_{\text{crc2}} = 0.20$ мм

К 1 Усилия при образовании трещин

N	My	Nı	Myl	N _{crc}	M _{y,crc}
[KH]	[кНм]	[ĸH]	[кЁм]	[ĸH]	[кнм]
	200.0		200.0		83.7

Результаты расчета усилий при образовании трещин

Нейтральная линия У1 Z1


У1	z ₁	У2	z ₂
[CM]	[CM]	[CM]	[CM]
0.00	32.34	40.00	32.34

Сжатая зона

 Позиция
 t430
 Страница
 318

 проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/430
 Версия
 2025.000

Кривизна

 $\kappa_{y} = 0.00046 1/M$

Деформации бетона

Максимальная	деформация	Минимальная	деформация
ε [%.]	σ [MNa]	ε [%.]	σ [ΜΠα]
0.15	1.55	-0.13	-3.85

Деформации композитной арматуры

	Максимальная	деформация	Минимальная	деформация
ы	ε [%.]	σ [MNa]	ε [%.]	σ [МПа]
	0.12	11.6	0.12	11.6

Ширина раскрытия трещин

$\sigma_{ t f, crc}$	$\sigma_{ t f}$	$\sigma_{ t f l}$	Abt	A _{ft}	d_{f}	lf	a _{crc}	a _{crc,1}
[МПа]	[МПа]	[МПа]	[cm2]	[CM2]	[MM]	[CM]	[MM]	[MM]
34.5	82.6	82.6	1200.0*	51.80	28.9#	33.5	0.181	0.181

- * Учтены ограничения на высоту растянутой зоны
- # Приведенный диаметр $d_f = \Sigma (n_i * d_{fi} * d_{fi}) / \Sigma (n_i * d_{fi})$

Трещиностойкость сечения обеспечена

Расчет выполнен модулем 430 программы СТАТИКА 2025 © 000 Техсофт

t431 Позиция 319 Страница СТАТИКА тест всех модулей 28.10.2024 Проект Дата Разработчик **СТАТИКА/431** Версия 2025.000 Разраб.

Поз. t431 Плита с композитной арматурой

Плита Толщина плиты h 25 СМ

Согласно СП 63.13330.2018, СП 295.1325800.2017 Расчет

> Бетон В 25 (тяжелый) Коэффициент условий работы γ_b = 0.900 = 13.05 Сопротивление бетона $\gamma_b R_b$ МΠа Для бетона применяется трехлинейная диаграмма

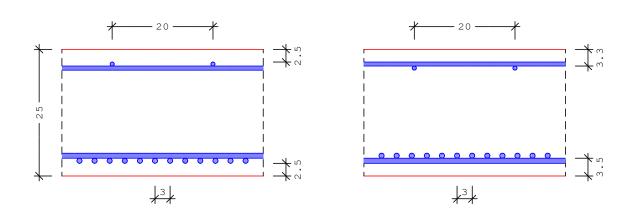
> Нормативное сопротивление R_{fn} = 900 МΠа

Композитная R_{f} арматура Расчетное сопротивление = 700 МΠа Модуль упругости Εf = 100ГΠа

Площадь арматуры, требуемой по условию прочности

AfxB	Аfхн	AfyB	А _{fун}
[см2/м]	[см2/м]	[CM2/M]	[см2/м]
1.43	7.17	1.43	7.49

Подбор арматуры по условиям прочности и трещиностойкости


Данные для подбора арматуры

min d _f	max d _f	min s	max s	min a _s
[MM]	[MM]	[CM]	[CM]	[MM]
8	20	3	20	25

Подобранная арматура по осям х и у

Ось	Арматура	d _f	Шаг	Af	a _s	h ₀	$\mu_{ extsf{f}}$
		[MM]	[CM]	[см2/м]	[MM]	[CM]	[%]
X	верхняя	8	20	2.51	25	22.1	0.11
X	прижняя	10	3	26.18	25	22.0	1.19
У	верхняя	8	20	2.51	33	21.3	0.12
У	прижия	10	3	26.18	35	21.0	1.25

Сечения плиты, нормальные к осям х и у

Проверка прочности

Условия прочности $M_{\rm x}/M_{\rm x\,u}$ <= 1, $M_{\rm y}/M_{\rm y\,u}$ <= 1

K	M_{x}	My	M _{xu}	М _{уи}	M_x/M_{xu}	M_y/M_{yu}
	[кНм/м]	[кНм/м]	[кНм/м]	[кНм/м]		
1	50.0	50.0	194.4	179.3	0.257	0.279

 Позиция Проект
 t431
 Страница
 320

 Проект Разраб.
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Версия
 СТАТИКА/431
 Версия
 2025.000

Условие прочности $(|M_{xu}| - |M_x|) \cdot (|M_{yu}| - |M_y|)/M^2 - M_{xy} \cdot M_{xy}/M^2 >= 0$ при М = 194.4 кНм/м

K	M_{\times}	M_{V}	M _{X V}	Условие
	[кНм/м]	[кНм/м]	[кНм/м]	прочности
1	50.0	50.0	50.0	0.428 >= 0

Условие прочности

$$|M_{XY}| / M_{fXY}, u = 0.115 <= 1$$

Условие прочности

$$|M_{xy}| / M_{bxy,u} = 0.613 <= 1$$

Прочность плиты обеспечена

Проверка трещиностойкости

Предельная ширина раскрытия трещин

Непродолжительное раскрытие Продолжительное раскрытие $a_{crc1} = 0.40$ $a_{crc2} = 0.20$

MM MM

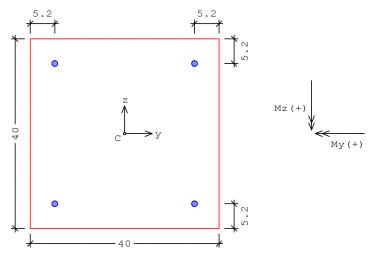
Расчет для сечения, нормального к оси х

K	M_{x}	M_{\times} l	$M_{x,crc}$	a_{crc}	a _{crc,1}
	[кНм/м]	[кНм/м]	[кНм/м]	[MM]	[MM]
1	50.0	50.0	31.5	0.110	0.110

Расчет для сечения, нормального к оси у

K	М _У	М _{уl}	M _{y,crc}	a _{crc}	a _{crc,1}
	[кНм/м]	[кНм/м]	[кНм/м]	[мм]	[MM]
1	50.0	50.0	30.8	0.118	0.118

Трещиностойкость плиты обеспечена


Расчет выполнен модулем 431 программы СТАТИКА 2025 © 000 ${\tt Texcoфt}$

Поз. t432

Подбор продольной арматуры

Сечение

Прямоугольное сечение

Ширина b = 40.0 см Высота h = 40.0 см

t432 Позиция 321 Страница 28.10.2024 СТАТИКА тест всех модулей Проект Дата Разработчик **СТАТИКА/432** Версия 2025.000 Разраб.

Усилия

относительно главных осей бетонного сечения

K	N _d	M _{yd}	Mzd
	[ĸH]	[кні]	[кНм]
1		100.0	

Расчет

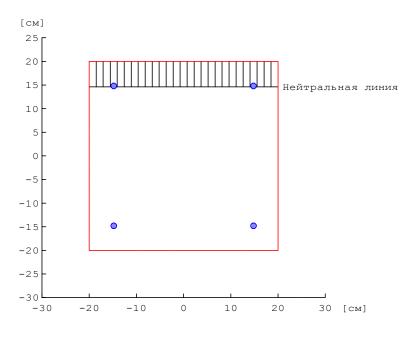
согласно MSZ EN 1992-1-1

Бетон Арматура	C25/30 S500
Предел текучести арматуры Предел прочности арматуры	$f_{yk} = 500$ МПа $f_{tk} = 525$ МПа
Предельная деформация	$\varepsilon_{uk} = 25$ %.
Расстояние до ц.т. арматуры	a = 5.2 cm

Требуемая арматура

Площадь на каждый угол 3.42 Общая площадь арматуры 13.70 0.86 Коэффициент армирования

Расчет для сочетания усилий К = 1


Предельные усилия

Nu	М _{уи}	М _{zи}	γu
[KH]	[кНм]	[кНм]	
0.0	100.0	0.0	1.000

Нейтральная линия

у ₁ [см]	z ₁ [cm]	у ₂ [см]	z ₂ [cm]
-20.00	14.60	20.00	14.60

Сжатая зона

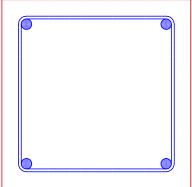
Кривизны

0.06485 / 0.00000 1/м κ_y / κ_z

Деформации бетона

Максимальная	симальная деформация		деформация	
ε [%.]	σ [MΠa]	ε [%.]	σ [MΠa]	
22.44	0.00	-3.50	-16.67	

Деформации стали


Максимальная	деформация	Минимальная	деформация
ε [%.]	σ [M∏a]	ε [%.]	σ [M∏a]
19.07	450.87	-0.13	-25.55

 Позиция Проект
 t432
 Страница
 З22

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/432
 Версия
 2025.000

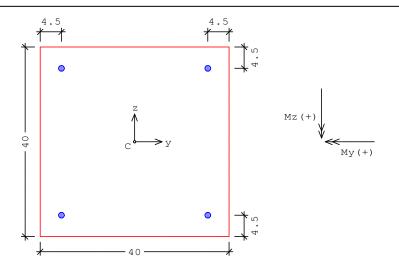
газрао. Тазраоотчик		CTATVIKA/432		Борой	" ZUZJ	.000
Конструирование	Данные для	подбора продольно	й армат	уры		
	d _{min} [мм]	d _{mах} [мм]	n _{max}			а _{min} [мм]
	8	40	12			25
	Диаметр по	перечной арматуры	d _{sw}	=	6	ММ
	Мин. толщи	на защитного слоя	c _{min}	=	25	MM
	Допускаемо	е отклонение	Δ C	=	10	MM
Выбранные стержни	Размещение	n	d _s [мм]		As	[см2]
	На угол	1	22			3.80
	Общее числ	о стержней	n _{tot}	=	4	-
	Общая площа	адь арматуры	A _{s,to}	t=	15.21	cm ²
	Коэффициен	г армирования	ρ	=	0.95	90
	Защитный с	пой бетона	C _{nom}	=	35	ММ
	0					

Стержни: 4 **Ф**22 Хомут: **Ф**6 Защитный слой: cnom = 35 мм

Проверка несущей способности сечения с выбранными стержнями

Предельные усилия

K	N _u [кН]	М _{уи} [кНм]	М _{z u} [кНм]	γ _u
1	0.0	110.0	0.0	1.100


Расчет выполнен модулем 432 программы СТАТИКА 2025 © ООО Техсофт

Поз. t433 Подбор продольной арматуры

Сечение Прямоугольное сечение

Позиция t433
Проект СТАТИКА тест всех модулей

Страница **323** Дата **28.10.2024** Версия **2025.000**

СТАТИКА/433

Ширина Высота b = 40.0h = 40.0 CM

CM

относительно главных осей бетонного сечения

 K
 N_d
 M_{yd}
 M_{zd}

 [κH]
 [κHM]
 [κHM]

 1
 1000.0
 100.0
 100.0

Расчет

Усилия

согласно ТКП EN 1992-1-1

Бетон Арматура	C25/30 s500
Предел текучести арматуры Предел прочности арматуры	$f_{yk} = 500$ МПа $f_{tk} = 525$ МПа
Предельная деформация	$\varepsilon_{uk} = 25$ %.
Расстояние до ц.т. арматуры	a = 4.5 CM
Плошаль на кажлый угол	$A_{-} = 1.48 \text{ cm}^2$

Требуемая арматура

Разработчик

Разраб.

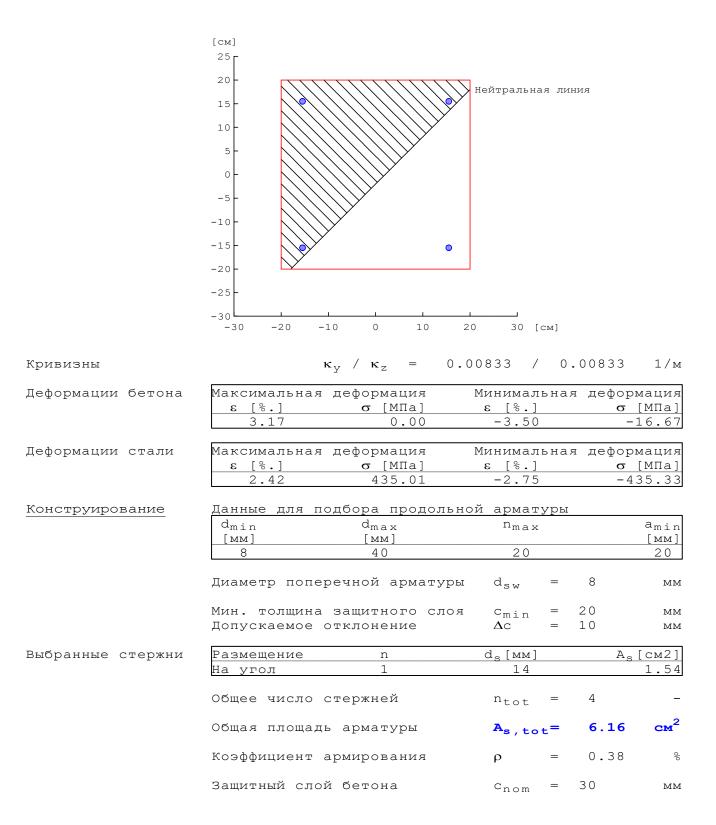
площадь на каждыи угол Общая площадь арматуры Коэффициент армирования $A_s = 1.48 \text{ CM}$ $A_{s,tot} = 5.92 \text{ cm}^2$ $\rho = 0.37$

Расчет для сочетания усилий К = 1

Предельные усилия

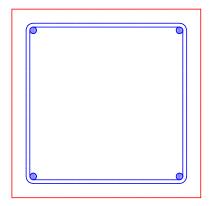
Nu	M_{yu}	M_{zu}	γu
[ĸH]	[кНм]	[кНм]	
1000.0	100.0	100.0	1.000

Нейтральная линия


у ₁ [см]	z ₁ [cm]	у ₂ [см]	z ₂ [CM]
-17.99	-20.00	20.00	17.99

 Позиция
 t433
 Страница
 324

 проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024


 Разраб.
 Разработчик
 СТАТИКА/433
 Версия
 2025.000

Сжатая зона

t433 Позиция 325 Страница СТАТИКА тест всех модулей 28.10.2024 Проект Дата Разработчик

СТАТИКА/433

Стержни: 4 **Ø**14 **Ø**8 Защитный слой: cnom = 30 мм

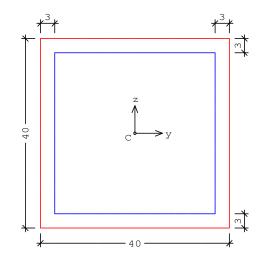
Версия 2025.000

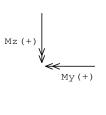
Проверка несущей способности сечения с выбранными стержнями

Предельные усилия

K	N _u [кН]	М _{уи} [кНм]	М _{z u} [кНм]	γ _u
1	1010.0	101.0	101.0	1.010

Расчет выполнен модулем 433 программы СТАТИКА 2025 © ООО Техсофт


Поз. t434


Разраб.

Подбор продольной арматуры

Сечение

Прямоугольное сечение

Ширина и высота

b = h =40.0

СМ

Усилия

Относительно главных осей бетонного сечения

K	N [ĸH]	М _∨ [кНм]	М _z [кНм]
1	500.0	100.0	100.0

t434 Позиция 326 Страница СТАТИКА тест всех модулей 28.10.2024 Проект Дата Разработчик **СТАТИКА/434** Версия 2025.000 Разраб.

Расчет

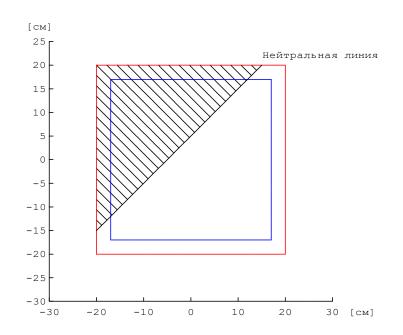
Согласно СП 63.13330.2018 Бетон.и железобетон.кон.

	.01011.71	001000	•••••••••••••••••••••••••••••••••••••••	
Бетон Арматура	В 25 A500	(тяже	лый)	
Для бетона применяется	трехлине	йная	диагр	амма
Для арматуры применяется	двухлине	йная	диагр	амма
Коэффициент условий работы	γ b	=	0.900	-
Сопротивление бетона Сопротивление арматуры	γ _b R _b R _s R _{sc}	= 1 = 43 = 40	5	МПа МПа МПа
Расстояние до ц.т. арматуры	ı a	=	3.00	CM
Площадь на каждую b-сторону на каждую h-сторону Общая площадь арматуры	3 1	=	3.57 3.57 4.29	CM ² CM ²

Требуемая арматура

0.89 Коэффициент армирования μ_{tot}

용


Предельные усилия

$N_{\rm u}$	[ĸH]	М _{ун} [кНм]	М _{ги} [кНм]	γιι
	500.0	100.0	100.0	1.000

Нейтральная линия

у ₁ [см]	z ₁ [CM]	У ₂ [СМ]	z ₂ [cm]
-20.00	-14.99	14.99	20.00

Сжатая зона

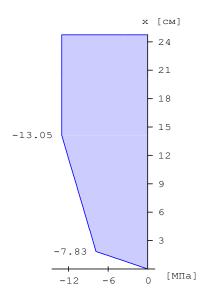
Кривизны

$$\kappa_{V}$$
 / κ_{Z} = -0.01000 / 0.01000 1/M

Деформация

$$\varepsilon (y,z) = -0.1000z + 0.1000y + 0.501$$

Деформации бетона


Максимальная	деформация	Минимальная	деформация
ε [%.]	σ [M∏a]	ε [%.]	σ [MΠa]
4.50	0.00	-3.50	-13.05

Деформации стали

Максимальная	деформация	Минимальная	деформация
ε [%.]	σ [ΜΠα]	ε [%.]	σ [MΠa]
3.90	435.00	-2.90	-400.00

Позиция t434 327 Страница СТАТИКА тест всех модулей 28.10.2024 Проект Дата Разработчик Версия 2025.000 Разраб. **СТАТИКА/434**

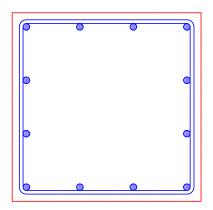
Напряжение в бетоне

х - расстояние от нейтральной линии

Усилия

	N	M _V	Mz
	[ĸH]	[кНм]	[кНм]
в бетоне	597.52	56.42	56.42
в арматуре	-97.52	43.58	43.58
суммарные	500.00	100.00	100.00

Конструирование


d_{min} [MM]	d _{mах} [мм]	n_{max}	a _{min} [мм]
12	28	12	25

Диаметр	попереч	иной а	армат	уры	d_{sw}	=	8	MM
Минималь	ьная тој	пщина	защи	THOFO	слоя			
для прод	йонапор	армач	гуры	min	a _s	=	20	MM
для попе	еречной	армач	гуры	min	a _{sw}	=	15	MM

Выбранные стержни

Место	n	d _s [мм]	А _s [см2]
На угол	1	14	1.54
На b-сторону	2	14	3.08
На h-сторону	2	14	3.08

= 18.47 = 1.15

Общее число стержней

Стержни: 12 ∅14 Хомут: ϕ 8 Защитный слой: аз = 15 мм

 $n_{tot} = 12$

 Позиция
 t434
 Страница
 328

 Проект
 CTATИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 CTATИКА/434
 Версия
 2025.000

Предельные усилия для сечения с подобранными арматурными стержнями

$N_{\rm u}$	[кН]	M _{vu}	[кНм]	Mzu	[кНм]	γu
5 8	31.6		116.3		116.3	1.163

Расчет выполнен модулем 434 программы СТАТИКА 2025 © 000 Техсофт

<u>Поз. t435</u> <u>Подбор продольной арматуры в плитах и стенах</u>

Плита Толщина плиты h = 25 см

Расчет согласно СП 63.13330.2018, 8.1.54, 8.1.57

В 25 (тяжелый) Бетон A500 Арматура 0.900 Коэффициент условий работы γ_b 13.05 МΠа Сопротивление бетона $\gamma_{\,b}\,R_{b}$ R_s Сопротивление арматуры = 435МΠа ${\rm R}_{\rm s\,c}$ = 400МΠа

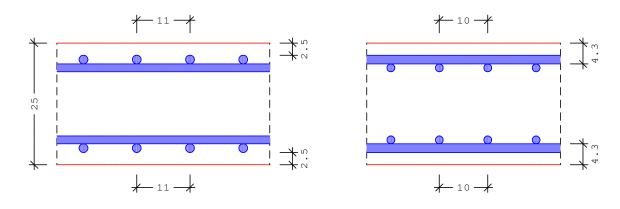
Площадь арматуры, требуемой по условию прочности

A _{SXB}	А _{sхн}	A _{sys}	A _{syh}
[cm2/m]	[см2/м]	[см2/м]	[см2/м]
21.60	21.60	19.90	19.90

Коэффициент армирования

μ_{SXB}	$\mu_{ exttt{SXH}}$	$\mu_{ t S extstyle B}$	μ_{syh}
[%]	[응]	[응]	[%]
* 1.00	* 1.00	* 1.00	* 1.00

* Нижняя граница коэффициента армирования


Данные для подбора арматуры

min d _s	max d _s	min s	max s	min a _s
[MM]	[MM]	[CM]	[CM]	[MM]
10	18	10	20	25

Подобранная арматура по осям х и у

Ось	Арматура	ds	Шаг	As	aз	h ₀	μ_{s}
		[MM]	[CM]	[cm2/m]	[MM]	[CM]	[%]
Х	верхняя	18	11	23.13	25	21.6	1.07
Х	прижин	18	11	23.13	25	21.6	1.07
У	верхняя	16	10	20.11	43	19.9	1.01
V	- прижняя	16	10	20.11	43	19.9	1.01

Сечения плиты, нормальные к осям х и у

ООО Техсофт, Москва

 Позиция
 t435
 Страница
 329

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/435
 Версия
 2025.000

Проверка прочности при действии моментов Мх, Му, Мху

Условия прочности $M_{\rm x}/M_{\rm xu}$ <= 1, $M_{\rm y}/M_{\rm yu}$ <= 1

K	М _× [кНм/м]	N _ж [кН/м]	М _У [кНм/м]	N _у [кН/м]	М _{хи} [кНм/м]	М _{уи} [кНм/м]	M_x/M_{xu}	M_{y}/M_{yu}
1	50.0	0.0	50.0	0.0	190.0	145.8	0.263	0.343

Условие прочности $(|M_{xu}| - |M_x|) \cdot (|M_{yu}| - |M_y|)/M^2 - M_{xy} \cdot M_{xy}/M^2 >= 0$ при М = 190.0 кНм/м

K	M_{\times}	My	M _{×y}	Условие
	[кНм/м]	[кНм/м]	[кНм/м]	прочности
1	50.0	50 0	25 0	0.354 >= 0

Условие прочности

$$|M_{xy}| / M_{sxy,u} = 0.064 \le 1$$

Условие прочности

$$|M_{xy}| / M_{bxy}, u = 0.307 \le 1$$

Прочность плиты обеспечена

Проверка трещиностойкости

Предельная ширина Непродолжительное раскрытие $a_{\text{crc1}} = 0.30$ мм раскрытия трещин Продолжительное раскрытие $a_{\text{crc2}} = 0.20$ мм

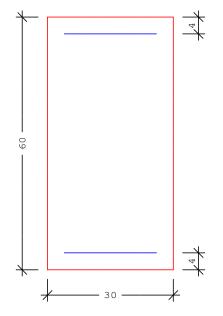
K	N _ж [кН/м]	М _ж [кНм/м]	N _{×1} [кН/м]	М _{х l} [кНм/м]	N _{x,crc} [кН/м]	M _{x,crc} [кНм/м]	a _{crc} [MM]	a _{crc,l}
1	0.0	50.0	0.0	50.0	0.0	35.9	0.067	0.067

K	N _у	М _У	N _{yl}	М _{уl}	N _{y,crc}	M _{y,crc}	a _{crc}	a _{crc,l}
	[кН/м]	[кНм/м]	[кН/м]	[кНм/м]	[кН/м]	[кНм/м]	[мм]	[MM]
1	0.0	50.0	0.0	50.0	0.0	32.3	0.095	0.095

Трещиностойкость плиты обеспечена

Расчет выполнен модулем 435 программы СТАТИКА 2025 © 000 Техсофт

Поз. t436


Подбор поперечной арматуры

Сечение

 Позиция
 t436
 Страница
 330

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/436
 Версия
 2025.000

Ширина сечения

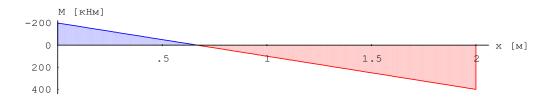
высота сечения	n	=	60	СМ
Расстояния до ц.т. арматуры Площади продольной арматуры	a _B a _H A _{SB} A _{SH}	= = = =	4.00 4.00 5.00 15.00	СМ СМ СМ2 СМ2
Длина приопорного участка Усилия в опорном сечении	1	=	2.00	М

b

Нагрузки

Изгибающий момент Поперечная сила $M_{O} = 200.0$ кНм $Q_{O} = 300.0$ кН

30


СМ

Расчет

Согласно СП 63.13330.2018 Бетон.и железобетон.кон.

Бетон	в 25	(TS	яжелый)	
Продольная арматура	A500			
Поперечная арматура	A400			
Коэффициент условий работы	γ_b	=	0.900	-
Расчетные сопротивления	$\gamma_b R_b$	=	13.05	МΠа
	$\gamma_b R_{bt}$	=	0.95	МΠа
	R _s	=	435	МΠа
	R _{sc}	=	400	МΠа
	R _{sw}	=	280	МΠа

Изгибающий момент



 Позиция
 t436
 Страница
 331

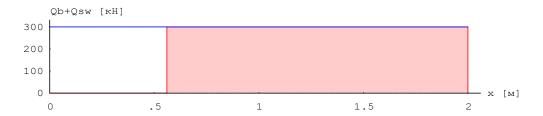
 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/436
 Версия
 2025.000

Поперечная сила

Требуемая площадь поперечной арматуры

	Х	С	Csw	$\text{Tp.A}_{\text{sw}}/\text{s}_{\text{w}}$	s _{w,max}	A_{sw}/s_w
Ι	[M]	[CM]	[CM]	[см2/м]	[CM]	[см2/м]
	0.560	56.0	56.0	5.26	29.6	9.37
	0.570	57.0	57.0	5.52	29.6	9.38
	0.920	88.9	88.9	8.03	29.6	9.38
	1.280	128.0	112.0	8.33	29.6	9.38
	1.640	164.0	112.0	9.30	29.6	9.38
	2.000	168.0	112.0	9.38	29.6	9.38


 C_{sw} - длина участка размещения поперечной арматуры $s_{\text{w,max}}$ - расчетный верхний предел для шага хомутов

Проверка прочности

Х	Q	Q _b	Q _{sw}	$Q/(Q_b+Q_{sw})$
[M]	[ĸH]	[кH]	[ĸH]	
0.560	300.0	238.1	61.9	1.000
0.560*	300.0	238.1	61.9	1.000
0.920	300.0	150.0	150.0	1.000
1.280	300.0	104.2	195.8	1.000
1.640	300.0	81.3	218.7	1.000
2.000	300.0	79.4	220.6	1.000

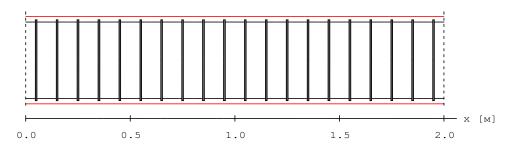
* сечение с наибольшим значением Q/($Q_b + Q_{sw}$)

Усилие, воспринимаемое бетоном и арматурой

Требуемая площадь арматуры с учетом C_{sw}

 Позиция
 t436
 Страница
 ЗЗЗЗ

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

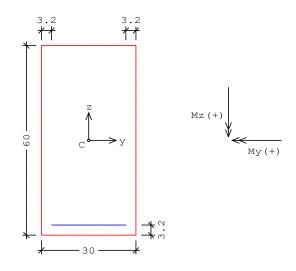

 Разраб.
 Разработчик
 СТАТИКА/436
 Версия
 2025.000

Конструирование

$_{\sf d_{sw}}$	Число	S _{w.max}	S _{w+}	S ₁
[MM]	ветвей	[CM]	[CM]	[см]
8	2	15	5	$s_w/2$

Подобранная поперечная арматура

OT X	до х	Число	Шаг	A_{sw}/s_w
[M]	[M]	хомутов	[CM]	[см2/м]
0.000	1.950	20	10	10.05


Расчет выполнен модулем 436 программы СТАТИКА 2025 © 000 Техсофт

Поз. t437

Расчет по прочности и трещиностойкости

Сечение

Прямоугольное сечение

Ширина b = 30.0 см Высота h = 60.0 см

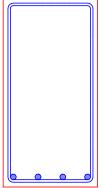
Усилия

Относительно центральных осей бетонного сечения

Расчетные усилия

K	N	${ m M}_{ m V}$	M_z
	[ĸH]	[кНм]	[кНм]
1		200.0	

Нормативные усилия


Kn	N	My	Mz	Nl	Myl	Mzl
	[ĸH]	[кНм]	[кНм]	[ĸH]	[кНм]	[кНм]
1		150.0			120.0	

 Позиция
 t437
 Страница
 333

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/437
 Версия
 2025.000

Разраб. Разработчик	CTATUKA/437	l	версия 2025	.000
Расчет	Согласно СП 63.13330.2018			
	Бетон	в 25 (тяжелый)	
	Верхняя арматура	A400	171711 0012171)	
	Нижняя арматура	A500		
	1 01	доо трехлиней:	1129 8142	
		трехлиней. двухлиней:		грамма
			ная диа = 0.90	грамма О
	Коэффициент условий работы	γ _b	- 0.90	_
	Сопротивление бетона	R _{bn}	= 18.50	МΠа
		R _{btn}	= 1.55	МΠа
		$\gamma_b R_b$	= 13.05	МΠа
	Сопротивление арматуры			
	верхней	R _{snB}	= 400	МΠа
			= 350	МΠа
		R _{scb}	= 350	МПа
	нижней		= 500	МΠа
		0	= 435	МПа
		0 11	= 400	МПа
		5СН		
Требуемая арматура	Площадь арматуры верхней	A _{s b}	= 0.00	_
	нижней	A _{s H}	= 8.90	CM ²
	Общая площадь арматуры	As, tot	= 8.90	CM ²
	Коэффициент армирования		= 0.49	8
Предельные усилия	K Nu [kH] Myu [kHm]	М _{ги} [кН	м]	γu
	1 0.0 200.0	0	. 0	1.000
TC	Maria di Final di	[]		[]
Конструирование	Mесто d_{min} [мм] d_{ma} Вверху 12 2		max a _{mi}	
			4 4	25 25
	Внизу 12 2	0	4	23
	Диаметр поперечной арматуры	d _{sw}	= 8	MM
	Минимальная толщина защитно			
		3B	= 20	MM
		∝зн	= 20	MM
	для поперечной арматуры — m	in a _{sw}	= 15	MM
Выбранные стержни	Mecro n	d _s [мм]	As	[см2]
	Внизу 4	18		10.18
	Общее число стержней	n _{tot}	= 4	-
	Защитный слой вверху	а :	= 15	MM
	внизу	~3B	= 15	MM
	Ofwar Brows II anyaruni		= 10.18	cm ²
	Общая площадь арматуры Коэффициент армирования	A _{s,tot} : μ _{tot}	= 10.18 = 0.57	CM %
		. 300		

Стержни: 4 **Ф**18 Хомут: **Ф**8 Защитный слой: азв = 15 мм азн = 15 мм Позиция t437
Проект СТАТИКА тест всех модулей
Разраб. Разработчик СТАТИКА/437

Страница **334** Дата **28.10.2024** Версия **2025.000**

Предельные усилия для сечения с подобранными арматурными стержнями

K	N _u [κΗ]	M _{vu} [кНм] 1	И _{zu} [кНм]	γu
1	0.0	225.5	0.0	1.127

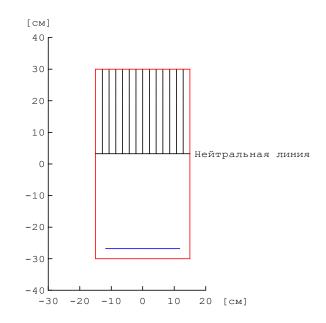
Проверка трещиностойкости сечения с подобранной арматурой

Предельная ширина раскрытия трещин

Непродолжительное раскрытие Продолжительное раскрытие $a_{crc1} = 0.30$ $a_{crc2} = 0.20$

MM MM

Расчет по образованию трещин


l	Услови∈	$M_{z,crc}$	$M_{y,crc}$	N_{crc}	Kr
ı	проверки	[кНм]	[кНм]	[ĸH]	
	не выполняется	0.0	57.6	0.0	1

Нейтральная линия

у ₁ [см]	z ₁ [cm]	У2 [СМ]	z ₂ [CM]
-15.00	3.23	15.00	3.23

Сжатая зона

сечения непосредственно перед образованием трещин

Деформации бетона

Максимальная	деформация	Минимальная	деформация
ε [%.]	σ [M Π a]	ε [%.]	σ [M∏a]
0.15	1.55	-0.12	-3.62

Деформации стали

þ	Максимальная	деформация	Минимальная	деформация
	ε [%.]	σ [M∏a]	ε [%.]	σ [MΠa]
	0.14	27.11	0.14	27.11

Расчет по непродолж. раскрытию трещин

	[МПа]	[MM]	проверки
1	283.8	0.253	выполняется

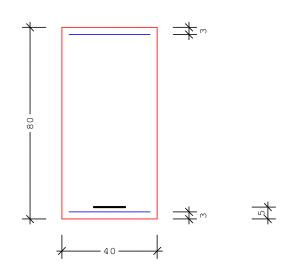
Данные для расчета

Kn	$\sigma_{\text{s,crc}}$	$\psi_{\mathtt{S}}$	A _{bt}	As	ds	ls
	[МПа]	[-]	[см2]	[cm2]	[MM]	[CM]
1	108.5	0.694	900.0*	10.18	18	40.0

* Учтены ограничения на высоту растянутой зоны

Расчет по продолж. раскрытию трещин

	[МПа]	[–]	[MM]	проверки
K _n	σ _{sl} [MΠal	Ψs [-1	acrc	УСЛОВИЕ


Прочность и трещиностойкость сечения обеспечены

Позиция	t437		Страниц	a 335
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/437	Версия	2025.000

Расчет выполнен модулем 437 программы СТАТИКА 2025 © ООО Техсофт

Поз. t438	Преднапряженный элемент

Сечение	Ширина сечения Высота сечения	b h	=	40.0	CM CM
Ненапрягаемая армат	ура				0
	Площадь арматуры	A _{sв}	=	3.00	см ²
		А _{зн}	=	3.00	см ²
	Расстояние до ц.т. арматуры	а _в	=	3.00	CM
		a_H	=	3.00	CM
	Диаметр арматуры	d_{s_B}	=	12	MM
		d_{sH}	=	12	MM
Напрягаемая арматур	a				
	Площадь арматуры	А _{sрн}	=	15.00	см ²
	Расстояние до ц.т. арматуры	а _{рн}	=	5.00	СМ
	Диаметр арматуры	d _{sрн}	=	20	MM

Преднапряжение	Натяжение арматуры на упоры Длина напрягаемой арматуры	1 = 6.00 м
	Предварительное напряжение	σ_{sph} = 900 MNa
Расчет	Согласно СП 63.13330.2018 (с Расчет на основе нелинейной	•
	Белон	В 25 (тяжелый)

Для бетона	применяется	трехлинейная	диаграмма
Ненапрягае	мая арматура	A500	

Сопротивление арматуры	Rs	=	435	МПа
	R _{sc}	=	400	МΠа
Модуль упругости армату	ры E _s	=	200	ГПа
Для арматуры применяетс	я двухлиней	ная	диаграм	има

Напрягаемая арматура	A1000	
Сопротивление арматуры	$R_s =$	870 МПа
	R _{sc} =	400 МПа
Модуль упругости арматуры	E _s =	200 ГПа
Для арматуры применяется трех	линейная	диаграмма

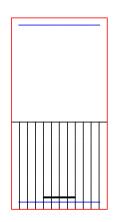
ООО Техсофт, Москва

Определение напряжений в стадии предварительного обжатия

Характеристики бетона в момент обжатия

Передаточная прочность $R_{bp} = 10.0 \, \text{МПа}$ Расчетное сопротивление $R_{b} = 6.00 \, \text{МПа}$ Модуль упругости $E_{b} = 19.00 \, \text{ГПа}$

Значения $R_{\rm b}$, $E_{\rm b}$ определяются как для класса бетона, численно равного передаточной прочности бетона


Первые потери предварительного напряжения

от релаксации напряжения $\Delta\sigma_{\text{sp1}}=70.0$ МПа от деформации упоров $\Delta\sigma_{\text{sp3}}=30.0$ МПа от деформации анкеров $\Delta\sigma_{\text{sp4}}=66.7$ МПа

Предварительные напряжения, деформации и усилия с учетом первых потерь

	$\sigma_{ exttt{spb}}$	$\sigma_{ extsf{sph}}$	$\epsilon_{ t spb}$	$\epsilon_{ ext{sph}}$	PΒ	P _H
	[МПа]	[МПа]	[응.]	[응.]	[ĸH]	[ĸH]
ı		733.3		3.67		1100.0

Сжатая зона

Расстояние от нижней стороны бетонного сечения до нейтральной линии $36.47\ {\rm cm}$

Деформация бетона

1	Максимальная	деформация	Минимальная	деформация
	ε [%.]	σ [M∏a]	ε [%.]	σ [MΠa]
	1.52	0.00	-1.28	-5.04

Деформация ненапряг. арматуры

прижин	арматура	Верхняя	арматура
ε [%.]	σ [M Π a]	ε [%.]	σ [MΠa]
-1.17	-234.4	1.42	283.9

Деформация напряг. арматуры

ſ	Нижняя	арматура		Верхняя	арматура
	ε [%.]	σ [MПa]	3	[%.]	σ [M∏a]
ſ	2.56	512.9			

Напряжение в бетоне на уровне напрягаемой арматуры

 $\sigma_{
m bp\, H}$ = -4.81 МПа

Проверка прочности элемента в стадии предварительного обжатия

Условие прочности $\sigma_{b,max}$ / 0.9 R_{bp} = 5.04 / 9.00 = **0.560** <= 1

Определение предельного изгибающего момента в стадии эксплуатации

Сопротивление бетона $\gamma_b R_b = 13.05$ МПа при $\gamma_b = 0.900$ — Модуль упругости бетона $E_b = 30.00$ ГПа Влажность воздуха окружающей среды от 40% до 75% Коэффициент ползучести $\phi_{b,cr} = 2.50$ —

Позиция t438 Страница 337 Проект СТАТИКА тест всех модулей Дата 28.10.2024 Разраб. Разработчик СТАТИКА/438 Версия 2025.000

Характеристики	а	Ув	Ун	Ared	I _{red}
приведенного сечения	[CM]	[CM]	[CM]	[cm2]	[CM4]
	39.0		-34.0	3340.0	1.880.10+6

а - расстояние от нижней стороны бетонного сечения до центра тяжести приведенного сечения

у - координата центра тяжести напрягаемой арматуры

Вторые потери предварительного напряжения

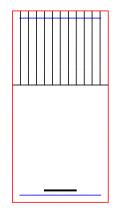
от усадки бетона от ползучести бетона $\Delta\sigma_{\text{Sp5H}} = 40.0$ MNa $\Delta\sigma_{\text{Sp6H}} = 49.9$ MNa

кНм

 $M_{u+} = 929.8$

=**-101.2**

кНм


 M_{11}

Предварительные напряжения, деформации и усилия с учетом полных потерь

σ _{ѕрв}	σ _{ѕрн}	ε _{spв}	ε _{spн}	Р _в	Р _н
[МПа]	[МПа]	[%.]	[%.]	[кН]	[кН]
	476.8		2.38		

Положительный предельный момент

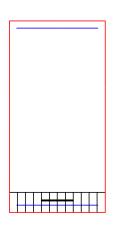
Сжатая зона

Расстояние от нижней стороны бетонного сечения до нейтральной линии $49.06\ \mathrm{cm}$

Деформация бетона

Максимальная	деформация	Минимальная	деформация
ε [%.]	σ [MΠa]	ε [%.]	σ [MΠa]
5.55	0.00	-3.50	-13.05

Деформация ненапряг. арматуры


нижняя	арматура	Верхняя	арматура
ε [%.]	σ [MПа]	ε [%.]	σ [M∏a]
5.21	435.0	-3.16	-400.0

Деформация напряг. арматуры

Нижняя	арматура		Верхняя	арматура
ε [%.]	σ [ΜΠα]	3	[%.]	σ [M∏a]
7.37	906.4			

Отрицательный предельный момент

Сжатая зона

t438 Позиция

СТАТИКА тест всех модулей Проект

Разработчик **СТАТИКА/438** Разраб.

Страница Дата

338 28.10.2024 Версия 2025.000

Расстояние от нижней стороны бетонного сечения до нейтральной линии 8.37 см

Деформация бетона

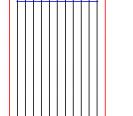
Максимальная	деформация	Минимальная	деформация
ε [%.]	σ [MΠa]	ε [%.]	σ [MΠa]
26.09	0.00	-3.05	-13.05

Деформация ненапряг. арматуры

пижин	арматура	Верхняя	арматура
ε [%.]	σ [M∏a]	ε [%.]	σ [M∏a]
-1.95	-390.9	25.00	435.0

Деформация напряг. арматуры

Нижняя	арматура		Верхняя	арматура
ε [%.]	σ [ΜΠα]	3	[%.]	σ [M∏a]
1.16	231.6			


Определение изгибающего момента при образовании трещин

Сопротивление бетона

18.50 МΠа 1.55 МΠа $R_{btn} =$

Положительный момент Сжатая зона

 $M_{crc+} = 508.3$ кНм

Расстояние от нижней стороны бетонного сечения до нейтральной линии 27.89 см

Деформация бетона

Максимальная	деформация	Минимальная	деформация
ε [%.]	σ [MNa]	ε [%.]	σ [MΠa]
0.15	1.55	-0.28	-8.41

Деформация ненапряг. арматуры

нижняя	арматура	Верхняя	арматура
ε [%.]	σ [ΜΠα]	ε [%.]	σ [MΠa]
0.13	26.8	-0.26	-52.8

Деформация напряг. арматуры

пижин	арматура	Верхняя	арматура
ε [%.]	σ [M Π a]	ε [%.]	σ [M∏a]
2.51	501.4		

см2 Площадь растянутой зоны 1116 Abt Приведенная площадь растянутой арматуры см²

16.79 A_{st}

Проверка трещиностойкости элемента

Заданные моменты

K	M	M_{\perp}	M _{crc}
	[кНм]	[кНм]	[кНм]
1	800.0	400.0	508.3

Предельная ширина раскрытия трещин

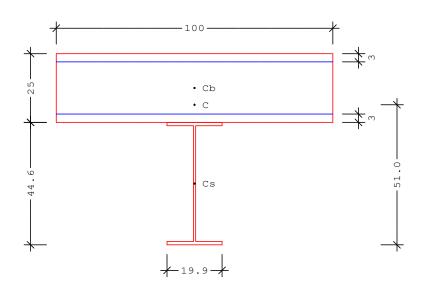
Непродолжительное раскрытие Продолжительное раскрытие

0.30 $a_{crc1} =$ $a_{crc2} =$

MM 0.20 MM

Позиция	t438		Страниц	a 339
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/438	Версия	2025.000

Ширина	раскрытия	трещин					
K	$\sigma_{s,crc}$	$\sigma_{ extsf{s}}$	σ_{sl}	ds	ls	a _{crc}	a _{crc,1}
	[МПа]	[МПа]	[МПа]	[MM]	[CM]	[MM]	[MM]
1	61.5	312.8	9.7	12	39.9	0.263	0.000


Трещиностойкость элемента обеспечена

Расчет выполнен модулем 438 программы СТАТИКА 2025 © ООО Техсофт

Поз. t439

Сталежелезобетонный элемент

Сечение

Плита	Ширина Высота	b _n h _n	=	100.0	CM CM
Верхняя арматура	Погонная площадь Расстояние до ц.т.	a _{sв} a _в	=	10.00	см2/м см
Нижняя арматура	Погонная площадь Расстояние до ц.т.	a _{sн} a _н	=	10.00	см2/м см
Профиль	Двутавр 45Б1 Ширина Высота Толщина полок Толщина стенки	FOO b h t s	=	P 57837 199 446 12.0 8.0	7-2017 MM MM MM MM
Расстояние	от нижней стороны сечения до железобетонной части стальной части приведенного сечения	центра а _{Сb} а _{Сs} а _С	T 8	57.1 22.3 51.0	CM CM

 Позиция
 t439

 Проект
 СТАТИКА тест всех модулей

 Разраб.
 Разработчик

 СТАТИКА/439
 Версия

 2025.000

<u>Расчет</u> Согласно СП 266.1325800.2016

Материалы Бетон В 25 (тяжелый)

Арматура А500

Сопротивления бетона и арматуры

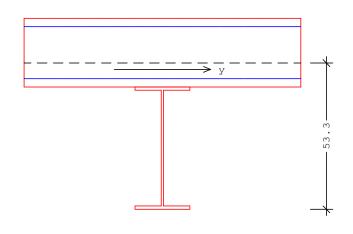
R _{bn}	R_b	R _{btn}	R _{sn}	R _s	R _{sc}
[МПа]	[МПа]	[МПа]	[МПа]	[МПа]	[МПа]
18.50	14.50	1.55	500	435	400

Коэффициент условий работы γ_b = 0.900 -

Для бетона применяется трехлинейная диаграмма Для арматуры применяется двухлинейная диаграмма

Модуль упругости бетона $E_{\rm b}=30.0$ ГПа Модуль упругости арматуры $E_{\rm s}=200$ ГПа

Сталь С 255


Проверка несущей способности элемента

Предельные усилия

N	M_{V}	Nu	M _{yu}	γu
[ĸH]	[кНм]	[ĸH]	[кні]	
0.0	1000.0	0.0	838.2	0.838

Деформации и напряжения для предельных усилий

Нейтральная линия

Кривизна $\kappa_{_{\mathrm{V}}} = -0.02150 \ 1/\mathrm{M}$

Деформации бетона

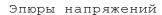
Максимальная	деформация	Минимальная	деформация
ε [%.]	σ [M Π a]	ε [%.]	σ [MΠa]
1.87	0.00	-3.50	-13.05

Деформации арматуры

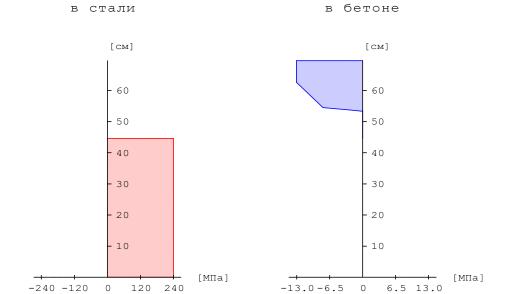
Максимальная	деформация	Минимальная	деформация
ε [%.]	σ [M∏a]	ε [%.]	σ [MΠa]
1.23	245.98	-2.86	-400.00

Деформации стали

Максимальная	деформация	Минимальная	деформация
ε [%.]	σ [M∏a]	ε [%.]	σ [M∏a]
11.46	240.00	1.87	240.00

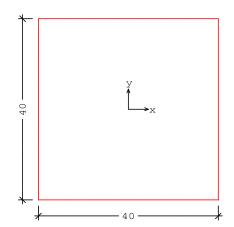

Знак '+' при растяжении, знак '-' при сжатии

ООО Техсофт, Москва


Позиция	t439		Страниц	ıa 341
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/439	Версия	2025.000

Усилия в частях сечения относительно их центральных осей

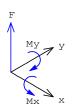
N _b	M_{b}	Ns	Ms
[KH]	[кНм]	[ĸH]	[кНм]
-1956.5	157.3	1956.5	


Несущая способность элемента не обеспечена

Расчет выполнен модулем 439 программы СТАТИКА 2025 © 000 Техсофт

Поз. t440

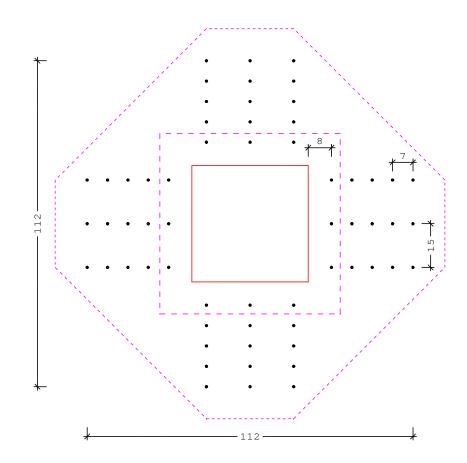
Расчет на продавливание


Расчетная	схема	Размеры	сечения	и колонны	δI	Cx	=	4 0	CM
						C _V	=	40	СМ
		Толщина	плиты			h	=	25	CM
		Рабочая	высота	сечения	плиты	h_{0x}	=	22.0	CM
						h_{0y}	=	22.0	CM

Позиция	t440		Страниц	a 342
Проект	СТАТИКА тест всех моду	улей	Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/440	Версия	2025.000

Нагрузка	Продавливающая сила	F	= 500.0	кН
	Момент относительно оси х	M_{\times}	= 50.0	кНм
	Момент относительно оси у	M_{v}	= 50.0	кНм

Положительные направления силы и моментов



Расчет	Согласно СП 63.13330.2018				
	Бетон Коэффициент условий работы Сопротивление бетона у	B 25 γ _b	(T: = =	0.300	- МПа
	Поперечная арматура Сопротивление арматуры	A400 R _{sw}	=	280	МПа
	Расчетный периметр	u	=	248.0	СМ
	Моменты инерции расчетного ко $I_x = 0.1589 \text{ м3}$	нтура І _у	=	0.1589	мЗ
	Моменты сопротивления расчетн $W_x = 0.5125$ м2	oro ko W _y) H T	-	м2
Предельные усилия в бетоне	Fb,ult Mbx,ult [kH] [kHM] 515.6 106.6			[]	,ult кНм] 06.6
Условие прочности	F / Fult+ Mx / Mx, ult+ My /	M _{v,ul}	. t =		
	· · · · · · · ·	24	=	1.455	> 1
	Вклад моментов ограничен согл	асно 8	3.1	. 46	
Конструирование	Диаметр хомутов	d _{sw}	=	8	MM
	Шаг хомутов вдоль контура перпендикулярно контуру	s _{w1}	=	15 7	CM CM
	Расстояние от колонны до ближайших хомутов	s _{w0}	=	8	СМ
	Погонная площадь арматуры A $A_{sw} = 3 *$. = =		м2/м см2
	Число хомутов	n _w	=	60	-

 Позиция
 t440
 Страница
 343

 проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/440
 Версия
 2025.000

Проверка прочности плиты с учетом крестообразного размещения арматуры

Характеристики участков с поперечной арматурой L_{swy} L_{swx} 30 CM30 СМ ${\tt I_{swy}}$ Iswx 0.0622 = мЗ = 0.0622 мЗ W_{swx} = 0.2005 м2 W_{swy} 0.2005 м2

Предельные усилия в арматуре

F _{sw,ult}	M _{sw,x,ult}	M _{sw,y,ult}
[ĸH]	[кНм]	[кНм]
270.2	45.2	45.2

Условие прочности

$$F / F_{ult} + M_x / M_x, ult + M_y / M_y, ult =$$

$$0.6363 + 0.1591 + 0.1591 = 0.954 <= 1$$

Вклад моментов ограничен согласно 8.1.46

Проверка прочности плиты за границей расположения поперечной арматуры

Расчетный периметр u = 414.2 см

Моменты инерции расчетного контура

 $I_{x} = 0.8346 \text{ M3}$ $I_{y} = 0.8346 \text{ M3}$

Моменты сопротивления расчетного контура

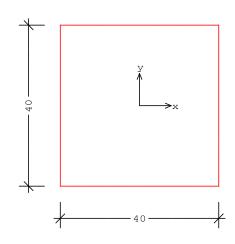
 $W_{x} = 1.2457 \text{ M2} \qquad W_{y} = 1.2457 \text{ M2}$

Предельные усилия в бетоне

Fb,ult [KH]	M _{bx} ,ult [кНм]	M _{by,ult} [кНм]
861.0	259.0	259.0

Позиция 1440 Страница 344
Проект СТАТИКА тест всех модулей Дата 28.10.2024
Разраб. Разработчик СТАТИКА/440 Версия 2025.000

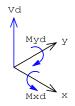
Условие прочности F / F_{ult} + M_x / $M_{x,ult}$ + M_y / $M_{y,ult}$ =


0.5807 + 0.1452 + 0.1452 = **0.871** <= 1

Вклад моментов ограничен согласно 8.1.46

Расчет выполнен модулем 440 программы СТАТИКА 2025 © 000 Техсофт

Поз. t441 Расчет на продавливание (ТКП EN 1992)

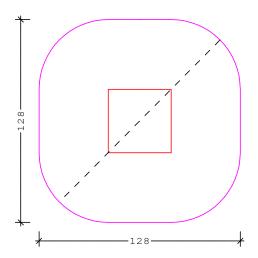

Расчетная схема Размеры сечения колонны c_x 40.0 CMсу 40.0 CM22.0 Средняя рабочая высота плиты d CMКоэфф.продольного армирования $ho_{ ext{x}}$ 0.50 응 0.50 응 ρ_y

Усилия

K	V _d	M_{xd}	Myd
	[ĸH]	[кНм]	[кНм]
1	500.0	50.0	50.0

Положительные направления силы и моментов

Расчет согласно ТКП EN 1992-1-1, 6.4


Бетон C30/37 Поперечная арматура S500

 Позиция
 t441
 Страница
 345

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/441
 Версия
 2025.000

Контрольный контур

Примечание

Приведена нулевая линия распределения поперечного усилия от действия моментов согласно рис. 6.19

Контрольный периметр

u = 436.3 cm

Проверка прочности плиты без поперечной арматуры

Поперечное усилие (рис.6.19) τ = 22.47 кH/м

Коэффициент учета моментов

$$\beta = 1 + \tau u / V_d = 1.196$$

Расчетное напряжение $v_{Ed} = \beta V_d/ud = 0.623$ МПа

Расчетное сопротивление $v_{Rd,c} = 0.578$ МПа

Условие прочности $v_{Ed} / v_{Rd,c} = 1.078 > 1$

Проверка прочности плиты по контуру колонны

Расчетный периметр
$$u_0 = 160.0$$
 см

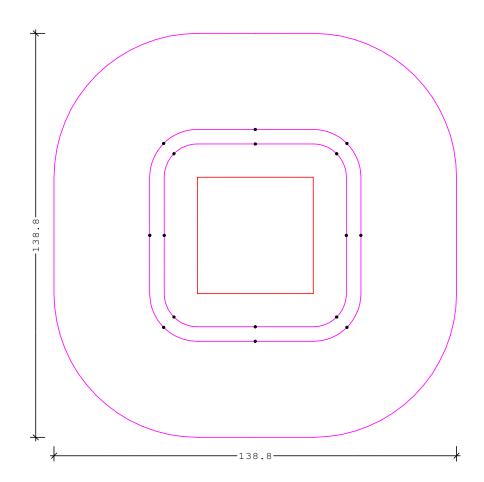
Расчетное напряжение v_{Ed} = $\beta V_{\text{d}}/u_{0}\text{d}$ = 1.699 МПа

Максимальное сопротивление $v_{Rd,max} = 5.280$ МПа

Условие прочности v_{Ed} / $v_{Rd,max}$ = 0.322 <= 1

Конструирование с учетом требований 9.4.3

8 Диаметр хомутов d_{sw} MM s_1 11 Расст. от колонны до хомутов СМ sr Радиальный шаг хомутов СМ Тангенциальный шаг хомутов 32.9 $s_{t,max} =$ СМ nt Число хомутов вдоль контура 8 nr Число контуров с хомутами 2


Условие (9.11) $1.5A_s/(s_r s_t) / (0.08(f_{ck})^{1/2}/f_{vk}) = 5.234 >= 1$

Площадь сечения хомута $A_{s} = 0.50$ см2 Расчетная площадь $A_{sw} = n_{t}A_{s} = 4.02$ см2 Сопротивление арматуры $f_{yd,ef} = 305.0$ МПа

 Позиция
 t441
 Страница
 346

 проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/441
 Версия
 2025.000

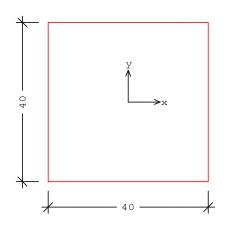
Проверка прочности плиты с поперечной арматурой

Расчетное сопротивление $v_{\text{Rd,cs}} = 1.277$ МПа Условие прочности v_{Ed} / $v_{\text{Rd,cs}} = 0.488 <= 1$

Проверка прочности плиты по внешнему контуру

Расстояние от арматуры до контура = 32.6 см Расчетный периметр $u_{\text{out}} = 470.2$ см Расчетное напряжение $v_{\text{Ed}} = \beta V_{\text{d}}/u_{\text{out}}$ = 0.578 МПа Условие прочности v_{Ed} / $v_{\text{Rd,c}} =$ 1.000 <= 1

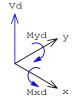
Расчет выполнен модулем 441 программы СТАТИКА 2025 © 000 Техсофт


Позиция	t442		Страниц	a 347
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/442	Версия	2025.000

Поз. t442

Расчет на продавливание (MSZ EN 1992)

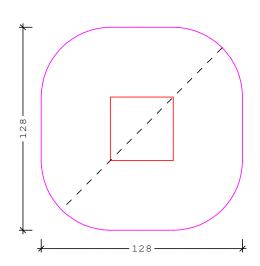
Расчетная	схема


Размеры сечения колонны	Cx	=	40.0	CM
	C _V	=	40.0	CM
Средняя рабочая высота плит	ы d [*]	=	22.0	CM
Коэфф.продольного армирован	ия $ ho_{ ext{x}}$	=	0.50	용
	ρ_{v}	=	0.50	용

Усилия

K	V _d	M _{xd}	Myd
	[ĸH]	[кНм]	[кҤм]
1	500.0	50.0	50.0

Положительные направления силы и моментов

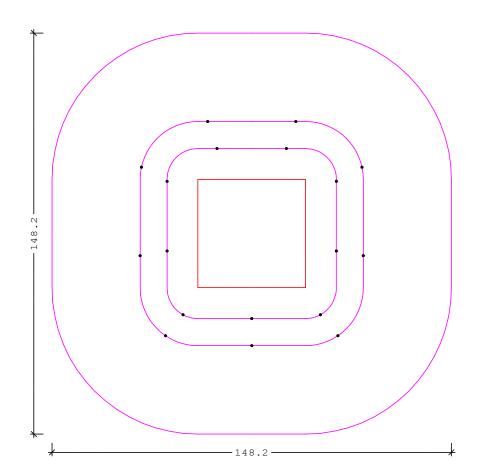


Расчет

согласно MSZ EN 1992-1-1, 6.4

Бетон Поперечная арматура C25/30 S400

Контрольный контур



Позиция t442 Проект СТАТИКА тест Разраб. Разработчик	всех модулей СТАТИКА/442	Страниі Дата Версия	348 28.10.2024 2025.000
Примечание	Приведена нулевая линия распред усилия от действия моментов согл	еления г	поперечного
		_	36.3 см
Проверка прочности	плиты без поперечной арматуры		
	Поперечное усилие (рис.6.19) τ	= 2	22.47 кН/м
	Коэффициент учета моментов $\beta \ = \ 1 \ + \ \tau \text{u} \ /$	v _d =	1.196 -
	Расчетное напряжение v_{Ed} = βV_d	/ud =	0.623 МПа
	Расчетное сопротивление v_R	d,c =	0.544 МПа
	Условие прочности v_{Ed} / v_{R}	d,c =	1.145 > 1
Проверка прочности	плиты по контуру колонны		
	Расчетный периметр u_0	= 16	50.0 см
	Расчетное напряжение $v_{Ed} = \beta V_d /$	u ₀ d =	1.699 МПа
	Максимальное сопротивление v_{Rd} ,	max =	3.600 МПа
	Условие прочности v_{Ed} / v_{Rd} ,	max =	0.472 <= 1
Конструирование	с учетом требований 9.4.3		
	Расст. от колонны до хомутов s_1 Радиальный шаг хомутов s_r Тангенциальный шаг хомутов s_t Число хомутов вдоль контура n_t	w = 1 = 1 , max = 3	L1 см L0 см 32.7 см 9 -
Условие (9.11)	$1.5A_{s}/(s_{r}s_{t})$ / $(0.08(f_{ck})^{1/2}/f_{yk}$) =	2.305 >= 1
	Площадь сечения хомута A_s Расчетная площадь $A_{sw} = n_t A_s$ Сопротивление арматуры f_y	= = d,ef= 3(4.52 см2

 Позиция
 t442
 Страница
 349

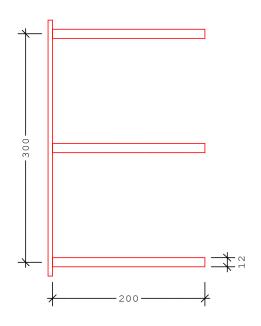
 проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/442
 Версия
 2025.000

Проверка прочности плиты с поперечной арматурой

Расчетное сопротивление $v_{\text{Rd,cs}} = 0.882$ МПа Условие прочности v_{Ed} / $v_{\text{Rd,cs}} = 0.706 <= 1$

Проверка прочности плиты по внешнему контуру


Расстояние от арматуры до контура = 32.3 см Расчетный периметр $u_{out} = 499.7$ см Расчетное напряжение $v_{Ed} = \beta V_d/u_{out}d = 0.544$ МПа Условие прочности v_{Ed} / $v_{Rd,c} = 1.000 <= 1$

Расчет выполнен модулем 442 программы СТАТИКА 2025 © ООО Техсофт

Γ	Позиция	t444		Страниц	a 350
	Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
	Разраб.	Разработчик	СТАТИКА/444	Версия	2025.000

Поз. t444 Закладнавя деталь

Анкеры	Диаметр анкеров	dar	= 12	MM
	Длина анкеров	lar	= 200	MM
	Число рядов анкеров	n	= 3	_
	Расстояние между крайними	рядами	анкеров	
		Z	= 300	MM
	Число анкеров в ряду	n ₁	= 2	_

Усилия	Нормальная	сила	N	=	10.0	кН
	Момент		M	=	10.0	кНм
	Сдвигающая	сила	Q	=	10.0	кН

Согласно СП 63.13330.2018 Расчет

Бетон	B 25	RT)	желыи)	
Сопротивление бетона	R_b	=	14.50	МΠа
	R _{bt}	=	1.05	МПа

A500 Арматурная сталь

Сопротивление стали = 435 Rs

Проверка прочности нормальных анкеров

Наибольшая растягивающая сила в одном ряду анкеров $N_{an,j} = 36.7$ Наибольшая сжимающая сила в одном ряду анкеров $N'_{an,j} = -30.0$ к Сдвигающая сила, приходящаяся на один ряд анкеров

0.3 $Q_{an,j} =$

МΠа

Условие прочности $Q_{an,j} / Q_{an,j,0} + N_{an,j} / N_{an,j,0} =$

> 0.3 / 29.6 + 36.7 / 98.4 =**0.384** <= 1

Проверка допустимости нагрузки на бетон

Растягивающая сила в анкере $N_{an1} = 18.3$ кН $N_{an1} / N_{bond} =$

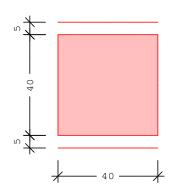
Расчетное сопротивление сцепления анкера с бетоном $R_{bond} = \eta_1 \eta_2 R_{bt} = 2.6$ МΠа 2.5 η_1 1.0 η_2 Предельное усилие сцепления $N_{bond} = \pi d_{an} l_{an} R_{bond} = 19.8$ кН

18.3 /

Работоспособность закладной детали обеспечена

19.8 =

0.926 <= 1


Расчет выполнен модулем 444 программы СТАТИКА 2025 © 000 Техсофт

Поз. t445 Расчет на местное сжатие

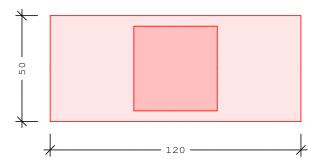
Условие допустимости

Расчетная схема Толщина элемента h 50 СМ C_X Размеры грузовой площади 40 СМ су 40 CMРасстояния от грузовой площади до краев элемента

 $a_{\scriptscriptstyle B}$ 5 5 ан СМ

= 1500Нагрузка Сжимающая сила Ν кН Сила распределена по грузовой площади неравномерно

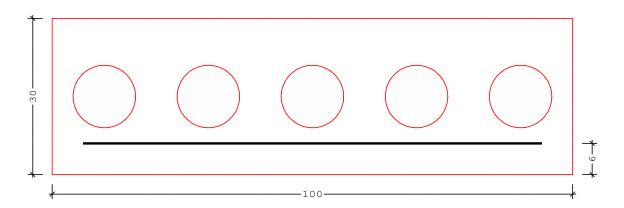
Расчет Согласно СП 63.13330.2018


> Бетон В 25 (тяжелый) Арматура A240 0.900 Коэффициент условий работы γ_b 13.050 МПа = Расчетные сопротивления $\gamma_b R_b$ $R_{s,xy} = 210$

> Предельная сила при отсутствии косвенной арматуры $N_b = \psi R_{b,loc} C_x C_y = 2426$ кН 0.75 Ψ

 $R_{b,loc} = \phi_{bR_{b}} = 0.8 (A_{b,max}/c_xc_y)^{1/2} =$ 20.22 МΠа 1.55 $A_{b,max} = 6000$ см2

Условие прочности (8.80) $N / N_b = 0.618 <= 1$


По расчету на местное сжатие арматура не требуется

Расчет выполнен модулем 445 программы СТАТИКА 2025 © 000 Техсофт

Расчет огнестойкости преднапряжённой плиты Поз. t446

Сечение	Ширина сечения Высота сечения Число полостей Диаметр полостей	b h n D	= = = =	100.0 30.0 5 12.0	CM CM - CM
Ненапрягаемая армат	ура Площадь арматуры Расстояние до ц.т. арматуры	A _s	=	30.00	см ² см
Напрягаемая арматур	а Площадь арматуры Расстояние до ц.т. арматуры	A _{sp} a _p	=	10.00	см ² см

Преднапряжение Натяжение арматуры на упоры механическим способом Длина напрягаемой арматуры 1 6.00

> Предварительное напряжение МΠа $\sigma_{ extsf{sp}}$

Согласно СП 63.13330.2018 (с изменением №1) Расчет Расчет на основе нелинейной деформационной модели

> Бетон В 30 (тяжелый)

на силикатном заполнителе

Плотность бетона = 2500кг/м3

Для бетона применяется двухлинейная диаграмма

Позиция	t446		Страниц	a 353
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/446	Версия	2025.000

ненапрягае	емая ары	иатура	A500			
Сопротивле	ние ари	иатуры	Rs	=	435	МПа
Модуль упр	угости	арматуры	E _s	=	200	ГΠа
Для армату	ры прим	меняется	двухлинейн	ная	диагра	мма

Напрягаемая	арматура	A800
папрягасмая	арматура	AUUU

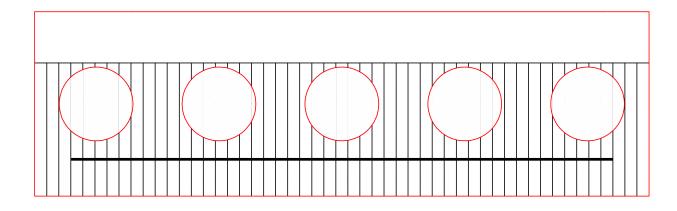
1 91			
Сопротивление арматуры	$R_s =$	695	МΠа
Модуль упругости арматуры	$E_s =$	200	ГΠа
Для арматуры применяется дв	ухлинейная	диаграмма	ì

Определение напряжений в стадии предварительного обжатия

Характеристики бетона в момент обжатия

Передаточная прочность	R _{bp}	=	20.0	МΠа
Расчетное сопротивление	R _b	=	11.50	МΠа
Модуль упругости	Eb	=	27.50	ГΠа

Значения $R_{\rm b}$, $E_{\rm b}$ определяются как для класса бетона, численно равного передаточной прочности бетона


Первые потери предварительного напряжения

OT	релаксации	напряжения	$\Delta\sigma_{ t sp1}$	=	20.0	МПа
OT	деформации	упоров	$\Delta\sigma_{sp3}$	=	30.0	МПа
OT	деформации	анкеров	$\Delta\sigma_{\text{sp4}}$	=	66.7	МПа

Предварительное напряжение, деформация и усилие с учетом первых потерь

σ_{sp}	$\epsilon_{ t sp}$	P
[M∏a]	[%.]	[ĸH]
283.3	1.42	283.3

Сжатая зона

Деформация бетона

Максимальная	деформация	Минимальная	деформация
ε [%.]	σ [MΠa]	ε [%.]	σ [M∏a]
0.04	0.00	-0.09	-2.53

Деформация ненапрягаемой арматуры

ε [%.]	σ	[МПа]
-0.07		-13.3

Деформация напрягаемой арматуры

•-	<u> </u>	O 1+1	<u> </u>		PDI			
	ε	[응]		σ	[МПа]
		1.	3	5			270.	0

Напряжение в бетоне на уровне напрягаемой арматуры

 σ_{bp} = -1.83 MNa

Проверка прочности плиты в стадии предварительного обжатия

Условие прочности $\sigma_{\text{b,max}}$ / 0.9 R_{bp} = 2.53 / 18.00 = **0.140** <= 1

 Позиция
 t446
 Страница
 354

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/446
 Версия
 2025.000

Определение предельного изгибающего момента в стадии эксплуатации

Сопротивление бетона R_b = 17.00 МПа Влажность воздуха окружающей среды от 40% до 75% Коэффициент ползучести $\phi_{b,cr}$ = 2.30 -

Характеристики приведенного сечения $A_{\text{red}} = 2680.7 \text{ cm}^2$ $I_{\text{red}} = 2.380 \cdot 10^{+5} \text{ cm}^4$

Вторые потери предварительного напряжения

от усадки бетона $\Delta\sigma_{\text{sp5}} = 40.0$ МПа от ползучести бетона $\Delta\sigma_{\text{sp6}} = 18.4$ МПа


Предварительное напряжение, деформация и усилие с учетом полных потерь

$\sigma_{ extsf{sp}}$	ϵ_{sp}	P
[МПа]	[응.]	[ĸH]
183.3	0.92	183.3

Предельный момент

M_u = **353.9** кнм

Сжатая зона

Деформация бетона

Максимальная	деформация	Минимальная	деформация		
ε [%.]	σ [MNa]	ε [%.]	σ [ΜΠα]		
3.79	0.00	-3.50	-17.00		

Деформация ненапрягаемой арматуры

ε [%.]	σ	[МПа]
2.33		435.0

Деформация напрягаемой арматуры

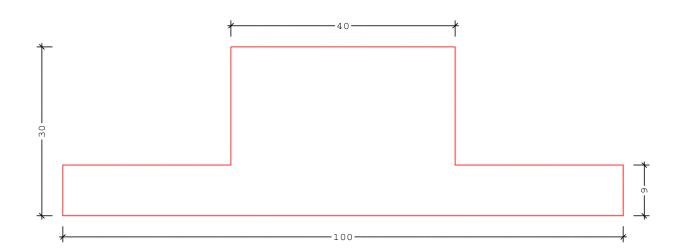
3	[%	·]	σ	[МПа]
	3.	2	5		649.8

Расчет по огнестойкости согласно СП 468.1325800.2019, 8.7

Рассматривается нагрев нижней поверхности плиты

При расчете многопустотной плиты рассматривается редуцированное сечение плиты

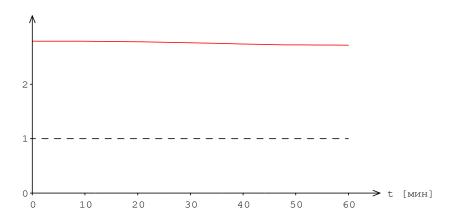
Изменение температуры среды при пожаре принимается согласно ГОСТ 30247.0-94


Изгибающий момент М = 150.0 кНм

 Позиция
 t446
 Страница
 355

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

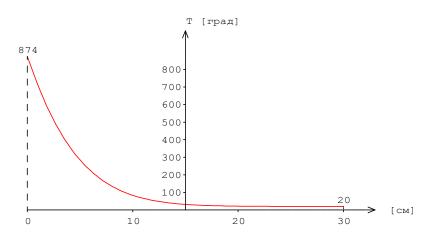
 Разраб.
 Разработчик
 СТАТИКА/446
 Версия
 2025.000


Сечение при расчете температурного поля

Коэффициент запаса прочности

Т среды	γ_{u}
20	2.792
502	2.792
603	2.791
663	2.790
705	2.788
739	2.785
766	2.781
789	2.777
809	2.772
826	2.767
8 4 2	2.761
856	2.755
869	2.748
881	2.741
	2.734
	2.727
	2.724
	2.722
	2.720
	2.719
	2.717
	603 663 705 739 766 789 809 826

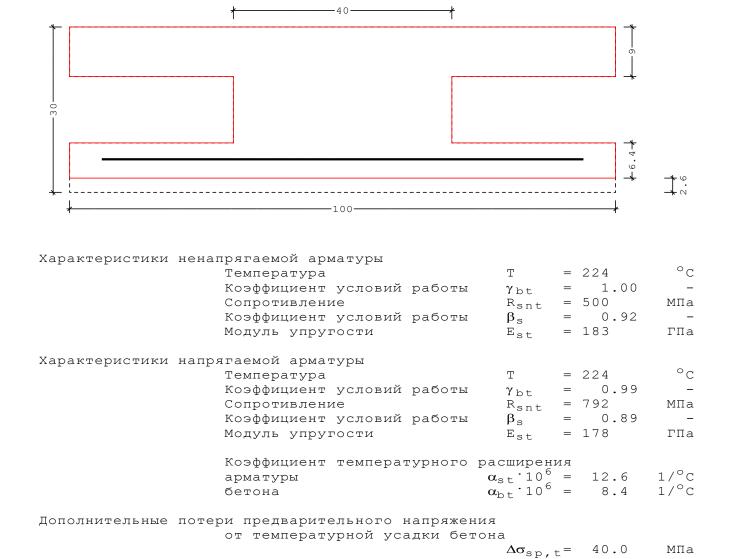
Коэффициент запаса прочности $\gamma_{\,\mathrm{u}}$



 Позиция
 t446
 Страница
 356

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/446
 Версия
 2025.000


Температура при t = 60 мин

Определение предельного момента при t = 60 мин

Глубина прогрева бетона до критической температуры $a_{\mathsf{t}} = 2.6$ см

Сечение при определении предельного момента

Позиция t446
Проект СТАТИКА тест всех модулей

Разраб. Разработчик СТАТИКА/446

Страница 357 Дата 28.10.2024 Версия 2025.000

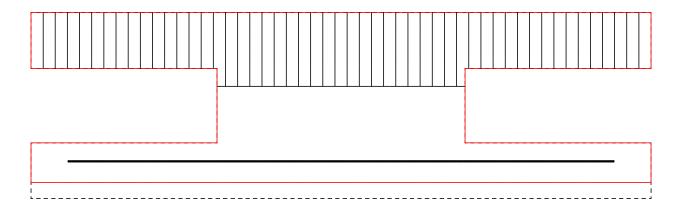
МΠа

от релаксации напряжений при нагреве арматуры

лряжении при нагреве арматуры $\Delta \sigma_{\text{sp,t}} = 0.001 T \sigma_{\text{sp}} = 41.0$

от разности температурных деформаций

 $\Delta \sigma_{\text{sp,t}} = (\alpha_{\text{st}} - \alpha_{\text{bt}}) \text{ TE}_{\text{st}} = 168.4$ MNa


Деформация напрягаемой арматуры, определенная с учетом полных потерь предварительного напряжения

 $\varepsilon_{sp} = 0.00$

Предельный момент

 $M_{u,t} = 407.5$ кнм

Сжатая зона

Деформация бетона

Максимальная	деформация	Минимальная	деформация
ε [%.]	σ [M∏a]	ε [%.]	σ [M∏a]
4.57	0.00	-3.50	-22.00

Деформация ненапрягаемой арматуры

8	: [ુ]		σ	[МΠ	a]
	7	3	5	6			5	0.0	Ω

Деформация напрягаемой арматуры

	O 2 1	up.	<u> </u>	P D1	
	3	[8	5.]	σ	[МПа]
ſ		3	5.6		633 2

Условие прочности

 $M / M_{u,t} = 0.368 <= 1$

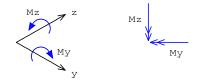
Огнестойкость плиты обеспечена

Расчет выполнен модулем 446 программы СТАТИКА 2025 © 000 Техсофт

По	зиция	t450		Страниц	a 358
Пр	оект	СТАТИКА тест всех модулей		Дата	28.10.2024
Pa	ізраб.	Разработчик	СТАТИКА/450	Версия	2025.000

Поз. t450

Расчет по огнестойкости


Сечение колонны	Ширина сечения Высота сечения	b h	40.0	CM CM
Арматура	Диаметр стержней Толщина защитного слоя	d _s a _s	2 8 4 0	MM MM

Усилия

Относительно центральных осей бетонного сечения

N ₀	N	My	M_{Z}
	[ĸH]	[кНм]	[кНм]
1	200.0	100.0	

Положительные направления моментов

Расчет

Согласно СП 468.1325800.2019, СП 63.13330.2018

Применяется метод расчета согласно СП 468, 8.6

Изменение температуры среды при пожаре принимается согласно ГОСТ 30247.0-94

Бетон В 25 (тяжелый) на силикатном заполнителе Плотность бетона ρ = 2300 кг/м3 Бетон сухой

Продольная арматура А500

Сопротивления при нормальной температуре

 $R_{\text{bn}} = 18.50$ M Π a $R_{\text{sn}} = 500$ M Π a $R_{\text{sc}} = 400$ M Π a

Модули упругости при нормальной температуре

E_b = 30.0 ГПа E_s = 200.0 ГПа

Коэффициент условий работы бетона

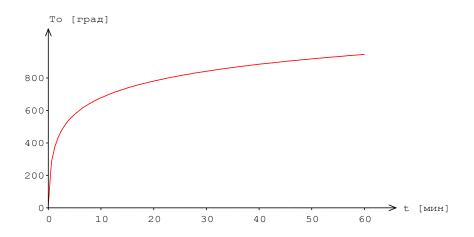
100	$\Phi\Phi$ M M M	11 1 y C 31 C	рии ре	3001bi	OCIONA			
$N_{\bar{0}}$	Т	γ _{bt}	$N_{\bar{0}}$	Т	γ _{bt}	$N_{\bar{0}}$	Т	γ _{bt}
	[°C]			[°C]			[°C]	
1	100	1.00	2	200	0.98	3	300	0.95
4	400	0.85	5	500	0.80	6	600	0.60
7	700	0.20	8	800	0.00	9	900	0.00
10	1000	0.00	11	1100	0.00	12	1200	0.00

Параметры диаграммы сжатого бетона

T	[°C]	20	100	200	300	400	500	600
ϵ_{b1}	[%.]	1.5	1.9	2.6	3.8	4.9	6.8	10.7
ϵ_{b2}	[응.]	3.5	4.4	6.1	8.8	11.4	15.8	25.0

Коэффициент редукции модуля упругости бетона ${\tt T^{\circ}C}$ 20 200 300 400 500 600 700 800 ${\tt \beta_b}$ 1.00 0.70 0.50 0.40 0.30 0.20 0.10 0.05

ſ	Позиция	t450		Страница	a 359
l	Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
	Разраб.	Разработчик	СТАТИКА/450	Версия	2025.000


Кo	эффицие	ент усло	овий ра	аботы	арматуры			
Ng	T	γ _{st}	$N_{\bar{0}}$	Т	γ _{st}	$N_{\bar{0}}$	Т	γ _{st}
	[°C]	. 5 6		[°C]	. 5 6		[°C]	. 5 5
1	100	1.00	2	200	1.00	3	300	1.00
4	400	0.85	5	500	0.60	6	600	0.37
7	700	0.22	8	800	0.10	9	900	0.00
10	1000	0.00	11	1100	0.00	12	1200	0.00

Кc	эффици	ент ред	укции	модуля	упруі	гости	арматур	ы
N	• T	β_s	$N_{\bar{0}}$	Т	βs	Nº	Т	β_s
	[°C]			[°C]			[°C]	
1	100	1.00	2	200	0.92	3	300	0.90
4	400	0.85	5	500	0.80	6	600	0.77
7	7 700	0.72	8	800	0.65	9	900	0.00
1 C	1000	0.00	11	1100	0.00	12	1200	0.00

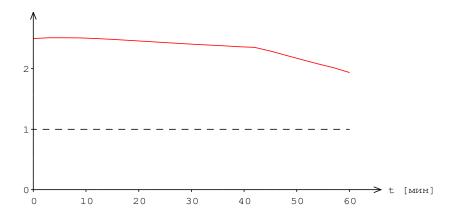
Данные для учета прогибов колонны в плоскостях У	и Z		
Длина колонны	1 =	4.00	M
Случайные эксцентриситеты	$e_{av} =$	13.3	MM
	$e_{az} =$	13.3	MM
Расчетные длины	$l_{0v} =$		М
	$1_{0z} =$	4.00	М
Эксцентриситет е ₀ принимается	не менее	ea	

Проверка прочности при пожаре

Зависимость температуры среды от времени

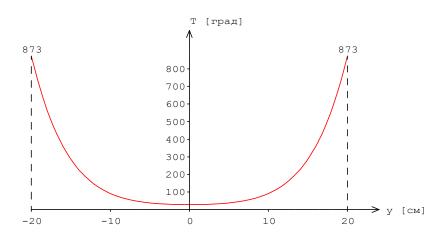
Нагрев всесторонний

Коэффициент запаса прочности

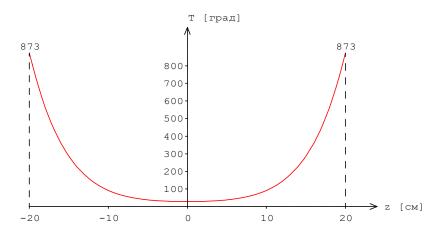

t	Т среды	γ _u
[мин]	[°C]	-
0	20	2.497
3	502	2.513
6	603	2.512
9	663	2.508
12	705	2.498
15	739	2.486
18	766	2.469
21	789	2.453
24	809	2.438
27	826	2.422
30	842	2.407
33	856	2.393
36	869	2.379
39	881	2.365
42	892	2.352
45	902	2.292
48	912	2.219

ООО Техсофт, Москва

Позиция	t450		Страниц	a 360
Проект	СТАТИКА тест всех модулей	Дата	28.10.2024	
Разраб.	Разработчик	СТАТИКА/450	Версия	2025.000


51	921	2.149
54	930	
57	938	2.081 2.017
60	945	1.938

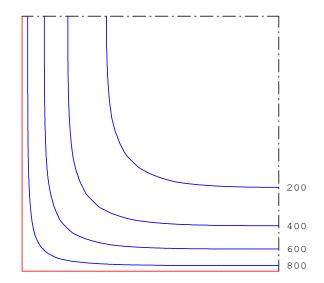
Коэффициент запаса прочности $\gamma_{\,\mathrm{u}}$



Температурное поле при t = 60 мин

Температура Т на оси у

Температура Т на оси z



 Позиция
 t450
 Страница
 361

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/450
 Версия
 2025.000

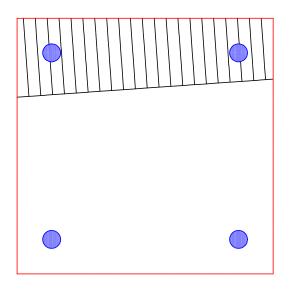
изотермы

Проверка прочности для сочетания усилий 1

Расчетные моменты с учетом случайного эксцентриситета и прогиба

Плоск	. M	δ _e	D _b	Ds	D	Ncr	η	ηM
	[кНм]	[-]	[MHm2]	[MHm2]	[MHm2]	[ĸH]	[-]	[кНм]
Y	2.7	0.150	23.516	8.882	10.137	6253	1.03	2.8
Z	100.0	1.250	23.516	8.882	7.355	4537	1.05	104.6

Примечание. D = 0.15/[ϕ_1 (0.3 + δ_e)]D_b + 0.7D_s, ϕ_1 = 2.0


Предельные усилия $N_{11} = \gamma_{11}N_{11}$, $M_{V11} = \gamma_{11}M_{V1}$, $M_{Z11} = \gamma_{11}M_{Z1}$

предельные	y C D 1 3 1 D 1 7 1 1 1 1 1 1	/	1 11 1 1 V / 1 1 Z 11	1 11 + + 7.		
N	M_{V}	M_z	й _и	M _{yu}	M_{zu}	γu
[ĸH]	[кНм]	[кНм]	[ĸH]	[кни]	[кНм]	
200.0	104.6	2.8	387.6	202.7	5.3	1.938

Нейтральная линия

У1	z ₁	У2	z ₂
[CM]	[CM]	[CM]	[CM]
-20.00	7.66	20.00	10.48

Сжатая зона при действии предельных усилий

Кривизны $\kappa_{y} / \kappa_{z} = -0.13162 / 0.00928 1/м$

 Позиция
 t450
 Страница
 362

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/450
 Версия
 2025.000

Деформация $\epsilon(y,z) = -1.3162z + 0.0928y + 11.941, ^{\circ}/_{\circ \circ}$

Деформации бетона на контуре сечения

Максимальная деформация			Минимал	ьная дефо	рмация	
	ε	σ	Т	ε	σ	T
	[%.]	[МПа]	[°C]	[%.]	[МПа]	[°C]
	40.12	0.00	919	-16.24	-0.02	919

Предельная деформация бетона

У	Z	T	ϵ_{b2}	d	ϵ_{b2}/d
[CM]	[CM]	[°C]	[%.]	[M]	[1/м]
-5.71	13.96	232	-6.96	0.053	-0.13195

у, z - координаты точки, в которой достигается предельная деформация с учетом температуры d - расстояние от нейтральной линии до точки (y,z)

Деформации арматуры

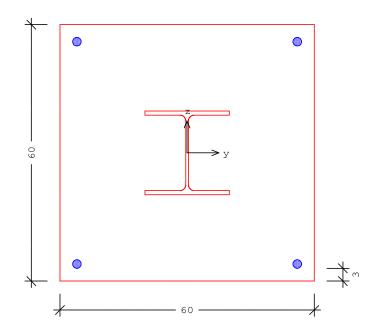
Максимальн	ная дефо	рмация	Минимал	іьная дефој	рмация
ε	σ	T	ε	σ	T
[%.]	[МПа]	[°C]	[%.]	[МПа]	[°C]
32.51	414.7	408	-8.63	-331.8	408

Усилия

	N	M _V	Mz
	[кН]	[кНм]	[кНм]
в бетоне	489.75	68.53	5.34
в арматуре	-102.14	134.22	0.00
суммарные	387.61	202.74	5.34

Огнестойкость обеспечена

Расчет выполнен модулем 450 программы СТАТИКА 2025 © 000 Техсофт


<u>Поз. t451</u> Расчет по огнестойкости (сталежелезобетонное сечен

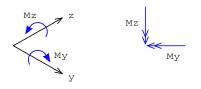
Сечение	Ширина сечения Высота сечения	b h	=	60.0 60.0	CM CM
Арматура	Диаметр стержней Толщина защитного слоя	d _s	=	2 0 3 0	MM MM
Профиль	Двутавр 20К1 Ширина Высота Толщина полок Толщина стенки	b h t s	=	P 57837 199 196 10.0 6.5	7-2017 MM MM MM MM

 Позиция
 t451
 Страница
 363

 Проект
 CTATИКА тест всех модулей
 дата
 28.10.2024

СТАТИКА/451

Усилия


Разраб.

Разработчик

Относительно центральных осей бетонного сечения

Nº	N	$M_{ m V}$	Mz		
	[ĸH]	[кНм]	[кНм]		
1	2500.0		300.0		

Положительные направления моментов

Расчет

Согласно СП 468.1325800.2019, СП 63.13330.2018, СП 266.1325800.2016

Применяется метод расчета согласно СП 468, 8.6

Изменение температуры среды при пожаре принимается согласно ГОСТ 30247.0-94

Бетон **В 25 (тяжелый)**

на силикатном заполнителе

Плотность бетона

Бетон сухой

= 2350 кг/м3

Версия 2025.000

Продольная арматура А500С марки 25Г2С

Сталь С 355Б

Сопротивления при нормальной температуре

 $R_{bn} = 18.50$ MMa $R_{sn} = 500$ MMa $R_{sc} = 400$ MMa $R_{vn} = 355$ MMa

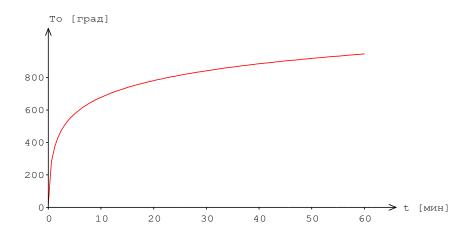
Модули упругости при нормальной температуре

E_b = 30.0 ГПа E_s = 200.0 ГПа E = 206.0 ГПа

 Позиция
 t451
 Страница
 364

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/451
 Версия
 2025.000


Изгибные	жесткости при	нормальной темпера	атуре
Плоскость	E _b I _b	E _s I _s	EI _{st}
изгиба	[МНм2]	[МНм2]	[МНм2]
Y	324.00	16.99	2.71
Z	324.00	16.99	7.92

Данные для учета прогиба колонны в плоскости Z

Длина колонны	1	=	6.00	M
Случайный эксцентриситет	eaz	=	20.0	MM
Расчетная длина	l_{0z}	=	6.00	M
Эксцентриситет е принимается	не м	иенее	e a	

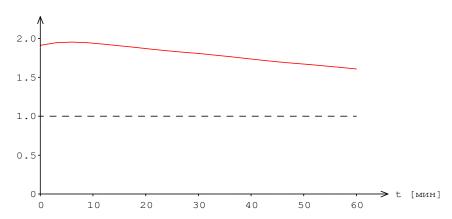
Проверка прочности при пожаре

Зависимость температуры среды от времени

Нагрев всесторонний

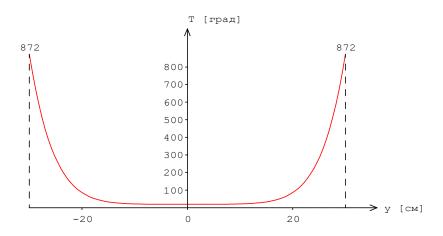
Температура профиля принимается равной наибольшей температуре на контуре профиля

Коэффициент запаса прочности

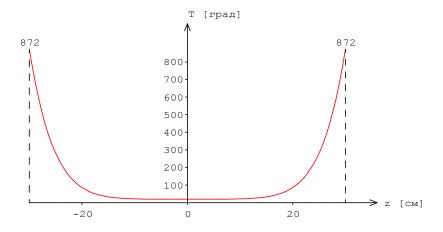

t	Т среды	γu
[мин]	[⁵ C]	
0	20	1.911
3	502	1.944
6	603	1.954
9	663	1.945
12	705	1.926
15	739	1.906
18	766	1.885
21	789	1.863
24	809	1.842
27	826	1.824
30	8 4 2	1.805
33	856	1.785
36	869	1.765
39	881	1.742
42	892	1.720
45	902	1.700
48	912	1.681
51	921	1.663
54	930	1.646
57	938	1.627
60	945	1.608

 Позиция
 t451
 Страница
 365

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024


 Разраб.
 Разработчик
 СТАТИКА/451
 Версия
 2025.000

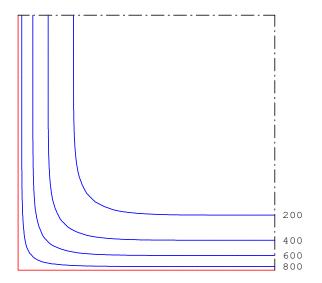
Коэффициент запаса прочности γ_{u}



Температурное поле при t = 60 мин

Температура Т на оси у

Температура Т на оси z



 Позиция
 t451
 Страница
 366

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/451
 Версия
 2025.000

изотермы

Параметры диаграммы для стали

температура	, compo	тивление,	модуль упругост	'И
Т	γ _{st}	$eta_{ t s t}$	R _{vnt}	Ε _t
[°C]	[-]	[-]	[МПа]	[ГПа]
24	1.000	1.000	355.0	206.0

 $R_{ynt} = \gamma_{st}R_{yn}$, $E_t = \beta_{st}E$ γ_{st} , β_{st} принимаются по EN 1994-1-2, Table 3.2

Проверка прочности для сочетания усилий 1

Расчетные моменты с учетом случайного эксцентриситета и прогиба

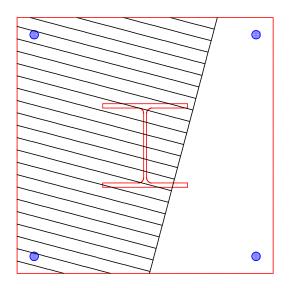
Пл.	M	$\delta_{ extsf{e}}$	Db	Ds	D _{st}	D	Ncr	η	η M
	[кНм]	[-]	[МНм2]	[MHm2]	[MHm2]	[MHm2]	[ĸH]	[-]	[кНм]
Y	300.0							1.00	300.0
Z	50.0	0.150	164.966	15.914	7.923	40.056	10982	1.29	64.7

Примечание. D = 0.15/[ϕ_1 (0.3 + δ_e)]0.85D_b + 0.7(D_s + D_{st}), ϕ_1 = 2.0 D_b = $\Sigma \beta_{\text{b,i}} E_{\text{b}} I_{\text{b,i}}$, D_s = $\Sigma \beta_{\text{s,i}} E_{\text{s}} I_{\text{s,i}}$, D_{st} = $\beta_{\text{st}} E_{\text{I}}$

Предельные усилия $N_{\rm u} = \gamma_{\rm u} N$, $M_{\rm yu} = \gamma_{\rm u} M_{\rm y}$, $M_{\rm zu} = \gamma_{\rm u} M_{\rm z}$

N [kH]	M _y	M _z	N _u	М _{уи} [кНм]	М _{zu} [кНм]	γu
2500.0	64.7	300.0	4019.3	104.1	482.3	1.608

Нейтральная линия


V 1	Z 1	Vo	Zο
[CM]	[CM]	[CM]	[CM]
1.04	-30.00	16.92	30.00

t451 Позиция Страница СТАТИКА тест всех модулей Проект Дата

28.10.2024 Разработчик **СТАТИКА/451** Версия 2025.000 Разраб.

Сжатая зона при действии предельных усилий

367

Кривизны κ_{v} / κ_{z} = -0.00344 / 0.01299 1/м

 $\varepsilon (y,z) = -0.0344z + 0.1299y - 1.166, ^{\circ}/_{\circ \circ}$ Деформация

Деформации бетона на контуре сечения

Максималі	ьная дефо	рмация	Минимал	ьная дефо	рмация
ε	σ	T	3	σ	T
[%.]	[MПa]	[°C]	[%.]	[MПa]	[°C]
3.76	0.00	918	-6.10	-0.01	918

Предельная деформация бетона

У	Z	T	ϵ_{b2}	d	ϵ_{b2}/d
[CM]	[CM]	[°C]	[%.]	[M]	[1/м]
-17.92	14.00	62	-3.98	0.296	-0.01344

у, z - координаты точки, в которой достигается предельная деформация с учетом температуры d - расстояние от нейтральной линии до точки (у, z)

Деформации арматуры

Максимал	ьная дефо	рмация	Минимај	ьная дефо	рмация
ε	σ	T	3	σ	T
[%.]	[МПа]	[°C]	[%.]	[MПa]	[°C]
3.11	416.7	533	-5.44	-333.4	533

Деформации стали

Максимал	ьная дефо	рмация	Минимај	іьная дефој	рмация
3	σ	T	3	σ	T
[%.]	[МПа]	[°C]	[%.]	[M∏a]	[°C]
0.46	95.5	24	-2.80	-355.0	24

Усилия

	N	M_{V}	M_z
	[ĸH]	[кНм]	[кНм]
в бетоне	2889.20	70.66	346.10
в арматуре	0.98	13.87	108.67
в стали	1129.12	19.55	27.55
суммарные	4019.31	104.08	482.32

Огнестойкость обеспечена

Расчет выполнен модулем 451 программы СТАТИКА 2025 © 000 Техсофт

 Позиция
 t453
 Страница
 368

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/453
 Версия
 2025.000

Поз. t453

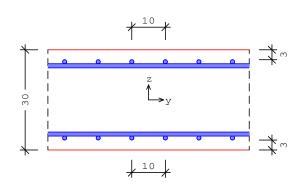
Расчет по огнестойкости плит и стен

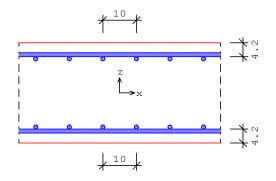
Плита

Высота сечения

h = 30.0

СМ


Верхняя арматура


По оси	ds	S	As	a _s
	[MM]	[CM]	[CM2/M]	[MM]
X	12	10	11.31	30.0
У	12	10	11.31	42.0

Нижняя арматура

По оси	ds	S	As	a _s
	[MM]	[CM]	[см2/м]	[MM]
X	12	10	11.31	30.0
У	12	10	11.31	42.0

Сечения плиты, нормальные к осям х и у

Усилия

В сечениях, нормальных к осям х и у

$N_{\bar{0}}$	M_{x}	M_{V}	M_{xy}	N_{x}	Ny
	[кНм/м]	[кНм/м]	[кНм/м]	[кН/м]	[кН/м]
1	50.0	50.0	25.0		

Расчет

Согласно СП 468.1325800.2019, СП 63.13330.2018

Применяется метод расчета согласно СП 468, 8.6

Изменение температуры среды при пожаре принимается согласно ГОСТ 30247.0-94

Бетон на силикатном заполнителе

Плотность бетона Бетон сухой o = 2350 kr/m3

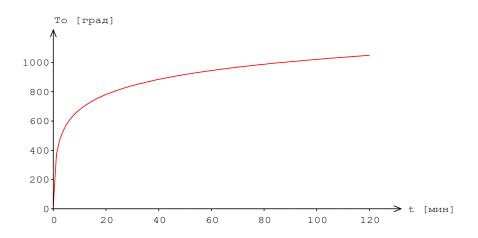
Продольная арматура

А500С марки 25Г2С

В 25 (тяжелый)

Сопротивления при нормальной температуре

 $R_{\text{bn}} = 18.50$ M Π a $R_{\text{sn}} = 500$ M Π a $R_{\text{sc}} = 400$ M Π a

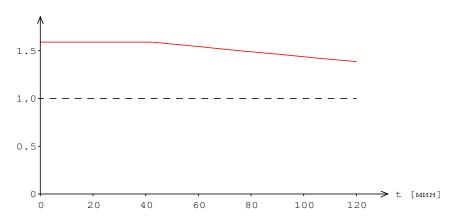

Проверка прочности при пожаре

 Позиция
 t453
 Страница
 369

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

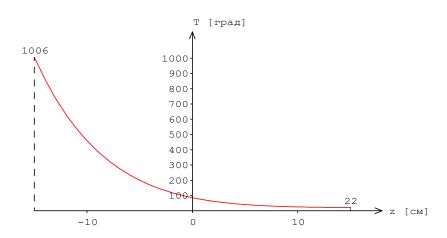
 Разраб.
 Разработчик
 СТАТИКА/453
 Версия
 2025.000

Зависимость температуры среды от времени


Нагрев нижней стороны сечения

Коэффициент запаса прочности

t	Т	среды	γ _u
[MNH]		[°C]	
0		20	1.591
3		502	1.591
6		603	1.591
9		663	1.591
12		705	1.591
15		739	1.591
18		766	1.591
21		789	1.591
24		809	1.591
27		826	1.591
30		842	1.591
33		856	1.591
36		869	1.591
39		881	1.591
42		892	1.591
45		902	1.582
48		912	1.574
51		921	1.567
5 4		930	1.559
57		938	1.552
60		945	1.545
63		953	1.536
66		960	1.527
69		966	1.518
72		973	1.509
75		979	1.501
78		985	1.493
81		990	1.486
8 4		996	1.478
87		1001	1.471
90		1006	1.464
93		1011	1.456
96		1016	1.447
99		1020	1.439
102		1025	1.431
105		1029	1.423
108		1033	1.415
111		1037	1.408
114		1041	1.401
117		1045	1.394
120		1049	1.387


t453 Позиция 370 Страница 28.10.2024 СТАТИКА тест всех модулей Проект Дата Разработчик **СТАТИКА/453** Версия 2025.000 Разраб.

Коэффициент запаса прочности γ_{u}

Температурное поле при t = 120 мин

Температура Т на оси z

Проверка прочности для сочетания усилий 1

Условие прочности

γ	$_{\times 11} = N_{\times 11}/I$	$M_{\times} = M_{\times 11}/M_{\times}$	>= 1		
	N_{x}	M_{\times}	N _{xu}	M _{xu}	γ _{xu}
	[кН/м]	[кНм/м]	[кН/м]	[кНм/м]	
	0.0	50.0	0.0	112.3	2.245

Условие прочности

$\gamma_{VII} = N_{VII} / $	$N_{v} = M_{vu}/M_{v}$	>= 1		
Ny	M_{V}	N _{yu}	M _{yu}	γ _{yu}
[кН/м]	[кНм/м]	[кН/м]	[кНм/м]	
0.0	50.0	0.0	120.8	2.415

Условие прочности $\gamma_{11} >= 1$ согласно СП 63, (8.100)

N _ж	М _ж	N _У	М _У	М _{хи}	М _{уи}	М _{ху}	γ _u
[кН/м]	[кНм/м]	[кН/м]	[кНм/м]	[кНм/м]	[кНм/м]	[кНм/м]	
0.0	50.0	0.0	50.0	112.3	120.8	25.0	1.387

Предельные моменты $\mathrm{M}_{\mathrm{x}\,\mathrm{u}}$, $\mathrm{M}_{\mathrm{y}\,\mathrm{u}}$ определены при заданных значениях N_{x} , N_{y}

$$\gamma_{u} = 1/[M_{x}/M_{xu} + M_{y}/M_{yu} - M_{x}M_{y}/(M_{xu}M_{yu}) + M_{xy}^{2}/(M_{xu}M_{yu})]$$

Условие прочности

$\gamma_u = M_{b \times V}$	$_{\rm u}/{ m M}_{ imes imes} >= 1$ corj	асно СП 63,(8.10	4)
R _{bt,cp}	2	$M_{x, V}$	$\gamma_{ m u}$
[MPa]	^М bху , u [кНм/м]	[кнм/м]	-
16.19	145.7	25.0	5.830

 $R_{\text{bt,cp}}$ - среднее сопротивление бетона $M_{\text{bxy,u}}$ = 0.1 $R_{\text{bt,cp}}h^2$

 Позиция
 t453
 Страница
 371

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

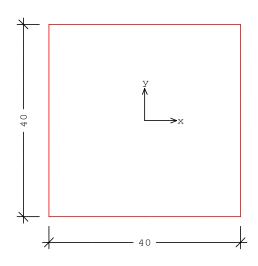
 Разраб.
 Разработчик
 СТАТИКА/453
 Версия
 2025.000

Условие	прочно	ости γ ₁₁ =	$M_{S\times V}$, M_{X}	>= 1 c	согласно СП	63, (8.105)	
T _B	T _H	R _{st,B}	R _{st, H}	h ₀	M _{sxv,u}	M _{× v}	γu
[°C]	[°C]	[МПа]	[МПа]	[CM]	[кНм/м]	[кНм/м]	
25	576	500.0	393.0	25.8	3 260.6	25.0	10.422

 $T_{\rm B}$, $T_{\rm H}$ – температура верхней и нижней арматуры $R_{\rm St,B}$, $R_{\rm St,H}$ – сопротивление верхней и нижней арматуры $M_{\rm SXY,u}$ = 0.5[$R_{\rm St,B}$ ($A_{\rm SX}$ + $A_{\rm SY}$) $_{\rm B}$ + $R_{\rm St,H}$ ($A_{\rm SX}$ + $A_{\rm SY}$) $_{\rm H}$] h_0

Огнестойкость плиты обеспечена

Расчет выполнен модулем 453 программы CTATUKA 2025 © 000 Техсофт


Поз. t454

Расчет на продавливание при огневом воздействии

Расчетная схема

Размеры сечения колонны

 $c_{x} = 40.0$ CM $c_{y} = 40.0$ CM

Высота плиты $h=25.0\,$ см Рабочая высота плиты $h_0=20.0\,$ см

Нагрузки

N ₀	F	M_{x}	M _V
	[ĸH]	[кНм]	[кНм]
1	500.0		

Расчет

Согласно СП 468.1325800.2019, СП 63.13330.2018 Изменение температуры среды при пожаре принимается согласно ГОСТ 30247.0-94

Бетон **В 25 (тяжелый)**

на силикатном заполнителе Плотность бетона Бетон сухой

 ρ = 2300 kr/m3

Сопротивление при нормальной температуре

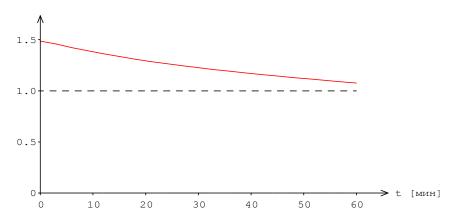
 $R_{btn} = 1.55$ M Π a

Коэффициент условий работы бетона

Nº	Т	γ _{btt}	Nº	Т	γ _{btt}	Nº	Т	γ _{btt}
	[°C]			[°C]			[°C]	
1	20	1.00	2	50	0.80	3	100	0.75
4	150	0.70	5	200	0.65	6	300	0.50
7	400	0.35	8	500	0.20	9	600	0.05

Позиция	t454		Страниц	a 372
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/454	Версия	2025.000

Коэффициент условий работы арматуры

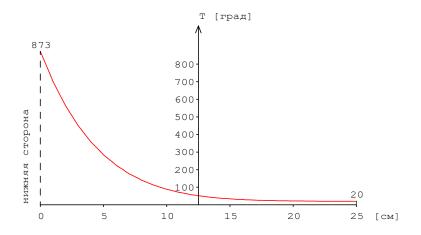

Nº	Т	γ _{st}	Nº	Т	γ _{st}	$N_{\bar{0}}$	Т	γ _{st}
	[°C]			[°C]			[°C]	
1	100	1.00	2	200	1.00	3	300	1.00
4	400	0.85	5	500	0.60	6	600	0.37
7	700	0.22	8	800	0.10	9	900	0.00
10	1000	0.00	11	1100	0.00	12	1200	0.00

Проверка прочности плиты при пожаре

Коэффициент запаса прочности

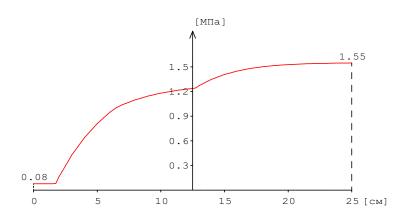
t	Т среды	γ _u
[мин]	[°C]	
0	20	1.488
3	502	1.459
6	603	1.423
9	663	1.392
12	705	1.363
15	739	1.336
18	766	1.310
21	789	1.287
2 4	809	1.266
27	826	1.246
30	842	1.227
33	856	1.209
36	869	1.192
39	881	1.176
42	892	1.160
45	902	1.145
48	912	1.131
51	921	1.116
5 4	930	1.102
57	938	1.089
60	945	1.077

Коэффициент запаса прочности $\gamma_{\,\mathrm{u}}$

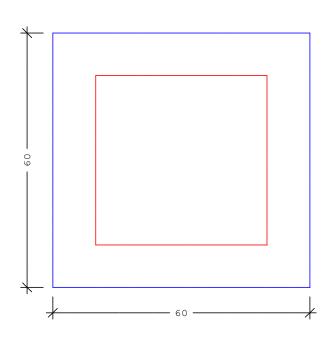


Температурное поле при t = 60 мин

 Позиция
 t454
 Страница
 373


 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/454
 Версия
 2025.000


Расчет на продавливание при t = 60 мин

Изменение сопротивления бетона $R_{\mbox{btnt}}$

Среднее сопротивление бетона R_{btnt} = 1.12 МПа

Расчетный контур

Расчетный периметр

u = 240.0

СМ

 Позиция
 t454
 Страница
 374

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/454
 Версия
 2025.000

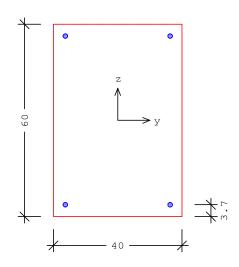
Моменты сопротивления расчетного контура $W_{\rm x} = 4800$ см2 $W_{\rm y} = 4800$ см2

Предельные усилия в бетоне

F _b ,ult	M _{bx} ,ult	M _{by,ult}
[ĸH]	[кНм]	[кНм]
538.3	107.7	107.7

Условие прочности

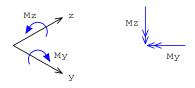
F /
$$F_{ult}$$
+ M_x / M_x , ult + M_y / M_y , ult =


0.9288 + 0.0000 + 0.0000 = 0.929 <= 1
 γ_u = 1.077

Огнестойкость плиты обеспечена

Расчет выполнен модулем 454 программы СТАТИКА 2025 © 000 Техсофт

<u>Поз. t455</u> Расчет по огнестойкости согласно СТО НИИЖБ


Сечение Ширина 40.0 СМ 60.0 Высота h СМ Диаметр стержней ds 14 MMaз Толщина защитного слоя 30 MM

Усилия

Относительно центральных осей бетонного сечения

Положительные направления моментов

K	N [ĸH]	М _v [кНм]	М _z [кНм]
1	500.0	100.0	

Позиция	t455		Страниц	ıa 375
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/455	Версия	2025.000

Материал Бетон В 25 (тяжелый)

на силикатном заполнителе

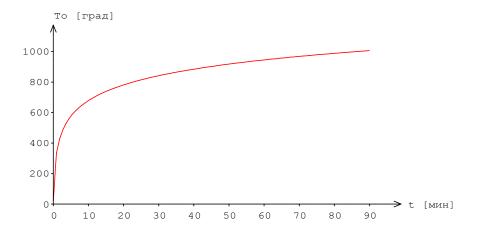
Плотность бетона = 2300 kr/m3 ρ Бетон сухой

A500 Продольная арматура

Норматив. сопротивления при нормальной температуре

 $R_{bn} = 18.50 M\Pi a$ МΠа

 R_{sn} = 500

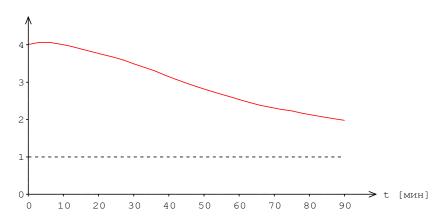

Расчет

Согласно СТО 36554501-006-2006

Изменение температуры среды при пожаре принимается согласно ГОСТ 30247.0-94

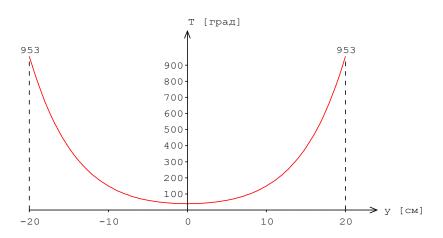
Рассматривается всесторонний нагрев сечения

Зависимость температуры среды от времени

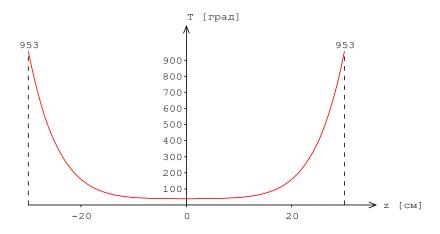

Коэффициент запаса прочности

Nº	t	To	γ _u
	[MNH]	[град]	, a
1	0	20	4.009
1 2 3 4 5 6 7	3	502	4.062
3	6	603	4.069
4	9	663	4.021
5	12	705	3.964
6	15	739	3.888
7	18	766	3.818
8	21	789	3.744
8 9	24	809	3.673
10	27	826	3.595
11	30	842	3.491
12	33	856	3.396
13	36	869	3.304
14	39	881	3.185
15	42	892	3.075
16	45	902	2.975
17	48	912	2.878
18	51	921	2.790
19	5 4	930	2.705
20	57	938	2.621
21	60	945	2.539
22	63	953	2.456
23	66	960	2.384
24	69	966	2.327
25	72	973	2.271
26	75	979	2.234
27	78	985	2.167
28	81	990	2.118

Позиция	t455		Страниц	a 376
Проект	СТАТИКА тест всех м	одулей	Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/455	Версия	2025.000


29	8 4	996	2.071
30	87	1001	2.023
31	90	1006	1.978

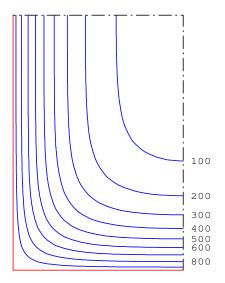
Коэффициент запаса прочности $\gamma_{\,\mathrm{u}}$



Температурное поле при t = 90 мин

Температура Т на оси у

Температура Т на оси z



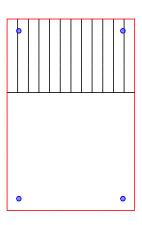
 Позиция
 t455
 Страница
 377

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/455
 Версия
 2025.000

изотермы

Расстояние с	от повер	хности по у [1	мм] (Температура)
121.1	(100)	85.0 (200)	63.8 (300)
48.3	(400)	36.4 (500)	26.3 (600)
17.7	(700)	10.0 (800)	3.5 (900)


Расстояние с	т повер:	хности по	Z [MM]	(Температура
128.4	(100)	87.4	(200)	65.0 (300)
48.9	(400)	36.8	(500)	26.5 (600)
17.8	(700)	10.0	(800)	3.5 (900)

Несущая способность при t = 90 мин

Предельные усилия

N _u [кН]	М _{уп} [кНм]	М _{д 11} [кНм]	γ 11
988.9	197.77	0.00	1.978

Сжатая зона

Кривизны

 κ_{y} / κ_{z} = -0.04154 / 0.00000 1/M

Деформации бетона

Максимальная		тьная	деформация	Минима	льная	деформация	
	3	σ	T	3	σ	Т	
	[%.]	[МПа	[град]	[%.]	[МПа	.] [град]	
	15.37	0.0	0 990	-9.55	-0.5	3 990	

Позиция	t455		Страниц	a 378
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/455	Версия	2025.000

Деформации стали

Усилия

Расчет

Максимај	тьная деф	рормация	Минима	льная ,	деформация
3	σ	Т	ε	σ	Т
[응.]	[МПа]	[град]	[%.]	[МПа] [град]
13.83	106.6	706	-8.02	-106.	6 706

Огнестойкость сечения обеспечена

Расчет выполнен модулем 455 программы СТАТИКА 2025 © 000 Техсофт

Поз. t462 База колонны двутаврового сечения

Ν

[KH]

500.0

Сечение колонны Двутавр 25К2

CTO AC4M 20-93

 Q_{7}

[KH]

Q,

[ĸĤ]

h [мм]	b [мм]	t _w [мм]	t _f [мм]	r [MM]
250	250	9.0	14.0	16

 M_{7}

[кНм]

Согласно СП 16.13330.2017 Сталь для колонны С 255

 $M_{\tau \tau}$

50.0

[кНм]

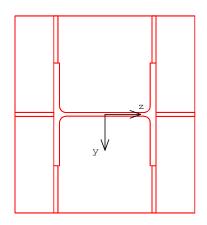
Сталь для колонны Расчетное сопротивление $R_y = 240$ МПа

Сталь для плиты С 235

Расчетное сопротивление $R_{y}=230$ МПа Коэффициент условий работы $\gamma_{c}=1.10$ -

Бетон для фундамента В20

Коэффициент условий работы γ_b = 0.90 - Расчетное сопротивление $\gamma_b R_b$ = 10.35 МПа

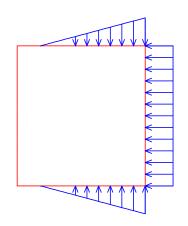

Вид сварки ручная сварка Расчетное сопротивление $R_{\text{wf}} = 200$ МПа

Опорная плита Ширина по оси у $b_y = 480$ мм по оси z $b_z = 440$ мм

 ${
m по \ оси \ z} {
m b}_{
m Z} = 440 {
m mm}$ ${
m t}_{
m n} = 25 {
m mm}$

Рёбра в пл. полок Ширина $b_p = 115 \, {\rm MM}$ высота $h_p = 115 \, {\rm MM}$

Рёбра в пл. стенки Ширина $b_{pc} = 95$ мм Высота $h_{pc} = 115$ мм Толщина рёбер $t_p = 10$ мм



 Позиция
 t462
 Страница
 379

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/462
 Версия
 2025.000

Отпор фундамента K = 1

Проверка прочности опорной плиты

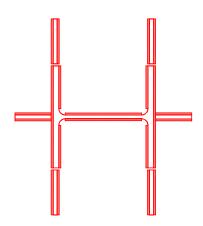
Отпор фундамента

K	max $\sigma_{ extsf{b}}$	min $\sigma_{ extsf{b}}$	Nb	ey	e _z
	[МПа]	[МПа]	[ĸH]	[MM]	[MM]
1	5.79	0.00	500.0	0.0	100.0

Поворот опорной плиты

 $\varphi = 0.00058$

K	Тип	р	max M	max σ / R $_{ m y}\gamma_{ m c}$	Условие
	плиты	[МПа]	[кНм/м]	-	прочности
1	5	5.79	25.0	240.2 / 242.0	выполнено


Тип 5 - плита с двумя защемленными смежными краями

Сварное соединение колонны и рёбер с опорной плитой

Катет шва	полки	k _f	=	5*	MM
Катет шва	стенки	k _f	=	5*	MM
Катет шва	ребра полки	k _f	=	5 *	MM
Катет шва	ребра стенки	kf	=	5*	MM

^{*} Минимальное значение

Сварные швы

Проверка прочности швов (случай $\beta_{\mathrm{f}} R_{\mathrm{wf}} \mathrel{<=} \beta_{\mathrm{z}} R_{\mathrm{wz}}$)

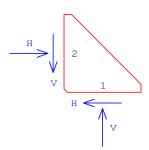
Характеристики сечения швов

А	I _V	Ιz	A _V	Az
[см2]	[см4]	[см4]	[см2]	[см2]
81.8	12124	11427	58.0	12.6

Примечание. Значения определены с учетом $\, \beta_{\, \mathrm{f}} \, = \, 0.7 \,$

 Позиция
 t462
 Страница
 380

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024


 Разраб.
 Разработчик
 СТАТИКА/462
 Версия
 2025.000

Примечание. Расчетные длины швов уменьшены на 10мм

K	$\sigma_{\scriptscriptstyle extsf{W}}$	τ_{w}	τ_{f} / R_{wf}	Условие
	[МПа]	[МПа]		прочности
1	151.8	0.0	151.8 / 200.0	выполнено

Примечание.
$$\tau_f = (\sigma_w^2 + \tau_w^2)^{1/2}$$

Проверка прочности рёбер в плоскостях полок

Силы и напряжения на гранях ребра

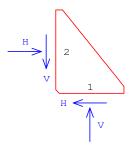
K	V	Н	σ_1	τ 1	σ_2	τ 2
	[KH]	[KH]	[MΠa]	[MПa]	[MПa]	[МПа]
1	90.7	90.7	78.9	78.9	78.9	78.9

K	σ_{n1} / R_{y}	$\sigma_{ ext{n 2}}$ / $R_{ ext{y}}$	Условия
			прочности
1	157.7 / 240.0	157.7 / 240.0	выполнены

Примечание.
$$\sigma_n$$
 = $(\sigma^2 + 3\tau^2)^{1/2}$

Сварное соединение

колонны и рёбер полок стыковыми швами


Рабочая толщина шва Расчетная длина шва t = 10 MM $l_W = 90 MM$

Проверка прочности сварных швов

K	σ	τ	$\sigma_{\rm n}$ / $R_{\rm wy}$	Условие
	[МПа]	[МПа]	-	прочности
1	100.8	100.8	201.5 / 204.0	выполнено

Примечание.
$$\sigma_n$$
 = $(\sigma^2 + 3\tau^2)^{1/2}$

Проверка прочности рёбер в плоскости стенки

Силы и напряжения на гранях ребра

K	V	Н	σ_1	τ 1	σ_2	τ 2
	[ĸH]	[ĸH]	[МПа]	[МПа]	[МПа]	[МПа]
1	87.9	76.2	106.3	80.2	66.3	76.5

K	σ_{n1} / R $_{ ext{y}}$	σ_{n2} / R_{y}	Условия
	_	-	прочности
1	175.0 / 240.0	148.1 / 240.0	выполнены

Примечание. σ_n = $(\sigma^2 + 3\tau^2)^{1/2}$

Сварное соединение колонны и рёбер стенки двусторонними угловыми швами

Γ	Позиция	t462		Страниц	a 381
	Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
	Разраб.	Разработчик	СТАТИКА/462	Версия	2025.000

Катет шва $k_{\text{f}} = 6 \qquad \text{мм}$ Расчетная длина шва $l_{\text{w}} = 100 \qquad \text{мм}$

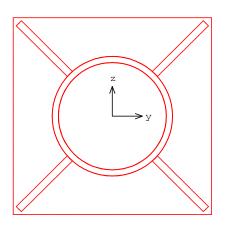
Проверка прочности сварных швов (случай $\beta_{\mathrm{f}} R_{\mathrm{wf}} \mathrel{<=} \beta_{\mathrm{z}} R_{\mathrm{wz}}$)

K	$\sigma_{\scriptscriptstyle \mathbb{W}}$	τ _w	τ _f / R _{wf}	Условие
	[МПа]	[МПа]		прочности
1	127.1	146.6	194.0 / 200.0	выполнено

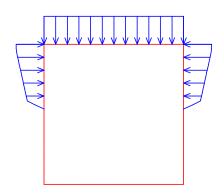
Примечание. $\tau_f = (\sigma_w^2 + \tau_w^2)^{1/2}$

Несущая способность базы колонны обеспечена

Расчет выполнен модулем 462 программы СТАТИКА 2025 © 000 Техсофт


Поз. t463 База колонны трубчатого сечения

Сечение колонны	Диаметр Толщина стенки	D t	= 200 = 10.0	MM MM
Усилия	K N M _y [κH] [κHM] 1 500.0 50.0	М _Z [кНм]	<u>Q</u> у [кН]	Q _Z [кН]
Расчет	Согласно СП 16.13330.2017			
	Сталь для колонны Расчетное сопротивление	C 255	= 240	МПа
	Сталь для плиты Расчетное сопротивление Коэффициент условий работы	C 235 R _γ γ _c	= 230 = 1.10	МПа -
	Сталь для рёбер Расчетное сопротивление	C 255	= 250	МПа
	Бетон для фундамента Коэффициент условий работы Расчетное сопротивление	B25 γ _b γ _b R _b	= 0.90 = 13.05	- МПа
	Вид сварки Расчетное сопротивление	R_{wf}	ручная св = 200	арка МПа
Опорная плита	Ширина Толщина	b _n t _n	= 330 = 45	MM MM
Рёбра	Ширина Высота Толщина	b _p h _p t _p	= 120 = 115 = 12	MM MM


 Позиция
 t463
 Страница
 382

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/463
 Версия
 2025.000

Отпор фундамента К = 1

Проверка прочности опорной плиты

Отпор фундамента

K	max $\sigma_{ extsf{b}}$	min $\sigma_{ m b}$	Nb	ey	e _z
	[МПа]	[MПa]	[ĸH]	[MM]	[MM]
1	13.05	0.00	500.0	-0.0	100.0

 $\varphi = 0.01461$

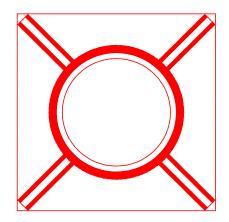
Поворот опорной плиты

K	Тип	р	max M	max σ / R $_{ m y}\gamma_{ m c}$	Условие
	плиты	[МПа]	[кНм/м]	-	прочности
1	3	13.05	66.2	196.2 / 231.0	выполнено

Тип 3 - плита, имеющая форму равнобокой трапеции

Сварное соединение колонны и рёбер с опорной плитой

Катет шва колонны $k_{\mathrm{f}}=12\,^{\star}$ мм Катет швов рёбер $k_{\mathrm{f}}=6\,^{\star}$ мм


* Минимальное значение

 Позиция
 t463
 Страница
 383

 Проект
 CTATИКА тест всех модулей
 дата
 28.10.2024

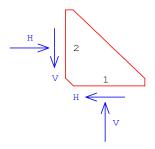
 Разраб.
 Разработчик
 CTATИКА/463
 Версия
 2025.000

Сварные швы

Проверка прочности швов (случай $\beta_{\mathrm{f}} R_{\mathrm{wf}} <= \beta_{\mathrm{z}} R_{\mathrm{wz}}$)

Характеристики	при	расчете	на	действие	Ν,	M_{γ} ,	M_z
А [см2]		I _v [cm4	1]		I	z [Cı	м4]
85.71		703	8 8			7	038

Характеристи	ки при расчете	на действие	Q _y ,	Qz
А _{ук} [см2]	A _{Vр} [см2]	$A_{z\kappa}$ [cm2]	A_{zp}	[см2]
26.39	23.28	26.39	1	23.28


Примечание. Значения определены с учетом $\, eta_{\, \mathrm{f}} \, = \, 0.7 \,$

Примечание. Расчетные длины швов уменьшены на 10мм

K	$\sigma_{\scriptscriptstyle \mathbb{W}}$	τ w	τ _f / R _{wf}	Условие
	[МПа]	[МПа]		прочности
1	168.8	0.0	168.8 / 200.0	выполнено

Примечание. τ_{f} = $(\sigma_{w}^{2} + \tau_{w}^{2})^{1/2}$

Проверка прочности рёбер

Силы и напряжения на гранях ребра

K	V	Н	σ_1	τ 1	σ_2	τ ₂
	[KH]	[ĸH]	[MПa]	[МПа]	[МПа]	[МПа]
1	139.8	156.5	118.2	108.7	113.4	101.3

K	σ_{nl} / R $_{ ext{y}}$	$\sigma_{ ext{n 2}}$ / $R_{ ext{y}}$	Условия
			прочности
1	222.2 / 240.0	208.9 / 240.0	выполнены

Примечание. $\sigma_n = (\sigma^2 + 3\tau^2)^{1/2}$

Сварное соединение колонны и рёбер

Катет швов $k_{\mathrm{f}}=9$ мм Расчетная длина швов $l_{\mathrm{w}}=93$ мм

t463 Позиция 384 Страница 28.10.2024 СТАТИКА тест всех модулей Проект Дата Разработчик **СТАТИКА/463** Версия 2025.000 Разраб.

Швы двусторонние

Проверка прочности швов (случай $\beta_f R_{wf} <= \beta_z R_{wz}$)

K	$\sigma_{\scriptscriptstyle extsf{W}}$	τ_{w}	τ _f / R _{wf}	Условие
	[МПа]	[МПа]		прочности
1	133.5	119.3	179.1 / 200.0	выполнено

Примечание. τ_{f} = $(\sigma_{w}^{2} + \tau_{w}^{2})^{1/2}$

Несущая способность базы колонны обеспечена

Расчет выполнен модулем 463 программы СТАТИКА 2025 © 000 Техсофт

Поз. t465

Подбор сечения стального элемента

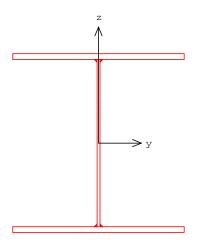
Усилия

K	$M_{_{ abla}}$	Q _{7.}	F	b _F
	[кНм]	[ĸH]	[ĸH]	[MM]
1	100.0	100.0		

Расчет

Согласно СП 16.13330.2017

Сталь C 255


Коэффициент условий работы $\gamma_{\rm C} = 1.000$

 $R_{y} = 240$ Расчетные сопротивления

= 139 Rs МΠа

Сечение балки

Двутавр сварной

Размеры сечения

h	b	t _w	t _f
[MM]	[MM]	[MM]	[MM]
250	240	4.0	8.0

Поперечные ребра жесткости не требуются.

Катет поясных швов kf MM

* Минимальное значение

А	Iy	Ιz	My	W_{z}	Sy	Ι _t
[см2]	[см4]	[см4]	[см3]	[см3]	[см3]	[см4]
47.76	6051	1843	484.1	153.6	259.7	8.69

```
Позиция t465
                                                                                       385
                                                                         Страница
       СТАТИКА тест всех модулей
                                                                              28.10.2024
Проект
                                                                         Дата
Разработчик
                                          СТАТИКА/465
                                                                         Версия 2025.000
Жесткость сечения
                         в плоскости Z
                                                                 EI_V
                                                                            12.47
                                                                                      МНм2
                                                                 ΕĪz
                          в плоскости У
                                                                              3.80
                                                                                      МНм2
Проверка прочности балки по напряжениям \sigma и \tau
                                                    206.6 / 240.0 =
                                                                             0.861 <= 1
                                   \sigma / R<sub>y</sub>\gamma<sub>c</sub>
                                                 =
                                                    107.3 / 139.2 =
                                                                              0.771 <= 1
                                   \tau / R<sub>s</sub>\gamma<sub>C</sub>
Проверка прочности стенки балки по напряжению \sigma_{\!\scriptscriptstyle U}
                                             \sigma_{v} = (\sigma_{x}^{2} - \sigma_{x}\sigma_{z} + \sigma_{z}^{2} + 3\tau_{xz}^{2})^{1/2}
                          Напряжения в стенке
                                                                 \sigma_{\mathrm{x}}
                                                                         = 193.3
                                                                 \tau_{_{\rm X\,Z}}
                                                                            96.0
                                                                                        МΠа
                                                                              0.0
                                                                  \sigma_{\rm z}
                                                                                        МΠа
                              \sigma_{V} / 1.15R<sub>V</sub>\gamma_{C} = 255.0 / 276.0 =
                                                                             0.924 <= 1
Проверка устойчивости плоской формы изгиба балки в плоскости {\tt Z}
                          Расчетная длина по п. 8.4.2 l_{ef} =
                                                                             6.00
                                                    M_V / \phi_b W_V R_V \gamma_c =
                                                                              0.996 <= 1
Коэффициенты
                          Нагруж.пояс lpha
                                                        Ψ
                                                                       \varphi_1
                                                                                      \varphi_{b}
                                                        2.065
                                          5.808
                                                                       0.878
                                                                                     0.864
                          Верхний
Проверка устойчивости стенки двутавра
                          Расчетная высота стенки h_{ef} = 234.0
                                                                                        MM
                          \lambda_{\rm w} = {\rm h_{ef}/t_w} * ({\rm R_v/E})^{1/2} - условная гибкость стенки
                          Расчетные напряжения
                                                                         = 193.3
                                                                  σ
                                                                                        МΠа
                                                                         = 106.8
                                                                                       МΠа
Критические
                           β
                                        δ
                                                       Ccr
                                                                       \sigma_{\text{cr}}
                                                                                       \tau_{\text{cr}}
напряжения
                                                                      [MПa]
                                                                                      [MΠa]
                          0.80
                                       6.56
                                                    34.84
                                                                    2097.3
                                                                                     359.6
                          Левая часть условия (80)
                                                                               0.311
                                    \lambda_{\rm W} / \lambda_{\rm UW} = 2.00 / 3.58 =
                                                                              0.558 <= 1
Проверка устойчивости полок двутавра
                          Расчетная ширина свеса полки b_{ef} = 118.0
                                                                                       MM
                          \lambda_f = b_{ef}/t_f * (R_v/E)^{1/2} - условная гибкость свеса
                                    \lambda_f / \lambda_{iif} = 0.50 / 0.54 = 0.934 <= 1
Проверка прочности сварного соединения полок и стенки
                          Поясные швы
                                                            двусторонние угловые швы
                          Вид сварки
                                                                автоматическая сварка
                          Расчетные сопротивления
                                                                 R_{wf}
                                                                        = 245.0
                                                                 R_{wz}
                                                                        = 171.0
                                                                 \beta_{\text{f}}
                          Коэффициенты для расчета шва
                                                                        =
                                                                            0.70
                                                                              1.00
                                                                 \beta_z
                          Расчетное усилие согласно СП, табл.43
                                    T = Q_z b t_f (h - t_f) / 2I_y = 383.9 ия \tau_f = T / 2\beta_f k_f = 68.6 \tau_z = T / 2\beta_z k_f = 48.0
                                                                                       кН/м
                          Напряжения
                                                                                       МΠа
                                                                                       МΠа
                                                 = 68.6 / 245.0 = 0.280 <= 1
                                \tau_f / R_{wf}\gamma_c
```

Позиция **t465**Проект **CTATUKA тест всех модулей**

Разработчик СТАТИКА/465

Страница 386 Дата 28.10.2024 Версия 2025.000

 τ_z / $R_{wz}\gamma_c$ = 48.0 / 171.0 = **0.281** <= 1

Несущая способность элемента обеспечена

Расчет выполнен модулем 465 программы СТАТИКА 2025 © 000 Техсофт

Поз. t466

Подбор сечения стального элемента

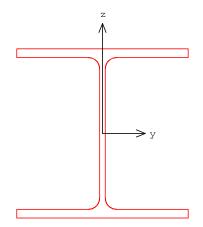
Усилия

Разраб.

K	N	M_{V}	M_{Z}	V_{V}	Vz
	[ĸH]	[кНм]	[кНм]	[ĸĤ]	[ĸH]
1	100.0	40.0	30.0		

Расчет

согласно ТКП EN 1993-1-1


Сталь

s 275

Сечение колонны

Двутавр 20К1

CTO ACYM 20-93

Размеры сечения

h	b	t _w	t _f	r
[MM]	[MM]	[MM]	[MM]	[MM]
196	199	6.5	10.0	13

Предел текучести

 $f_y = 275$ M Π a

Сечение класса 1

Характеристики сечения

А	I _V	Ιz	${ t I}_{ t T}$	I_{ω}
[см2]	[см4]	[CM4]	[CM4]	[см6]
52.69	3846	1314	17.34	112100

Моменты сопротивления

$W_{ extsf{el,y}}$	W _{el,z}	W _{pl,y}	W _{pl,z}
[см3]	[см3]	[см3]	[см3]
392.4	132.1	432.8	199.9

Проверка прочности

элемента по условию для сечений классов 1 и 2

Предельные усилия

N _{pl,Rd}	$M_{ m N}$,y,Rd	$M_{ m N,z,Rd}$
[KH]	[кНм]	[кНм]
1449.0	119.0	55.0

 $M_{\mathrm{N,i,Rd}}$ - предельный момент с учетом N

Позиция t466 Проект CTATИКА тест в Разраб. Разработчик	сех модуле	й СТАТИКА/	466	Стран Дата Верси	28.10.2024
Условие (6.41) (M _y ,	$_{\rm Ed}$ / $M_{\rm N,y,}$	$_{Rd})_{\alpha} + (M_{z},$	$_{\text{Ed}}$ / M_{N} ,	$_{z,Rd})_{\beta} =$	0.659 <= 1
				α = β =	2.00 - 1.00 -
Проверка устойчивост	ги элемента	по условия	м (6.61)	, (6.62)	
Предельные усилия	M _{pl,y,Rd} [кНм] 119.0	M _{pl,z,Rd} [кНм] 55.0	N _R [кН 1449.] [ĸHɪ	4] [KHM]
Критические силы и условные гибкости	L _{cr,y} L _{cr} [M] [1	м] [кН]	N _{cr,z} [ĸH] 757	N _{cr,T} [kH]	λ_{y} λ_{z}
Критический момент	L _{cr,LT}	M _{cr}	C ₁		λ ₀ λ ₀
и условная гибкость	[M] 6.00	[кНм] 227.7 1	.830	0.723 0.	.258 0.978
	Кривая пот	ери устойчи	В	плоскости плоскости плоскости	Y - C
Коэффициенты	χ _y 0.719	χ _z 0.355	χ _{ι,Τ} 0.837	μ _y 0.987	$\begin{array}{c} \mu_z \\ \hline 7 & 0.911 \end{array}$
Коэффициенты	w _y 1.103		w _z 1.500		n _{pl} 0.069
Коэффициенты	$\begin{array}{c c} \psi_{y} & \psi_{z} \\ \hline 0.00 & 0.0 \end{array}$	C _{m,y,0} 0 0.785	C _{m,z,0} 0.774		C _{m,z} C _{m,I,T} .774 1.000
Коэффициенты	a _{I,T} 0.995	b _{т.т} 0.104	C _{LT} 0.472	d _{LT} 0.157	e _{I,T} 7 0.189
Коэффициенты	C _{yy} 0.974	C _{yz} 0.760		C _{zy} 0.896	C _{zz} 0.990
Коэффициенты	k _{yy} 0.992	k _{yz} 0.811		k _{zy} 0.512	k _{zz} 0.821
$(N_{Ed}/(\chi_y N_{Rk}) + k_{yy} M_y$	$_{\gamma}$, Ed/($\chi_{ m LT}{ m M}_{ m y}$, _{Rk}) + k _{yz} M 0.096 +	z, _{Ed} /M _z , 0.399 +	$_{Rk})\gamma_{M1} = 0.443 =$	0.937 <= 1
$(N_{Ed}/(\chi_z N_{Rk}) + k_{zy} M_y$	$_{\gamma$,Ed/($\chi_{LT}M_{y}$	$(R_k) + k_{zz}M$ $(0.194 +$	0.206 +	$_{Rk}) \gamma_{M1} = 0.448 =$	0.848 <= 1

Несущая способность элемента обеспечена

Расчет выполнен модулем 466 программы СТАТИКА 2025 © ООО Техсофт

 Позиция
 t467
 Страница
 388

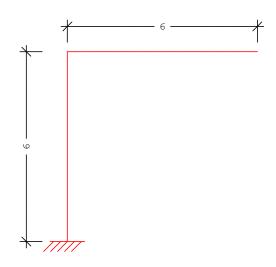
 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/467
 Версия
 2025.000

<u>Поз. t467</u>

Расчетные длины колонн

Расчетная схема Одноэтажная свободная рама


Рассматривается крайняя колонна

Длина колонны $1_{\rm C} = 6.00$ м Момент инерции сечения $I_{\rm C} = 5000$ см4

Нижний конец колонны жестко закреплён

Пролет 1 = 6.00 м

Момент инерции ригеля сверху $I_s = 5000 \text{ см4}$

<u>Расчет</u> Согласно СП 16.13330.2011, таблица 31

Параметры р не ограничено п = 1.000

Коэффициент расчётной длины μ = 1.17 Расчётная длина колонны l_{ef} = 7.02

Расчет выполнен модулем 467 программы СТАТИКА 2025 © 000 Техсофт

Поз. t468

Стальная колонна

Расчетная схема

Длина колонны

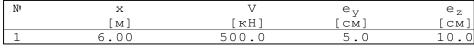
1 = 6.00

M

Закрепления

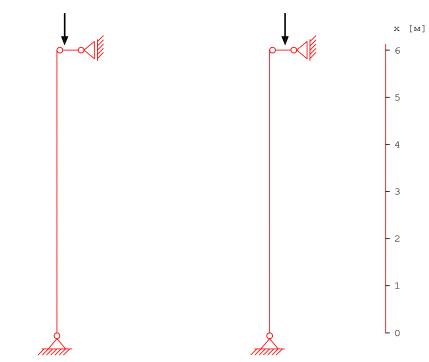
	В плоскости Ү	В плоскости Z
Вверху	шарнирное	шарнирное
Внизу	шарнирное	шарнирное

Позиция t468 389 Страница 28.10.2024 Проект СТАТИКА тест всех модулей Дата Версия 2025.000 Разработчик **СТАТИКА/468**


Нагрузки

Nº	Вид нагрузки	γf	Группа	Знак
1	Постоянная	1.05		

Вертикальные силы


Nº	X	V	e _v	ez
	[M]	[ĸH]	[CM]	[см]
1	6.00	500.0	5.0	10.0

Нагрузка 1

в плоскости Ү

в плоскости Z

Расчет

Согласно СП 16.13330.2017

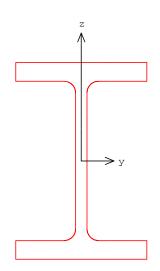
Сталь

Коэффициент условий работы

C 255 = 1.000 γ_{C}

Расчетные сопротивления

 R_y = 230


Rs = 133

МΠа МΠа

Сечение

Двутавр 25Ш5

FOCT P 57837-2017

Позиция t468 Проект СТАТИКА тест Разраб. Разработчик	всех моду		ТИКА/46	· · · · · · · · · · · · · · · · · · ·	Страница Дата Версия	390 28.10.2024 2025.000
Размеры сечения	h [мм] 274	b [мм] 184		t _w [MM] 16.0	t _f [мм] 26.0	г [мм] 16
Характеристики сечения	A [cM2] 133.40	I [cm 164	-	I _Z [см4] 2710	W _y [cм3] 1202.9	W _z [cm3] 294.6
Жесткость сечения	в плоско	_			Y	3.95 MHm2 5.58 MHm2
Усилия от нагрузки 1	х [м] 6.00 0.00	N [KH] 500.00 500.00	М _у [кНм] 50.00 0.00		M] [KH 00 -4.1] [KH] 7 -8.33
Проверка прочности	колонны	по напря	мениям	σиτ		

Напряжение	Комби-	X	N	M_{V}	M_z	Q _V	Qz
	нация	[M]	[ĸH]	[кНм]	[кНм]	[ĸĤ]	[KH]
Нормальное	1	6.00	525.00	52.50	26.25	-4.38	-8.75
Касательное	1	0.00	525.00	0.00	0.00	-4.38	-8.75

$$\sigma$$
 / $R_{y}\gamma_{c}$ = 172.1 / 230.0 = 0.748 <= 1
 τ / $R_{s}\gamma_{c}$ = 2.3 / 133.4 = 0.018 <= 1

Проверка устойчивости колонны в плоскостях ${\tt Z}$ и ${\tt Y}$

Расчетные усилия	Плос-	Комби-	X	N	M _v	M_z
	кость	нация	[M]	[ĸH]	[кНм]	[кНм]
	Z	1	6.00	525.00	52.50	
	Y	1	6.00	525.00		26.25

Расчетные длины и гибкость колонны

Плос-	N _{kp} /N	l _{ef}	Гибкость	Предельная
кость	-	[м]		гибкость
Z	17.73	6.00	54.0	150.0
Y	2.92	6.00	133.1	133.9

В плоскости Z N / $\phi_e \text{AR}_y \gamma_\text{C} = 0.391 <= 1$ В плоскости Y N / $\phi_e \text{AR}_y \gamma_\text{C} = 0.768 <= 1$

Проверка устойчивости плоской формы изгиба колонны в плоскости ${\mathbb Z}$

Расчетные усилия

Комбинация	X	N	M_{V}	M_z
	[M]	[ĸH]	[кНм]	[кНм]
1	6.00	525.00	52.50	26.25

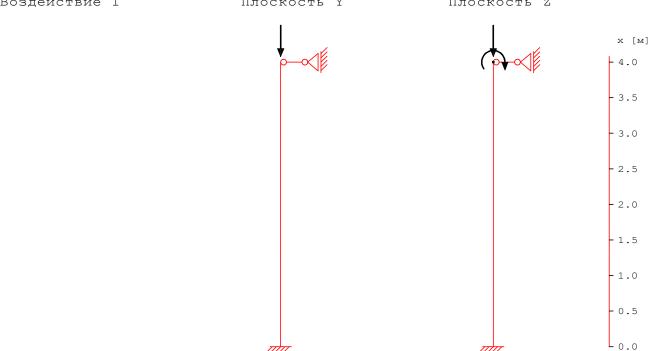
N / $\phi_{\text{eyz}} AR_{y} \gamma_{\text{c}} = 0.852 <= 1$

Проверка устойчивости стенки двутавра

Расчетная высота стенки $h_{\text{ef}}=190.0$ мм $\lambda_{\text{w}}=h_{\text{ef}}/t_{\text{w}}$ * $(R_{\text{y}}/\text{E})^{1/2}$ - условная гибкость стенки

 λ_{uw} определяется по таблице 9 при λ = 4.448

 $\lambda_{\rm w}$ / $\lambda_{\rm u\,w}$ = 0.40 / 2.30 = **0.173** <= 1


Проверка устойчивости полки двутавра

Расчетная ширина свеса полки $b_{\rm ef}=68.0$ мм $\lambda_{\rm f}=b_{\rm ef}/t_{\rm f}$ * $(R_{\rm y}/E)^{1/2}$ - условная гибкость свеса $\lambda_{\rm f}$ / $\lambda_{\rm uf}=0.09$ / 0.73=0.120<=1

Несущая способность колонны обеспечена

Расчет выполнен модулем 468 программы СТАТИКА 2025 © 000 Техсофт

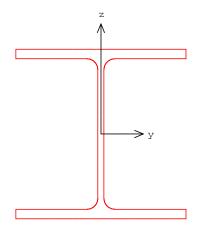
Поз. t469	Стальная колон	на (Eurocode 3)			
Расчетная схема	Длина колонны		L	= 4.0	0 0
Закрепления	Вверху Внизу	В плоскости шарнирно жесткое		ша	кости 2 рнирное сткое
Воздействия					
		ое Посто	постоян ъю К _{FI}	воздействи нное - = 1.0) -
Характеристики	Nº γ sup γ	вании применяю ψ_0 .00	отся фор <u>Ψ</u> 1		.0а , b) па Зная
Нагрузки					
Вертикальные силы	Nº x [M 1 4.0] [ĸl		е _у [см]	е _z [см]
Горизонтальные силы и моменты	Nº X [M] 1 4.00	Н _у [кН]	Η _Ζ [κΗ]	М _у [кнм] 100.0	М _Z [кНм]
Воздействие 1	Плоскос	ть Ү	Плоско	ость Z	
	Ţ	J.			x [M]

t469 Позиция 392 Страница СТАТИКА тест всех модулей 28.10.2024 Проект Дата Разработчик **СТАТИКА/469** Версия 2025.000 Разраб.

Расчет

согласно ТКП EN 1993-1-1

Сталь s 275


Комбинации

	K	Номер	воздействия	(Коэффи	ициент)
ſ	1			1	(1.35)
	2			1	(1.00)
	3			1	(1.15)
	4			1	(1.00)

Сечение

Двутавр 25К2

СТО АСЧМ 20-93

Размеры сечения

h	b	t _w	t _f	r
[MM]	[MM]	[MM]	[MM]	[MM]
250	250	9.0	14.0	16

Предел текучести

 $f_y = 275$

МΠа

Сечение класса 1

Моменты инерции

A	Ι _Υ	Ιz	${ t I}_{ t T}$	I_{ω}
[см2]	[см4]	[см4]	[см4]	[см6]
92.18	10830	3649	58.02	501000

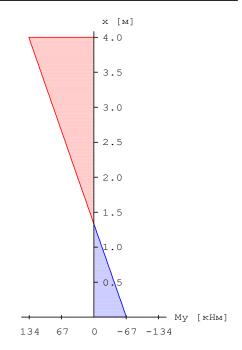
Моменты сопротивления

W _{el,y}	W _{el,z}	W _{pl,y}	$W_{pl,z}$
[см3]	[CM3]	[см3]	[см3]
866.4	291.9	960.4	442.0

Проверка прочности колонны по условию для сечений классов 1 и 2

Комбинация

Номер	воздействия	(Коэффі	ициент)
		1	(1.35)


Усилия

X	N	M_{V}	M_z	V_{V}	Vz
[M]	[ĸH]	[кНм]	[кНм]	[ĸĤ]	[ĸH]
4.00	1350.0	135.0	0.0	0.0	-50.6
3.33	1350.0	101.2	0.0	0.0	-50.6
2.67	1350.0	67.5	0.0	0.0	-50.6
2.00	1350.0	33.8	0.0	0.0	-50.6
1.33	1350.0	0.0	0.0	0.0	-50.6
0.67	1350.0	-33.8	0.0	0.0	-50.6
0.00	1350.0	-67.5	0.0	0.0	-50.6

 Позиция
 t469
 Страница
 393

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/469
 Версия
 2025.000

Усилия в сечении

X	N	M_{V}	M_z	V _V	Vz
[M]	[ĸH]	[кНм]	[кНм]	[ĸĤ]	[ĸH]
4.00	1350.0	135.0	0.0	0.0	-50.6

Учет поперечной силы

Плоскость	A_{V}	V _{pl,Rd}	ρ
изгиба	[cm2]	[ĸH]	
Z	27.9	443.3	0.000

Предельные усилия

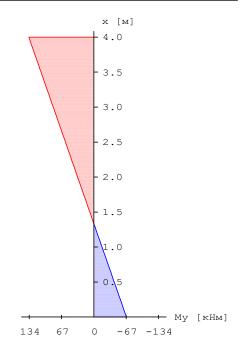
N _{pl,Rd}	$M_{V,y,Rd}$	$M_{V,z,Rd}$	$M_{N,y,Rd}$	$M_{N,z,Rd}$
[ĸH]	[кНм]	[кНм]	[кНм]	[кНм]
2535.0	264.1	121.5	140.3	103.6

 $M_{V,\,i\,,\,Rd}$ - предельный момент с учетом V $M_{N\,,\,i\,,\,Rd}$ - предельный момент с учетом V и N

Условие (6.41) $(M_{y,Ed} / M_{N,y,Rd})_{\alpha} + (M_{z,Ed} / M_{N,z,Rd})_{\beta} =$ 0.925 <= 1

 $\alpha = 2.00$ $\beta = 2.66$

Проверка устойчивости колонны по условиям (6.61), (6.62)


Комбинация

Номер	воздействия	(Коэффициент)
		1 (1.35)

Усилия и прогибы

X	N	$M_{_{ abla}}$	M_z	M^{Δ}	W_z
[M]	[ĸH]	[кНм]	[кНм]	[MM]	[MM]
4.00	1350.0	135.0	0.0	0.0	0.0
3.33	1350.0	101.2	0.0	0.0	-2.7
2.67	1350.0	67.5	0.0	0.0	-3.5
2.00	1350.0	33.8	0.0	0.0	-3.0
1.33	1350.0	0.0	0.0	0.0	-1.8
0.67	1350.0	-33.8	0.0	0.0	-0.6
0.00	1350.0	-67.5	0.0	0.0	0.0

Позиция	t469		Страниц	a 394
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/469	Версия	2025.000

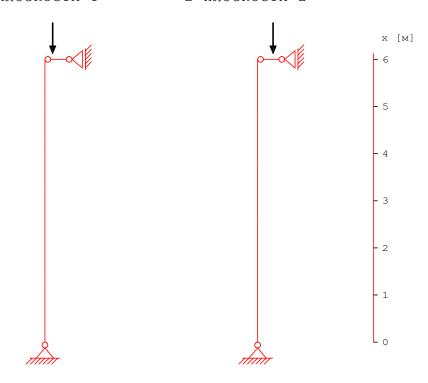
Максимальные усилия	Nmax	$M_{y,max}$	$M_{z,max}$	W _{y,max}	W _{z,max}
и прогибы	[ĸH]	[кНм]	[кНм]	[MM]	[MM]
	1350.0	135.0	0.0	0.0	3.5
Предельные усилия	$M_{pl,y,Rd}$	$M_{pl,z,Rd}$	N_{Rk}	$M_{y,Rk}$	$M_{z,Rk}$
	[кНм]	[кНм]	[ĸH]	[кНм]	[кНм]
	264.1	121.5	2535.0	264.1	121.5
Критические силы	N _{cr,y}	N _{cr,z}	N _{cr,T}	λ_{y}	λ_z
и условные гибкости	[ĸH]	[ĸH]	[ĸH]		
	28700	9670	11440	0.297	0.512
Расчетные длины	L _{cr,y}		L _{cr,z}		L _{cr,T}
	[M]		[м]		[M]
	2.797		2.797		2.796
Критический момент	M _{cr}	$M_{cr,0}$	c_1 λ_{L_2}	λ ₀ *	λ_0
и условная гибкость	[кНм]	[кНм]			
	2370.9	726.8	2.582 0.33	34 0.300	0.603
	λ ₀ * - ΓΙ	при шарнирн раничное зна		нии концов таблице А.	1 b c
Коэффициенты	χ _ν	χ _Z	χ, т	μ_{\triangledown}	μ_z
	0.965	0.836	0.969	0.998	0.974
Коэффициенты					
	W 77		W ₇		n _{n1}
	1.108				n _{pl} 0.533
	1.108		w _z 1.500		n _{p1} 0.533
Коэффициенты	1.108	C _{m.z.0}	1.500	C _{m. z}	0.533
		C _{m,z,0} 1.034		C _{m,z}	n _{pl} 0.533 C _{m,I,T} 1.000
	1.108 C _{m,y,0}	C _{m,z,0} 1.034	1.500 C _{m, y}		0.533 C _{m,LT}
	1.108 C _{m,y,0}	C _{m,z,0} 1.034	1.500 C _{m, y}		0.533 C _{m,LT}
Коэффициенты	1.108 C _{m,y,0} 0.671	1.034	1.500 C _m , y 0.838	1.034	0.533 C _{m,LT} 1.000

Позиция Проект	t469 СТАТИКА тест в	сех модулей	i		Страниц Дата	395 28.10.2024
Разраб.	Разработчик		СТАТИКА/469		Версия	2025.000
Коэфф	ициенты	C _{yy} 1.070	C _{yz} 1.171	C _{zy} 1.027		C _{zz}
Коэфф	ициенты	k _{yy} 0.820	k _{yz} 0.715	k _{zy} 0.430		k _{zz}

$$(N_{\rm Ed}/(\chi_{\rm Y}N_{\rm Rk}) + k_{\rm YY}M_{\rm Y},_{\rm Ed}/(\chi_{\rm LT}M_{\rm Y},_{\rm Rk}) + k_{\rm YZ}M_{\rm Z},_{\rm Ed}/M_{\rm Z},_{\rm Rk})\gamma_{\rm M1} = \\ 0.552 + 0.432 + 0.000 = \\ \textbf{0.984} <= 1$$

$$(N_{\rm Ed}/(\chi_{\rm Z}N_{\rm Rk}) + k_{\rm ZY}M_{\rm Y,Ed}/(\chi_{\rm LT}M_{\rm Y,Rk}) + k_{\rm ZZ}M_{\rm Z,Ed}/M_{\rm Z,Rk})\gamma_{\rm M1} = \\ 0.637 + 0.227 + 0.000 = \\ \textbf{0.864} <= 1$$

Несущая способность колонны обеспечена


Расчет выполнен модулем 469 программы СТАТИКА 2025 © 000 Техсофт

Поз. t470 Сквозная колонна

Расчетная схема	Длина ко	ОЛОННЫ	l _c	= 6.00	М
Закрепления		В плоскости Ү		В плоско	ости Z
	Вверху	шарнирное		шарі	нирное
	Внизу	шарнирное		шарі	нирное
<u>Нагрузки</u>	Nº	Вид нагрузки	γ _f	Группа	Знак
		Постоянная	1.10		
Вертикальные силы	Nº	X V		e _y	e _z

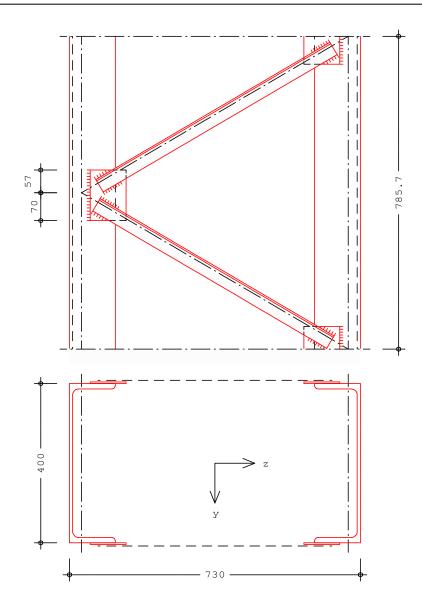
Нагрузка 1 в плоскости У в плоскости Z

6.00

1000.0

10.0

20.0


Позиция	t470		Страниц	a 396
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/470	Версия	2025.000
1	2 27	16 12220 0017		

Расчет	Согласно СП 16.13330.2017				
	Сталь Коэффициент условий работы	C 255	=	1.000	-
	Расчетные сопротивления	R _y R _s		240 139	МПа МПа
Сечение ветви	Швеллер 40П			FOCT 824	0-97
Размеры швеллера	h b [мм] [мм] 400 115	t _w [MM] 8.0			t _f [MM] 13.5
	Расстояние от наружной грани до центра тяжести	стенки _{Z 0}	ШЕ	зеллера 30.5	ММ
	Высота сечения колонны Расстояние между полками Расстояние между осями ветвей	h _c a _f a _b	=	730 500 669.0	MM MM
Решетка	Соединительные элементы Уголок равнополочный 36х4	pa	CKC	осы из уг ГОСТ 850	
	Длина раскосов Расстояние между узлами Число раскосов одной грани	l _p l _b n		681 785.7 14	MM MM -
	Длина участка размещения Угол между осью ветви и осью	$rac{1}{lpha}$	= a =	5.50	м град
	Коэффициент условий работы ра		=	0.750	-
	Примечание. Раскосы центриру	ются і	на	оси ве	твей
	Для прикрепления раскосов при Ширина фасонок	меняют b _ф	СЯ	фасонки. 90	MM
	Высота фасонок	hφ	=	127	MM
	Толщина фасонок Расстояние от наружной грани	t _ф ветви ; а _ф	= до =	4 края фас 52	MM OHKU MM
	Расстояние от узла до верхнег		фа =		ММ
	Катет сварных швов на обушке на пере	k _{fo} k _{fn}	=	4 4	MM MM
	Зазор между сварными швами см	ежных] а _с	pac =	10.1	ММ
	Фасонки прикрепляются к полка Катет сварных швов фасонок	м ветв к _{fф}	ей =	внахле 4	СТКУ ММ

 Позиция
 t470
 Страница
 397

 Проект
 CTATИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 CTATИКА/470
 Версия
 2025.000

Вес двух ветвей колонны $G_b = 5.68 \, \text{кH}$ Общий вес конструкции $G = 6.19 \, \text{кH}$

Характеристики сечения раскосов

Характеристики сечения ветви

Ab	I ₁	Ι ₂	W_{1}	W_2
[см2]	[см4]	[см4]	[см3]	[см3]
61.51	15260	760	763.0	89.9

Характеристики сечения колонны

A	Ι _V	Ιz	M^{Λ}	W_z
[CM2]	[см4]	[CM4]	[см3]	[см3]
123.02	139167	30520	3812.8	1526.0

Жесткость сечения

в плоскости Z в плоскости Y $EI_{y} = 286.68 \text{ MHm2}$ $EI_{z} = 62.87 \text{ MHm2}$

Проверка прочности колонны по напряжениям σ и τ

Напря-	Комби-	Х	N	M _V	M_z	Q _V	Qz
жение	нация	[M]	[ĸH]	[кНм]	[кНм]	[ĸĤ]	[ĸH]
σ	1	6.00	1100.0	220.0	110.0	-18.3	-36.7
τ	1	0.00	1100.0	0.0	0.0	-18.3	-36.7

Позиция t470 398 Страница СТАТИКА тест всех модулей 28.10.2024 Проект Дата Разработчик **СТАТИКА/470** Версия 2025.000 Разраб.

> σ / $R_{v}\gamma_{c}$ 219.2 / 240.0 0.913 <= 1 τ / $R_s \gamma_c$ 6.6 / 139.2 = 0.048 <= 1

Проверка устойчивости колонны в плоскостях Z и Y

Расчетные	VСИЛИЯ
I ac Ic I II Dic	9 0 2 10 1 2 1 7 1

Плос-	Комби-	X	N	M _V	Mz
кость	нация	[M]	[ĸH]	[кНм]	[кНм]
Z	1	6.00	1100.0	220.0	
Y	1	6.00	1100.0		110.0

Расчетные длины и гибкость колонны

Плос-	l _{ef}	Гибкость λ	Предельная
кость	[M]		гибкость
Z	13.05	38.8	140.6
Y	6.00	38.1	140.6

Гибкость в плоскости Z определена по формуле (15)

$$\alpha = 26.56 - \lambda_y = 17.8 -$$

$$N / \phi_e AR_y \gamma_c = 0.657 <= 1$$

 $N / \phi_e AR_y \gamma_c = 0.657 <= 1$

Коэффициенты

Плоск.	m	η	m _{ef}	ϕ_{e}	φ
Z	0.638			0.567	
Y	0.806	1.565	1.262	0.567	

Примечание. Коэффициент м для пл. Z определяется формуле (123) при а = 361 мм ПО

Проверка устойчивости ветви в плоскости ${\mathbb Z}$

Расчетные усилия

Комби-	X	N	$M_{ m V}$
нация	[M]	[кН]	[кНм]
1	6.00	1100.0	220.0

Расчетная длина и гибкость ветви

l _{ef}	Гибкость λ	Предельная
[M]		гибкость
0.786	22.4	79.1

Примечание. Расчетная длина принята равной lb.

Продольная сила в ветви

$$N_b = N / 2 + |M_y| / a_b = 878.8$$
 KH

Условие (7)

$$N_b / \phi A_b R_y \gamma_c = 0.637 <= 1$$

Ø 0.934

Проверка устойчивости плоской формы изгиба ветви в плоскости У

Расчетные усилия

Комби-	Х	N	My	Mz
нация	[M]	[ĸH]	[кНм]	[кНм]
1	6 00	1100 0	220 0	110 0

Продольная сила в ветви

$$N_b = N / 2 + |M_v| / a_b = 878.8$$

кН

Изгибающий момент в ветви

$$M_{b} = |M_{z}| / 2 = 55.0$$
 кнм

Условие (111)

$$N_b$$
 / $c\phi A_b R_v \gamma_c$ = 0.863 <= 1

Коэффициенты

m	α	β	С	φ
0.505	0.700	1.000	0.739	0.934

Проверка устойчивости стенки ветви

Расчетная высота стенки $h_{\text{ef}} = 343.0$

$$h_{ef} = 343.0$$

MM

$$\lambda_{\rm w}$$
 = h_{ef}/t_w * (R_y/E) $^{1/2}$ - условная гибкость стенки

ООО Техсофт, Москва

 Позиция
 t470
 Страница
 399

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/470
 Версия
 2025.000

 λ_{uw} определяется согласно табл. 22 (тип сечения 3)

ſ	N _b	Mb	Q _b	σ_1	σ_2	τ	α
	[ĸH]	[кНм]	[ĸH]	[M∏a]	[МПа]	[MПa]	
	878.8	55.0	9.2	204.7	81.1	3.1	0.60

При 0.5 < α < 1 значение λ_{uw} определяется интерполяцией по значениям λ_{uw0} = 1.260 и λ_{uw1} = 2.320, принимаемым при α = 0.5 и α = 1 значение λ_{uw0} определяется по таблице 9 при λ = 1.300.

 λ_{w} / λ_{uw} = 1.46 / 1.48 = 0.989 <= 1

Проверка устойчивости полок ветви

Расчетная ширина свеса полки $b_{ef}=92.0$ мм $\lambda_f=b_{ef}/t_f$ * $(R_y/E)^{1/2}$ — условная гибкость свеса λ_f / $\lambda_{uf}=0.23$ / 0.53=0.436<=1

Проверка устойчивости раскосов

Расчетные	усилия	K

Комби-	X	N	Qz
нация	[M]	[ĸH]	[KH]
1	0.00	1100.0	-36.7

Расчетная длина и гибкость раскосов

l _{ef}	Гибкость λ	Предельная
[M]		гибкость
0.613	87.2	158.4

Условная поперечная сила в колонне по формуле (18) $Q_{\text{fic}} \ = \ 12.7 \qquad \text{кH}$ при ϕ = 0.914 -

Поперечная сила, воспринимаемая одним раскосом $Q_{\rm p}$ = max($Q_{\rm fic}$, $|Q_{\rm z}|$) / 2 = 18.3 кН

Усилие в раскосе

$$N_p = Q_p/\sin\alpha + N\cos^2\alpha A_p/A = 27.6$$
 kH

Условие (7) $N_p / \phi_p A_p R_y \gamma_{cp} = 0.860 <= 1$

 $\phi_{p} = 0.648 -$

0.296 <= 1

Проверка прочности сварного соединения раскосов с фасонками

Вид сварки ручная сварка R_{wf} Расчетные сопротивления = 200.0МΠа R_{wz} = 166.5МΠа Коэффициенты для расчета швов $eta_{ extsf{f}}$ 0.70 1.00 β_z Расчетные усилия в сварных швах на обушке N_{o} 19.6 кН N_n на пере 8.0 кН Расчетные длины сварных швов на обушке l_{wo} 40.6 MM l_{wn} на пере 40.4 MM = 172.3 / 200.0 τ_{fo} / $R_{wf}\gamma_{c}$ = 0.861 <= 10.724 <= 1 120.6 / 166.5 τ_{ZO} / $R_{\text{WZ}}\gamma_{\text{C}}$ = τ_{fn} / $R_{\text{wf}}\gamma_{\text{c}}$ 70.4 / 200.0 0.352 <= 1= =

49.3 / 166.5

Проверка прочности сварного соединения фасонок с полками ветвей

 $\tau_{\,\text{z}\,\text{n}}$ / $R_{\,\text{w}\,\text{z}}\,\gamma_{\,\text{c}}$

 Позиция
 t470
 Страница
 400

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/470
 Версия
 2025.000

Расчетное усилие, действующее в одном шве фасонки $F \ = \ {\rm N_p cos} \alpha \ = \ 14.0 \ \ \ {\rm \kappaH}$

29.8 / 166.5

Расчетная длина шва

 τ_z / $R_{wz}\gamma_c$

 $l_w = 117.0$

MM

 $\tau_f / R_{wf} \gamma_c =$

42.6 / 200.0 = 0.21

 $0.213 \le 1$ $0.179 \le 1$

Несущая способность колонны обеспечена

Расчет выполнен модулем 470 программы СТАТИКА 2025 © 000 Техсофт

Поз. t476

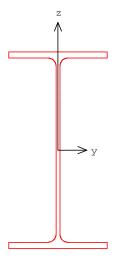
Подбор сечения стального элемента (MSZ EN 1993)

Усилия

K	My	Vz
	[кHм]	[KH]
1	100.0	100.0

Расчет

согласно MSZ EN 1993-1-1


Сталь

s 275

Сечение балки

Двутавр 35Б2

CTO AC4M 20-93

Размеры сечения

h	b	t _w	t _f	r
[MM]	[MM]	[MM]	[мм]	[MM]
350	175	7.0	11.0	14

Предел текучести

 $f_y = 275$

МПа

Сечение класса 3

Характеристики сечения

А	Ιy	Ιz	Ι _Τ	Iω
[cm2]	[cm4]	[CM4]	[CM4]	[см6]
63 14	13560	984	22 35	279700

Моменты сопротивления $W_{el,y} = 774.9$ cm3 $W_{pl,y} = 868.0$ cm3

Проверка прочности элемента по условию для сечений класса 3

 Позиция
 t476
 Страница
 401

 проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/476
 Версия
 2025.000

Условие (6.1) $(\sigma^2 + 3\tau^2)^{1/2} / (f_y / \gamma_{M0}) = 129.1 / 275.0 = \textbf{0.469} <= 1$ $\sigma = 129.1 \quad \text{МПа}$

Проверка устойчивости элемента по условию (6.54)

Критический момент и условная гибкость

L _{cr,LT}	M _{Cr}	$\lambda_{ ext{L T}}$
[M]	[кНм]	
6.00	139.1	1.238

Примечание. Значение M_{Cr} вычислено для $\mathrm{M}_{\mathrm{V}}\left(\mathrm{x}\right)=\mathrm{const}$

Кривая потери устойчивости из плоскости - а

Коэффициенты

k _C	f	χ, т	$\chi_{ t LT, mod}$
0.940	0.981	0.507	0.516

Несущая способность

 $M_{b,Rd} = 110.0$ кнм

0.0

МΠа

Μ

Условие устойчивости

$$M_{V,Ed} / M_{b,Rd} = 0.909 <= 1$$

Несущая способность элемента обеспечена

Расчет выполнен модулем 476 программы СТАТИКА 2025 © 000 ${\tt Texcopt}$

<u>Поз. t479</u> <u>Стальная колонна (MSZ EN 1993)</u>

Расчетная схема Длина колонны

L = 6.00

Закрепления

	В	плоскости	Y	В	плоскости	Z
Внизу		жесткое			жесткое	

Воздействия

Nº	Тип воздействия	Описание		
1	Постоянное	Постоянное воздействие		
	постоянное -			

Коэффициент упр. надежностью $K_{\text{FI}} = 1.0$

При комбинировании применяется формула (6.10)

Характеристики

Nº	γ _{sup}	Yinf	Ψ_0	ψ_1	Ψ_2	Группа	Знак
1	1.35	1.00					

Нагрузки

Вертикальные силы

N ₀	X	V	e _v	e _z
	[M]	[ĸH]	[CM]	[CM]
1	6.00	100.0		

Горизонтальные силы и моменты

Nº	X	H _V	Ηz	$M_{ m V}$	M_z
	[M]	[ĸĤ]	[ĸH]	[кНм]	[кНм]
1	6.00	5.0	5.0		

t479 Позиция 402 Страница СТАТИКА тест всех модулей 28.10.2024 Проект Дата Разработчик **СТАТИКА/479** Версия 2025.000 Разраб. Воздействие 1 Плоскость Ү Плоскость Z х [м] - 6 - 5 - 4 - 3 - 2 - 1 0 согласно MSZ EN 1993-1-1 Расчет s 275 Сталь СТО АСЧМ 20-93 Сечение Двутавр 25К1 b Размеры сечения h t_{w} t_{f} r [MM] [MM] [MM] [MM] [MM] 246 249 8.0 12.0 16 Предел текучести fy = 275МΠа Сечение класса 2 Моменты инерции Α І_у [см4] $\text{I}_{\,\omega}$ I_z I_T [CM4] [см2] [см4] [см6] 3090 37.98 417300 79.72 9171 W_{el,z} [cm3] W_{pl,у} [см3] 821.4 W_{el,y} [CM3] W_{pl,z} [cm3] Моменты сопротивления 375.6 745.6 248.2

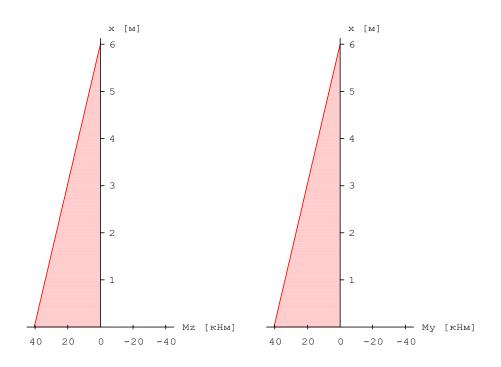
колонны по условию для сечений классов 1 и 2

ООО Техсофт, Москва

Проверка прочности

 Позиция
 t479
 Страница
 403

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024


 Разраб.
 Разработчик
 СТАТИКА/479
 Версия
 2025.000

Комбинация

Номер	воздействия	(Коэффі	ициент)
		1	(1.35)

Усилия

Х	N	M_{V}	M_z	V _V	Vz
[M]	[ĸH]	[кНм]	[кНм]	[ĸĤ]	[ĸH]
6.00	135.0	0.0	0.0	6.8	6.8
4.50	135.0	10.1	10.1	6.8	6.8
3.00	135.0	20.2	20.3	6.8	6.8
1.50	135.0	30.4	30.4	6.8	6.8
0.00	135.0	40.5	40.5	6.8	6.8

Усилия в сечении

Х	N	My	Mz	Vy	Vz
[M]	[ĸH]	[кНм]	[кНм]	[ĸĤ]	[ĸH]
0.00	135.0	40.5	40.5	6.8	6.8

Учет поперечной силы

Плоскость	A_{V}	V _{pl,Rd}	ρ
изгиба	[см2]	[KH]	
Z	24.8	393.1	0.000
Y	59.8	948.8	0.000

Предельные усилия

N _{pl,Rd}	$M_{V,y,Rd}$	$M_{V,z,Rd}$	$M_{ m N,y,Rd}$	$M_{N,z,Rd}$
[кH]	[кНм]	[кНм]	[кНм]	[кНм]
2192.3	225.9	103.3	225.9	103.3

 ${
m M_{V,i,Rd}}$ - предельный момент с учетом V ${
m M_{N,i,Rd}}$ - предельный момент с учетом V и N

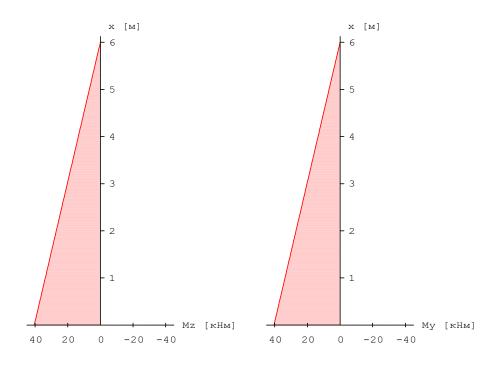
Условие (6.41)
$$(M_{y,Ed} / M_{N,y,Rd})_{\alpha} + (M_{z,Ed} / M_{N,z,Rd})_{\beta} =$$
 0.424 <= 1

 $\alpha = 2.00$ $\beta = 1.00$

Проверка устойчивости колонны по условиям (6.61), (6.62)

Комбинация Номер воздействи

		Номер	воздействия	(Коэффициент	
				1	(1.35)
Y	N	M	M	TAT	Tv7


Усилия и прогибы

X	N	M _V	Mz	My	W_z
[M]	[ĸH]	[кНм]	[кНм]	[MM]	[MM]
6.00	135.0	0.0	0.0	74.9	25.2
4.50	135.0	10.1	10.1	47.4	16.0

ООО Техсофт, Москва

Позиция	t479					Страниц	a 404
Проект	рект СТАТИКА тест всех модулей				Дата	28.10.2024	
Разраб.	Разработчик	CTA	ГИКА/479		Версия	2025.000	
		3.00	135.0	20.2	20.3	23.	4 7.9

3.00	135.0	20.2	20.3	23.4	7.9
1.50	135.0	30.4	30.4	6.4	2.2
0.00	135.0	40.5	40.5	0.0	0.0

Максимальные усилия и прогибы

N _{max}	$M_{y,max}$	$^{ m M}_{ m z}$, max	W _{y,max}	$W_{z,max}$
[ĸH]	[кНм]	[кНм]	[MM]	[MM]
135.0	40.5	40.5	74.9	25.2

Предельные усилия

$M_{pl,y,Rd}$	$M_{pl,z,Rd}$	N_{Rk}	$M_{y,Rk}$	$M_{z,Rk}$
[кНм]	[кНм]	[ĸH]	[кНм]	[кНм]
225.9	103.3	2192.3	225.9	103.3

Критические силы и условные гибкости

N _{cr,y}	N _{cr,z}	N _{cr,T}	λ_{y}	λ_z
[ĸH]	[ĸH]	[ĸH]		
1320	445	2385	1.289	2.220

Расчетные длины

L _{cr,y}	L _{cr,z}	L _{cr,T}
[M]	[м]	[M]
12.000	12.000	12.000

Критический момент и условная гибкость

M_{cr}	$^{ m M}_{ m cr}$, 0	C_1	$\lambda_{ ext{L T}}$	λ_0 *	λ_0
[кНм]	[кНм]				
535.4	312.0	1.839	0.650	0.244	0.851

 ${
m M_{
m cr,0}}$ - критический момент при ${
m M_y}\,({
m x})$ = const и при шарнирном закреплении концов

 $\lambda_{0\,\star}$ - граничное значение λ_{0} по таблице А.1

Кривая потери устойчивости в плоскости ${\tt Z}$ - ${\tt b}$

в плоскости Y - с из плоскости Z - а

Коэффициенты

χ _∨	χz	χιτ	$\mu_{ m V}$	μ_z
0.432	0.164	0.870	0.939	0.733

Коэффициенты

W _V	W_{Z}	npl
1.102	1.500	0.062

Коэффициенты

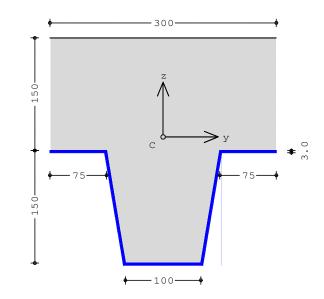
$C_{m, v, 0}$	$C_{m,z,0}$	$C_{m,v}$	C_{m}	C _{m, T,T}
0.778	0.754	0.920	0.754	1.040

ООО Техсофт, Москва

Позиция t479 Проект CTATUKA тест в Разраб. Разработчик	зсех модуле	й СТАТИКА/4	179	Страниц Дата Версия	405 28.10.2024 2025.000
Коэффициенты	a _{I,T} 0.996	b _{т.т} 0.029	C _{I,T} 0.055	d _{I,T} 0.008	e _{I,T} 0.013
Коэффициенты	C _{yy} 0.955	C _{yz} 0.875		С _z у .786	C _{zz} 0.928
Коэффициенты	k _{yy} 1.049	k _{yz} 0.814	0	k _{zy} .511	k _{zz} 0.855
$(N_{Ed}/(\chi_y N_{Rk}) + k_{yy} M_y$	$_{ ext{y,Ed}}/\left(\chi_{ ext{LT}} ext{M}_{ ext{y}} ight.$, _{Rk}) + k _{yz} M _z 0.142 +	0.216 + 0	$)\gamma_{M1} = $ $.319 = $	0.678 <= 1
$(N_{Ed}/(\chi_z N_{Rk}) + k_{zy} M_y$	$_{ ext{y}, Ed}/(\chi_{ ext{LT}} M_{ ext{y}}$, _{Rk}) + k _{zz} M _z 0.376 +	0.105 + 0	$)\gamma_{M1} = $ $.335 =$	0.817 <= 1

Несущая способность колонны обеспечена

Расчет выполнен модулем 479 программы СТАТИКА 2025 © ООО Техсофт


Поз. t480

Сталежелезобетонное сечение с профнастилом

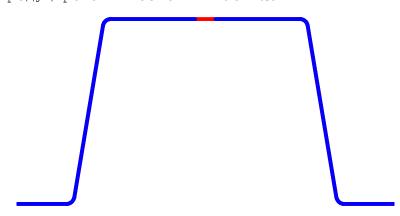
Сечение

M = 1 : 5

Поперечное сечение

Высота сечения	h	= 300	MM
Шаг гофра	Sn	= 300	MM
Координата ц.т. сечения	z _c	= 168	MM
Высота бетона над настилом	hf	= 150	MM

Профилированный настил с гофром открытого типа


Толщина настила	tn	= 3.0	MM
Высота настила	hn	= 150	MM
Ширина нижней полки	b	= 100	MM
Ширина бетонного ребра	b'	= 150	MM
Координата ц.т. настила	Z _{C,H}	= 82	MM
Площадь сечения настила на 1 м	Α	= 55.4	см2
Момент инерции настила на 1 м	I _V	=1944.4	см4
Момент сопротивления настила	M^{\wedge}	= 237.8	см ³
на 1 м	_		

Позиция Проект	480 СТАТИКА тест всех модулей				страниц Цата	a 40 28.10.202
Разраб.	Разработчик СТАТИКА/48	0			•	2025.000
	Количество пролётов	nπp	=	4		-
	Длина пролёта	1 1	=	600.0		CM
	Ширина опоры настила	la	=	60		MM
	Радиус гиба в гофрах	rn	=	5		MM
Нагру	ки					
	Нагрузка от веса бетона	q ₆	=	5.21	L 2	кПа
	Коэффициент надёжности	γf	=	1.2		_
	Нагрузка от веса настила	q_c	=	0.42	27	кПа
	Коэффициент надёжности	γf	=	1.05	5	_
	Монтажная нагрузка	$q_{\scriptscriptstyle M}$	=	0.50	0 0	кПа
	Коэффициент надёжности	γ_{f}	=	1.3		_
	Нормативная нагрузка на настил	α	=	6.13	3.8	кПа
	Расчётная нагрузка на настил	q_p	=	7.35		кПа
Расчё	Согласно СП 266.1325800	.2016	K	ОНСТРУН	сции	и СЖБ
	Бетон	в 25	(;	гяжелый	á)	
	Плотность бетона	$ ho_{ t b}$	=2	2500.0	K	:г/м ³
	Профилированный настил	0 25	0			2
	Плотность стали	$ ho_{ t s}$		7850.0	K	:г/м ³
	Предел текучести стали	Ryn		250.0		МПа
	Модуль упругости стали	Est	=	206.0		ГПа
	Сопротивление настила	R_y	=	245.0		МПа
	Расчётное сопротивление сдвигу	Rs	=	142.1		МПа
	Расчёт настила на жёсткость:					
	Условие жёсткости: $f_n \ll 1$					
	Прогиб настила	f _n				MM
	Правая часть неравенства Жесткость настила обеспечена	1/20)=	30.0		MM
	Расчёт на устойчивость стенок :	4				
	Условие устойчивости: $Q <= Q$.	настиль	2.	
		-	=	10 11	15	кН
	Поперечная сила	Q	_	10.11		
	Поперечная критическая сила Устойчивость стенок настила об	О _{кр}			3 3	кН
	Расчёт настила на прочность:					
	Условие прочности: M/W_V <= R.	5.7				
	Изгибающий момент от расчётных		=	28.32	2 0	кНм
	нагрузок на 1 м			_ 3 • 3 2	-	
	Левая часть неравенства	M/W	=	119.09	9 4	МПа
	Правая часть неравенства	R _v		245.0		MПа
	Прочность настила обеспечена	A		_ 10.0		11114

Редуцирование

M = 1:3

Схема редуцирования сечения настила

Позиция	t480		Страниц	4 07
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/480	Версия	2025.000

Координата ц.т. редуц. настила	$z_{c,ef} = 83$	ММ
Площадь сечения настила на 1 м	$A_{ef} = 52.5$	cm ²
Момент инерции настила на 1 м	$I_{v,ef} = 1732.3$	cm^4
Момент сопротивления настила	$W_{v,ef} = 213.4$	см ³
та 1 м	2 ,	

Расчёт редуцированного сечения настила на прочность:

Условие прочности: $M/W_{y,ef} <= R_{y}$ Изгибающий момент от расчётных M = 28.320 МПа нагрузок на 1 м $M/W_{y,ef} = 132.707$ МПа Правая часть неравенства $M/W_{y,ef} = 132.707$ МПа Прочность настила обеспечена

Расчет выполнен модулем 480 программы СТАТИКА 2025 © 000 Техсофт

Поз. t500

Плитный фундамент

 $\frac{\text{Расчетная схема}}{\text{M} = 1 : 115}$

Размеры	плиты	lx	=	8.00	M
		ly	=	8.00	M
Толщина	плиты	h	=	40	CM

Слои грунта

_				
Γ	$N_{\bar{0}}$	h[м]	Е[МПа]	
Γ	1	4.00	20.00	
I	2	6.00	18.00	
1	3	10 00	22 00	

 Позиция
 t500
 Страница
 408

 Проект
 CTATИКА тест всех модулей
 дата
 28.10.2024

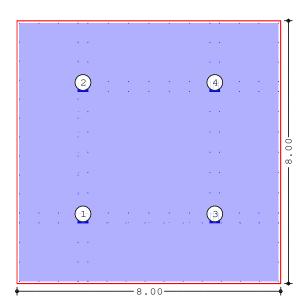
 Разраб.
 Разработчик
 CTATИКА/500
 Версия
 2025.000

Нагружение

Nº	Вид нагрузки	Kl	γf
1	постоянная		1.10
2	длительная		1.20

 ${\tt Kl}$ - коэфф. длительной части кратковременной нагрузки

Сосредоточенные силы

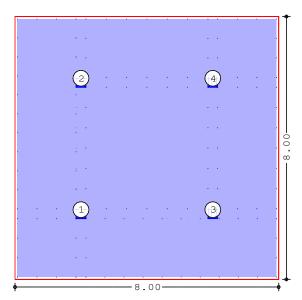

Нагр.	$N_{\bar{0}}$	X	У	lx	ly	P
		[M]	[M]	[CM]	[CM]	[KH]
1	1	2.00	2.00	30.0	30.0	1000.0
	2	2.00	6.00	30.0	30.0	1000.0
	3	6.00	2.00	30.0	30.0	1000.0
	4	6.00	6.00	30.0	30.0	1000.0
2	1	2.00	2.00	30.0	30.0	1000.0
	2	2.00	6.00	30.0	30.0	1000.0
	3	6.00	2.00	30.0	30.0	1000.0
	4	6.00	6.00	30.0	30.0	1000.0

х, у - координаты центра

Равномерно распределённые нагрузки

Нагрузка	р [кПа]	
1	20.00	
2	20.00	

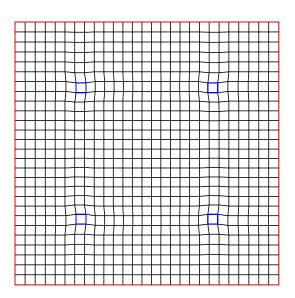
Нагрузка № 1 М = 1 :115 Постоянная нагрузка


Равномерно распределенная нагрузка 20.00 кПа

 Позиция
 t500
 Страница
 409

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/500
 Версия
 2025.000


Нагрузка № 2 М = 1 :115 Длительная нагрузка

Равномерно распределенная нагрузка 20.00 кПа

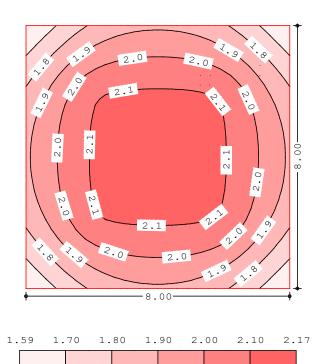
Расчёт усилий

КЭ-сетка M = 1 :115

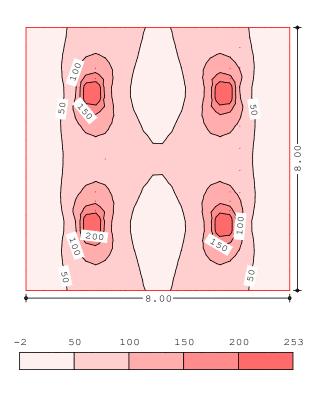
Характерный размер элемента сетки 1 = 0.27

Модуль упругости Коэффициент Пуассона $E_b = 30000$ v = 0.20

МПа


М

 Позиция
 t500
 Страница
 410

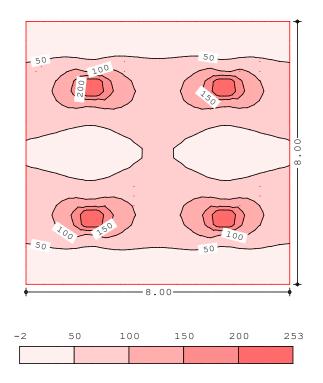

 Проект
 CTATИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 CTATИКА/500
 Версия
 2025.000

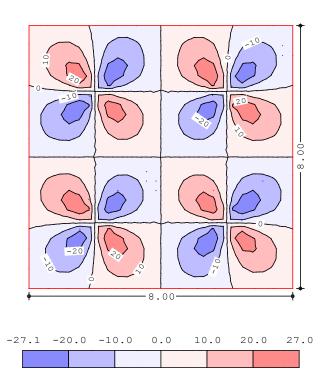
<u>Нагрузка № 1</u> Осадка, см М = 1 :115 Постоянная нагрузка

Moment Mx, κ Hm/M M = 1 :115

 Позиция
 t500


 Проект
 CTATИКА тест всех модулей

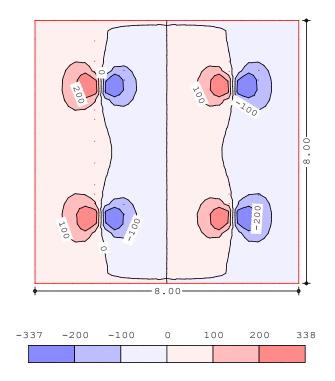
 Разраб.
 Pазработчик


 CTATИКА/500
 Версия

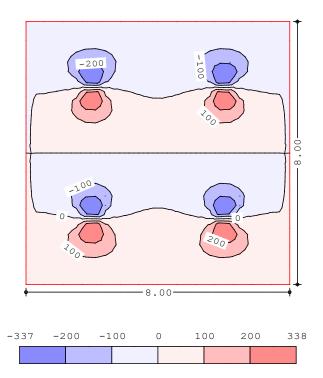
 2025.000

Момент Му, кHм/м M = 1 : 115

Момент Мху, кHм/м M = 1 : 115



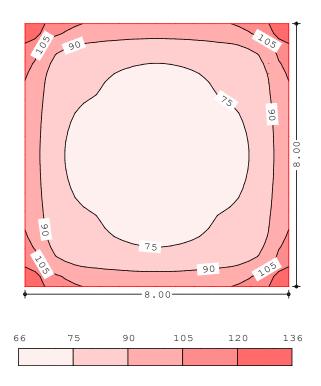
 Позиция
 t500
 Страница
 412


 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/500
 Версия
 2025.000

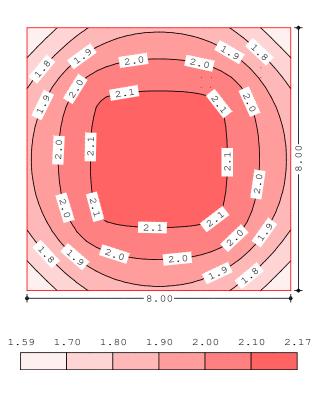
Поперечная сила Qx, кH/M M = 1 : 115

Поперечная сила Qy, кH/M M=1:115



 Позиция
 t500
 Страница
 413

 Проект
 CTATИКА тест всех модулей
 дата
 28.10.2024

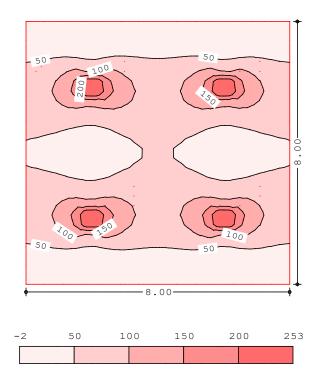

 Разраб.
 Разработчик
 CTATИКА/500
 Версия
 2025.000

Давление, кПа М = 1 :115

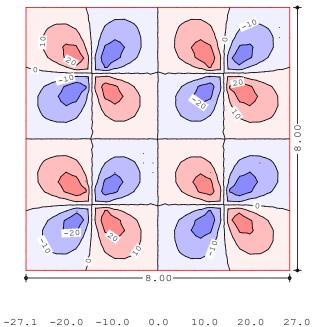
Haгрузка № 2
Ocaдка, см
M = 1 :115

Длительная нагрузка

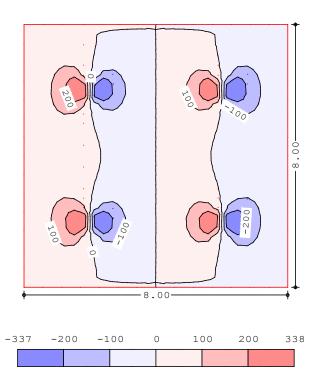
 Позиция
 t500
 Страница
 414


 Проект
 CTATИКА тест всех модулей
 Дата
 28.10.2024

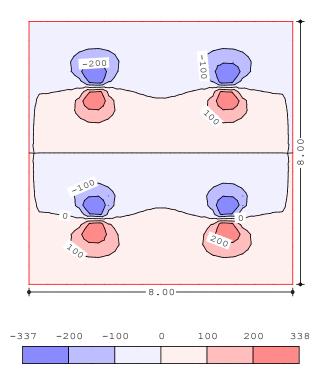
 Разраб.
 Pазработчик
 CTATИКА/500
 Версия
 2025.000

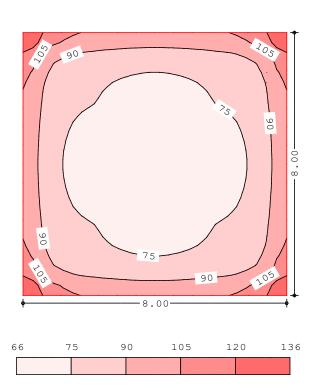

Момент Мх, кHм/м M = 1 : 115

Момент Му, кHм/м M = 1 : 115



Moment Mxy, κ Hm/m M = 1 :115



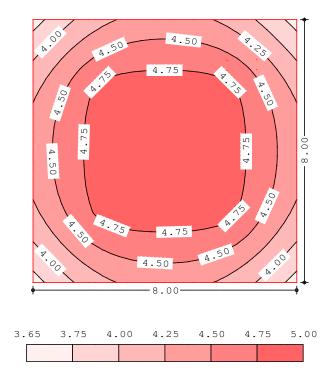

Поперечная сила Qx, кH/M M = 1 : 115

Поперечная сила Qy, кH/м M=1:115

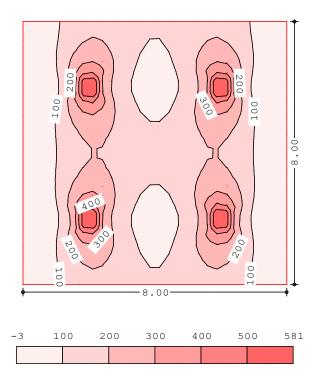
Давление, кПа М = 1 :115

Осадка, давление

Нагрузка	max w	min w	max p	min p
	[CM]	[CM]	[кПа]	[кПа]
1	2.17	1.59	136.1	65.8
2	2.17	1.59	136.1	65.8


 Позиция
 t500
 Страница
 417

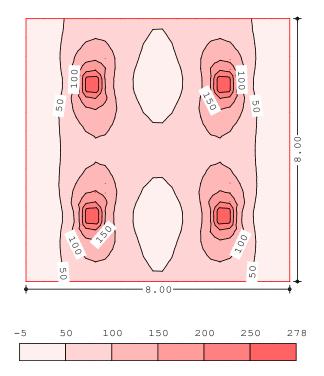
 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024


 Разраб.
 Разработчик
 СТАТИКА/500
 Версия
 2025.000

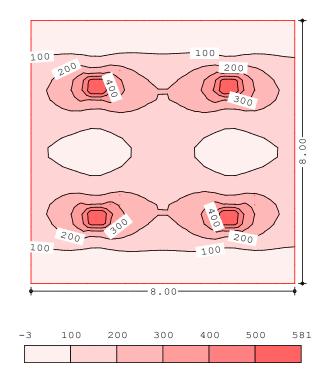
Расч. сочет. усилий согласно СНиП 2.01.07-85. Нагрузки и воздействия.

Максимальные значения осадки, см M = 1 : 115

Максимальные значения момента Мх, кНм/м М = 1 :115



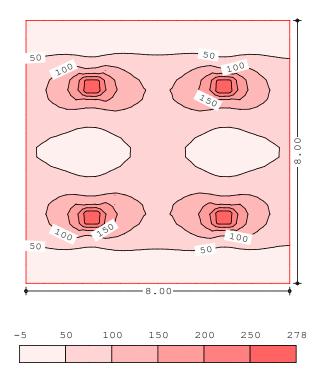
 Позиция
 t500
 Страница
 418


 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

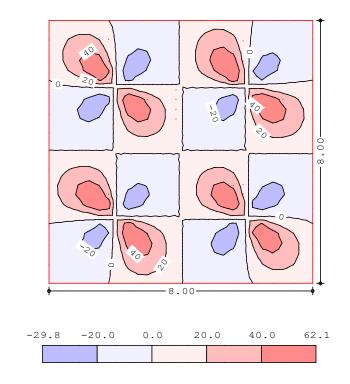
 Разраб.
 Разработчик
 СТАТИКА/500
 Версия
 2025.000

Минимальные значения момента Мх, кНм/м М = 1 :115

Максимальные значения момента Му, кНм/м М = 1 :115



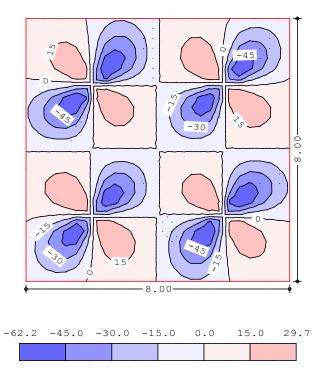
 Позиция
 t500
 Страница
 419


 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

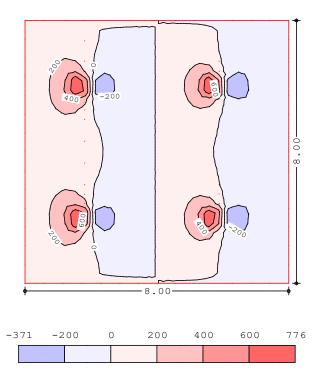
 Разраб.
 Разработчик
 СТАТИКА/500
 Версия
 2025.000

Минимальные значения момента Му, кНм/м М = 1 :115

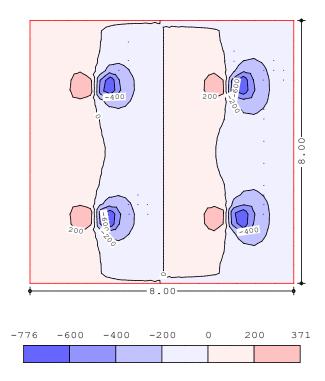
Максимальные значения момента Мху, кНм/м М = 1 :115

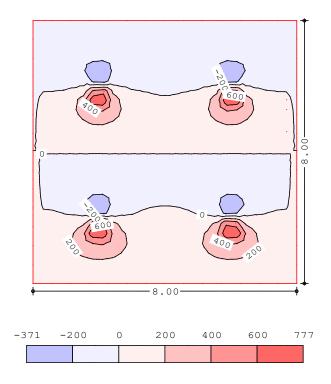


 Позиция
 t500
 Страница
 420


 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

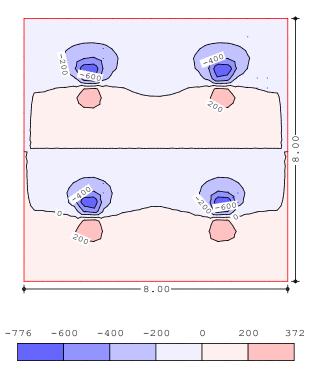
 Разраб.
 Разработчик
 СТАТИКА/500
 Версия
 2025.000


Минимальные значения момента Мху, кНм/м М = 1 :115

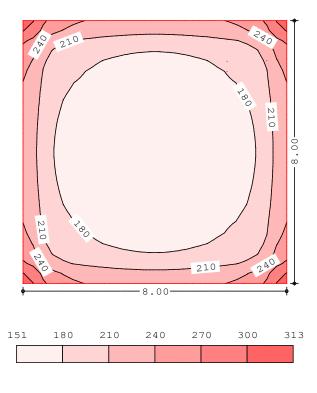

Максимальные значения поперечной силы Qx, кH/м M = 1 :115

Минимальные значения поперечной силы Qx, кH/м M=1:115

Максимальные значения поперечной силы Qy, кH/м M = 1 :115



 Позиция
 t500
 Страница
 422


 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/500
 Версия
 2025.000

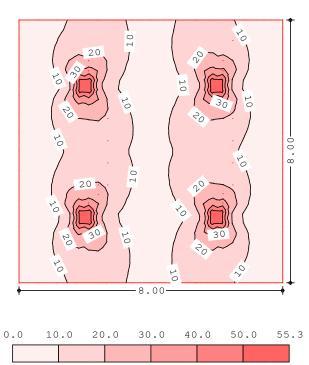
Минимальные значения поперечной силы Qy, кH/м M = 1 :115

Максимальные значения давления, к Π а M = 1 :115

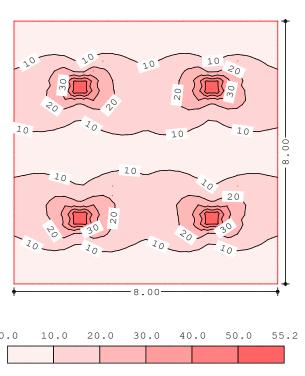
 Позиция
 t500
 Страница
 423

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

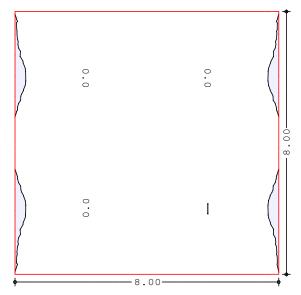
 Разраб.
 Разработчик
 СТАТИКА/500
 Версия
 2025.000


<u>Расчёт по прочности</u> согласно СНиП 52-01-03. Бет. и железобет. констр.

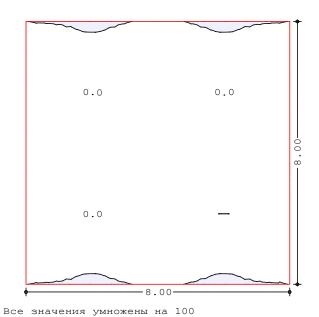
Бетон класса Продольная арматура класса B 25 A 500


Расстояния до ц.т. продольной арматуры

Верхняя	арматура	якнжиН	арматура
ax[см]	ау[см]	ах[см]	ау[см]
5.0	5.0	5.0	5.0


Нижняя арматура Asx, cm^2/m M = 1 : 115

Нижняя арматура Asy, cm^2/m M = 1 :115


Верхняя арматура Asx, cm^2/m M = 1 :115

Все значения умножены на 100

0.	. 0	0.0	37.4

Верхняя арматура Asy, cm^2/m M = 1 :115

Нижняя арматура

Мхн	Мун	Asx	Asy
[кНм/м]	[кНм/м]	[см ² /м]	[см ² /м]
613.16	613.11	55.25	55.25

0.0

0.0

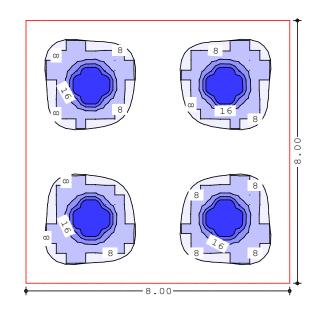
37.4

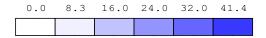
 Позиция
 t500
 Страница
 425

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/500
 Версия
 2025.000

Верхняя арматура


MxB	Мув	Asx	Asy
[кНм/м]	[кНм/м]	[cm ² /m]	[cm ² /m]
 -5.67	-5.67	0.37	


Определение поперечной арматуры

Поперечная арматура класса

A 400

Поперечная арматура Asw, $\mathrm{cm}^2/\mathrm{m}^2$ M = 1 :115

Поперечная арматура под нагрузками

Нагруз	зка Тип	N ₀	Q [кН/м]	Qb [кН/м]	Qmax [кН/м]	Asw $[cm^2/m^2]$
1	Сосредоточенная	1	754.1	165.4	1370.3	39.35
		2	752.7	165.4	1370.3	39.25
		3	752.6	165.4	1370.3	39.25
		4	751.2	165.4	1370.3	39.15
2		1	754.1	165.4	1370.3	39.35
		2	752.7	165.4	1370.3	39.25
		3	752.6	165.4	1370.3	39.25
		4	751.2	165.4	1370.3	39.15

Конструирование

Нижняя арматура

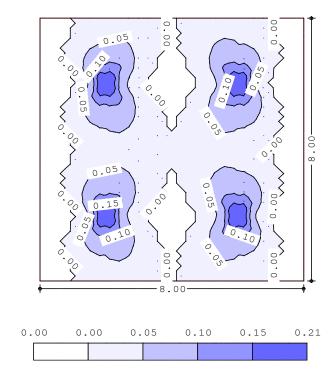
	Требуемая	Пс	Подобранная			
Вдоль	As	Диаметр	Шаг	As		
	$[cm^{2}/m]$	[MM]	[MM]	$[cm^2/m]$		
X	55.25	12	20	56.55		
У	55.25	12	20	56.55		

Верхняя арматура

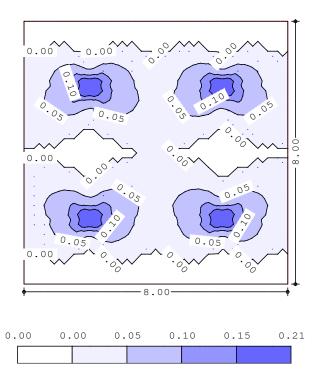
	Требуемая	Пс	Подобранная			
Вдоль	As	Диаметр	Шаг	As		
	[cm ² /m]	[MM]	[MM]	[cm ² /m]		
X	0.37	12	300	3.77		
У	0.37	12	300	3.77		

ООО Техсофт, Москва

 Позиция
 t500
 Страница
 426


 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

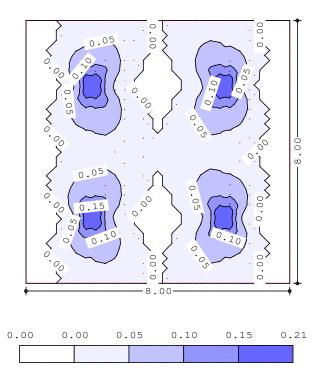
 Разраб.
 Разработчик
 СТАТИКА/500
 Версия
 2025.000


Трещиностойкость

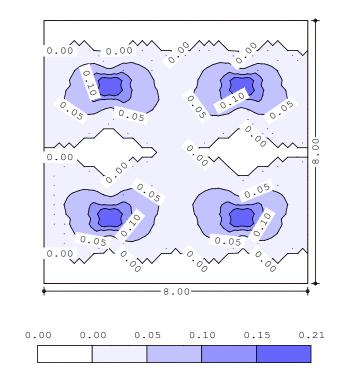
Предельно допустимая ширина раскрытия трещин: непродолжительное раскрытие $a_{\text{crc1}} = 0.40$ мм продолжительное раскрытие $a_{\text{crc2}} = 0.30$ мм

Ширина непродолжительного раскрытия трещин снизу по направл. x, [мм] M=1:115

Ширина непродолжительного раскрытия трещин снизу по направл. у, [мм] $\mathrm{M}=1$:115



 Позиция
 t500
 Страница
 427


 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/500
 Версия
 2025.000

Ширина продолжительного раскрытия трещин снизу по направлению x, [мм] M=1:115

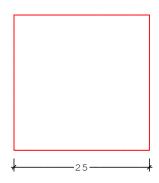
Ширина продолжительного раскрытия трещин снизу по направлению у, [мм] М = 1 :115

Раскрытие трещин снизу

От	М	Ml	Mcrc	acrc1	acrc2
	[кНм/м]	[кНм/м]	[кНм/м]	[MM]	[MM]
Mx	533.2	533.2	100.5	0.211	0.211
My	533.1	533.1	100.5	0.211	0.211

Позиция t500 428 Страница 28.10.2024 СТАТИКА тест всех модулей Проект Дата Разраб. Разработчик **СТАТИКА/500** Версия 2025.000

Раскрытие трещин сверху


От	M	Ml	Mcrc	acrc1	acrc2
	[кНм/м]	[кНм/м]	[кНм/м]	[MM]	[MM]
Mx	3.6	3.6	0.0	нет тр	ещин
Му	3.6	3.6	0.0	нет тр	ещин

Трещиностойкость обеспечена

Расчет выполнен модулем 500 программы СТАТИКА 2025 © 000 Техсофт

Поз. t507 Расчёт сваи на действие вертикальной нагрузки

Свая	Вид сваи	висячая	забивная	свая
	Ширина сечения сваи	d	= 25	СМ
	Длина сваи	1	= 5.00	М

Свая погружается молотом

Глубина заложения ростверка от поверхности рельефа от уровня планировки

dn 1.00 M 0.00 d_0

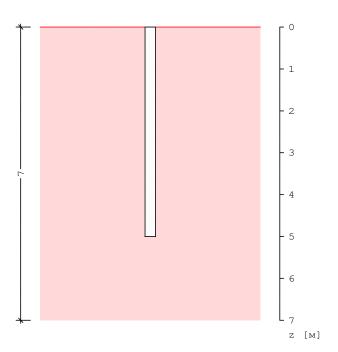
Слой h [м] Вид грунта Грунт

001071	[]	214 167112	
1	7.00	Супесь пластичная	

Удельный вес грунта

Слои	W	е	Sr	γs	γ
	[응]	[–]	[-]	[кН/м3]	[кН/м3]
1	5.0	0.52	0.25	26.0	18.0

Консистенция глинистого грунта


Слой	₩ _p	₩ _L [%]	I _p [%]	I _L
1	4.0	9.0	5.0	0.20

 Позиция
 t507
 Страница
 429

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

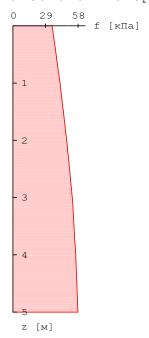
 Разраб.
 Разработчик
 СТАТИКА/507
 Версия
 2025.000

Схема геологического разреза

Расчет

Согласно СП 24.13330.2021

Вес сваи G = 7.8 кН Коэффициент надежности $\gamma_{\rm f}$ = 1.10 -


Проверка прочности

грунта основания сваи при сжимающей нагрузке

Сопротивление грунта под концом сваи

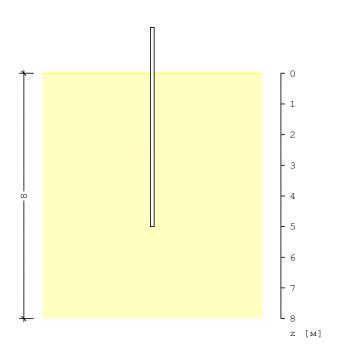
 $_{\rm R}$ = 4.15 МПа при глубине заложения h = 6.00 м Коэффициент условий работы $\gamma_{\rm R,R}$ = 1.00 -

Сопротивление грунта на боковой поверхности сваи f

Позиция t507 Проект CTATИКА тест всех модулей Разраб. Разработчик CTATИКА/507					Страница 430 Дата 28.10.2024 Версия 2025.000		
_	тивление на ой поверхности	Слой	z ₁ [м] 0.00	z ₂ [м] 5.00	γ _R , f [-] 1.00	f ₁ [кПа] 35.0	f ₂ [кПа] 58.0
			опирания сечения		A u	= 625.0 = 100.0	см2 см
			иент услон способною	-	ы сваи при _{7 с}		-
Услов	ие прочности		$F_{dR} + F_{dI}$		4 + 245.5	5 = 504.9	кН
				.00 * 1.40	0 / 504.9	0.85	6 <= 1

Работоспособность сваи обеспечена

Расчет выполнен модулем 507 программы СТАТИКА 2025 © 000 Техсофт


1103. t508	Винтовая свая			
Свая	Вид сваи винтов	ая од	нолопастная	свая
	Диаметр ствола Толщина ствола	d t	= 120 = 10.0	MM MM
	Диаметр лопасти	D	= 800	MM
	Длина части сваи над грунтом Глубина погружения лопасти		= 1.50 = 5.00	M M
	Фундамент с однорядным распол	ожени	ем свай	

Грунт

<u>т рушт</u>									
Слой	Название слоя	h	[м]	Вид	грунта				
1	ИГЭ 927		8.00	Песс	к пыле	затый	плотн	ый	
Удельн грунта	ный вес а	Слой	\\\[\{ \} \] 16.(e [-] .51	S _r [-]	[кН	γ _s /м3] 26.0	γ [кH/м3] 20.0
Коэфф	. надежности	γ _{g(c)} 1.50		γ _g (φ) 1.10		/g(γ) 1.10			
Характ	геристики а	Слой	С _{ІІ} [кПа] 7.0	Ф _{ІІ} [град] 35.0	γιι [кΗ/м3] 20.0	-	с _І кПа] 4.7	φ _I [град] 31.8	γ _I [кН/м3] 18.2

Позиция t508 431 Страница 28.10.2024 СТАТИКА тест всех модулей Проект Дата Разработчик **СТАТИКА/508** Версия 2025.000 Разраб.

Схема геологического разреза

Рабочая зона лопасти сваи 4.20 <= z <= 5.00 м

Нагрузки

$N_{\tilde{0}}$	Вид нагрузки	γf	Группа	Знак
1	Постоянная	1.10		

Nº	N	Н	М
	[ĸH]	[ĸH]	[кНм]
1	150.0	2.0	

Расчет

Согласно СП 24.13330.2021, СП 16.13330.2017

C 255

Коэффициент условий работы 1.00 $\gamma_{C} =$ R_{y} = 250Расчетное сопротивление МΠа

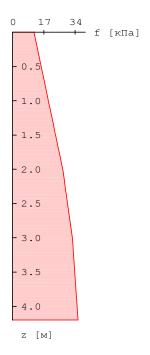
Проверка прочности грунта основания сваи при вдавливающей нагрузке

Комбинация нагрузок

N [ĸH]	Нагрузка(Коэффициен	нт)
165.0	1 (1.3	10)

Несущая способность лопасти сваи по формуле (7.18) $F_{d0} = (\alpha_1 c_1 + \alpha_2 \gamma_1 h_1) A = 1271.58$

Данные для расчета


α_1	c_1	α_2	γı	h ₁	A
[-]	[кПа]	[-]	[кН/м3]	[м]	[м2]
47.45	4.7	30.23	18.2	4.20	0.5027

Сопротивление грунта на боковой поверхности сваи f

 Позиция
 t508
 Страница
 432

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/508
 Версия
 2025.000

Сопротивление на боковой поверхности

Слой	z ₁	z ₂	f ₁	f ₂
	[M]	[M]	[кПа]	[кПа]
1	0.00	4.20	11.7	35.6

Коэффициент условий работы $\gamma_{\rm C}=0.60$ -

Несущая способность сваи

 $F_d = \gamma_c (F_{d0} + F_{df}) = 762.9 + 24.8 = 787.8$ кН

Условие прочности $N\gamma_n\gamma_{c,q}/F_d =$

165.0 * 1.00 * 1.40 / 787.8 = **0.293** <= 1

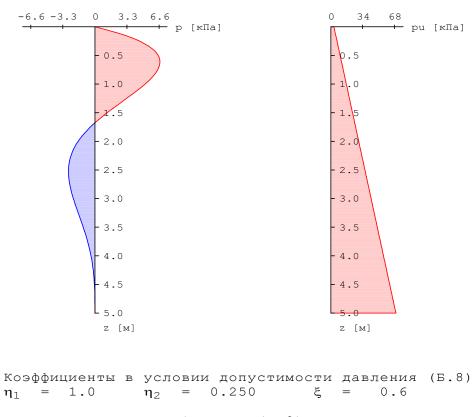
Проверка допустимости давления на грунт боковой поверхностью сваи

 Комбинация нагрузок
 H [кН]
 M [кНм]
 Нагрузка (Коэффициент)

 2.2
 0.0
 1 (1.10)

Коэффициент постели

Слой	OT Z	до z	K	C _Z
	[M]	[M]	[кН/м4]	[кН/м3]
1	0.00	5.00	4000	0 - 20000


Примечание Коэффициент постели c_z = Kz

Условная ширина сваи $b_p = 1.5d + 50 = 68.0$ см Жесткость сваи EI = 1.09 МНм2

Коэффициент деформации $\alpha_{\epsilon} = 1.202 \ 1/\text{M}$ при К = 4000 кH/м4 $1\alpha_{\epsilon} = 6.01 \ -$

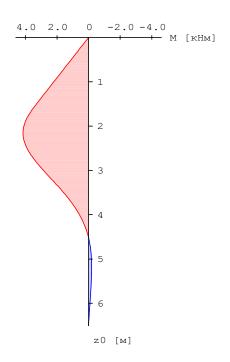
Давление р Предельное давление ри

Ω

 η_2 определяется по формуле (Б.9) приложения Б при

4.00 n $M_{C} = 7.0$ кнм M_{t} 0.0 кНм

Условие допустимости


р /
$$p_u$$
 = 6.6 / 12.7 = 0.519 <= 1 при z = 0.85 / α_ϵ = 0.71 м

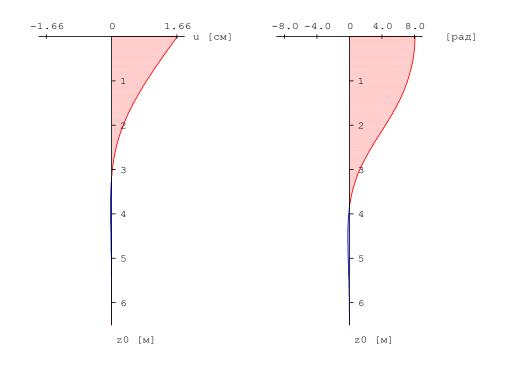
Проверка прочности и устойчивости ствола сваи

Комбинация нагрузок

N [KH]	Нагрузка(Коэффициент)
165.0	1 (1.10)

Изгибающий момент

Позиция Проект Разраб.	t508 СТАТИКА тест Разработчик	всех модулей СТАТИКА	/508		Страниц Дата Версия	28.10.2 2025.0	
	·	Расчетный момент	при	M z ₀	=		кНм
Услов	ие прочности	Координата z_0 отсчить σ / $R_{y}\gamma_{c}$ =			-	-	
		Длина стержня (7.1) 1 Расчетная длина Условная гибкость	l ₁ = l ₀ +			3.16 6.33 5.646	M M -
Услов	ие устойчивост	И	N / φ _e Al	$R_{y}\gamma_{c}$	=	0.899	<= 1


Проверка допустимости перемещения и угла поворота головы сваи

Комбинация нагрузок

H [K]	I] M	[кНм]	Нагрузка(Коэфф	ициент)
2	. 0	0.0	1	(1.00)

Перемещение и

Угол поворота ψ х 1000

Перемещение

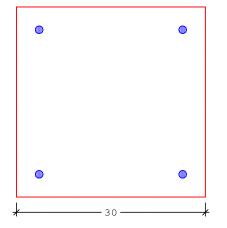
$$u_0 / u_u = 1.67 / 5.00 = 0.333 <= 1$$

Угол поворота

$$\psi_0$$
 / ψ_u = 0.0081 / 0.0100 = **0.808** <= 1

Работоспособность сваи обеспечена

Расчет выполнен модулем 508 программы СТАТИКА 2025 © ООО Техсофт


 Позиция
 t509
 Страница
 435

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/509
 Версия
 2025.000

Поз. t509 Расчет сваи по результатам полевых испытаний

Свая Вид сваи висячая забивная железобетонная свая 30 Ширина сечения сваи СМ 6.00 Длина сваи 1 4 Число стержней Арматура n_s 12 Диаметр стержней ds MM Защитный слой бетона 30 aз MM

Стержни: 4 ϕ 12 Защитный слой: аз = 30 мм

1.50

1.50

М

Μ

Принимается шарнирное сопряжение сваи с ростверком

Глубина заложения ростверка от поверхности рельефа d_n от уровня планировки d_0

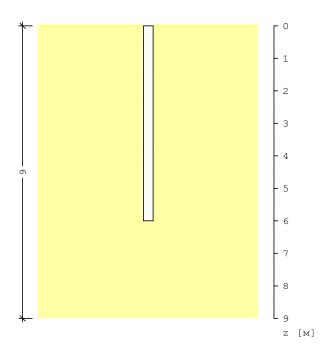
Грунт

Слой	Название слоя	и h [м]	Вид грунта
1	игэ 922	9.00	Песок средней крупности плотный

Удельный вес грунта выше уровня подошвы ростверка расчетное значение $\gamma_0 = 18.0 \, \mathrm{kH/m3}$

Слой Удельный вес M Sr γs γ грунта [응] [-] [-] [кН/м3] [кН/м3] 0.51 19.0 10.0 0.51 26.0

Коэфф. надежности $\frac{\gamma_{g(c)}}{1.50}$ $\frac{\gamma_{g(\phi)}}{1.15}$ $\frac{\gamma_{g(\gamma)}}{1.10}$


Характеристики Слой CII ϕ_{II} C_{I} γΙ γ I I ϕ_{I} грунта [кПа] [кН/м3] [кПа] [кН/м3] [град] [град] 39.0 19.0 17. 2.0

 Позиция
 t509
 Страница
 436

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/509
 Версия
 2025.000

Схема геологического разреза

Нагрузки

$N_{\bar{0}}$	Вид нагрузки	γ _f	Группа	Знак
1	Постоянная	1.10		

N ₀	N	Н1	Н ₂	M ₁	М2
	[ĸH]	[ĸH]	[ĸH]	[кНм]	[кНм]
1	80 0	100			

кН

Вес сваи G = 13.5 Коэффициент надежности $\gamma_{\rm f}$ = 1.10

Расчет

Согласно СП 24.13330.2021, СП 63.13330.2018,

СП 20.13330.2016

Бетон В 30 (тяжелый) Коэффициент условий работы $\gamma_b = 0.900$

Арматура **А500**

Сопротивление бетона $\gamma_b R_b = 15.30 \, \text{МПа}$ Сопротивление арматуры $R_s = 435 \, \text{МПа}$ $R_{\text{SC}} = 400 \, \text{МПа}$

Определение предельного сопротивления сваи по данным испытаний

Способ погружения сваи забивка молотом Вид молота подвесной или одиночного действия

Данные для формулы (7.22)

m_1	m_2	m ₃	m ₄	G	Н
[亚]	[T]	[亚]	[┳]	[ĸH]	[M]
1.500	1.000	0.500	0.300	2.94	2.00

η	А	М	Ed	$\boldsymbol{\varepsilon}^2$	sa
[кН/м2]	[м2]	[-]	[кДж]	[-]	[M]
1500.0	0.090	1.00	5.89	0.2	0.005

Предельное сопротивление сваи $F_{\rm u} = 248.6$ кН

Позиция t509 437 Страница 28.10.2024 СТАТИКА тест всех модулей Проект Дата Разработчик **СТАТИКА/509** Версия 2025.000

Проверка прочности грунта основания сваи при сжимающей нагрузке

Комбинация нагрузок

N	[KH]	Нагрузка (Коэфф	ициент)
	88.0	1	(1.10)

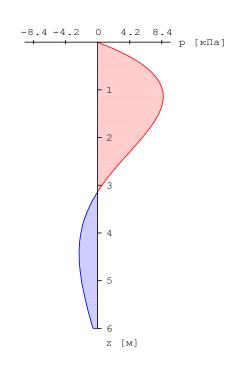
Условие прочности
$$N_0 \gamma_n \gamma_{c,g} / F_d =$$

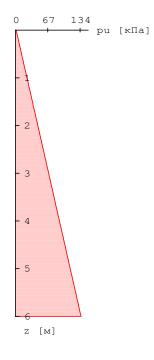
102.8 * 1.00 * 1.20 / 248.6 = **0.496** <= 1

Проверка допустимости давления на грунт боковой поверхностью сваи

Комбинация нагрузок

Н [кН]	М [кНм]	Нагрузка(Коэффициент)
11.0	0.0	1 (1.10)

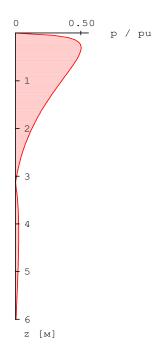

Коэффициент постели


Слой	OT Z	до z	K	$c_z = Kz$
	[м]	[M]	[кН/м4]	[кН/м3]
1	0.00	6.00	6000	0 - 36000

Условная ширина сваи $b_p = 1.5d + 50 = 95.0$ CMМодуль упругости = 32.50 ГПа Жесткость сваи ΕI = 21.94 MHm2

 α_{ϵ} Коэффициент деформации 0.764 1/м при К $= 6000 \, \text{kH/M4}$ $\text{l}\alpha_{\epsilon}$ = 4.58

> Давление р Предельное давление p_u



 Позиция
 t509
 Страница
 438

 Проект
 CTATИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 CTATИКА/509
 Версия
 2025.000

Коэффициенты в условии допустимости давления (Б.8)
$$\eta_1 = 1.0$$
 $\eta_2 = 0.400$ $\xi = 0.6$

 η_2 определяется по формуле (Б.9) приложения Б при n = 2.50 - M_C = 28.8 кНм M_t = 0.0 кНм

Условие допустимости

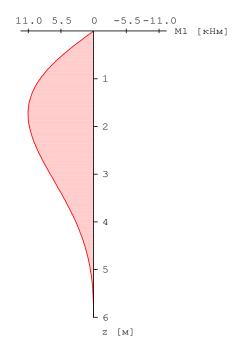
р /
$$p_u$$
 = 8.6 / 26.5 = 0.324 <= 1 при z = 0.85 / α_ϵ = 1.11 м

Примечание

Проверка проведена для глубины, указанной в нормах

Проверка прочности материала сваи

Комбинация нагрузок


N	[KH]	Нагрузка (Коэффициент)
	88.0	1 (1.10)

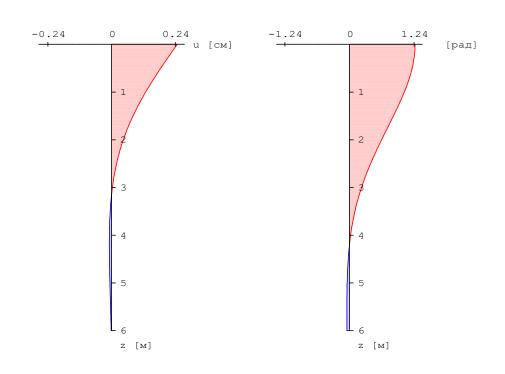
 Позиция
 t509
 Страница
 439

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/509
 Версия
 2025.000

Изгибающий момент

Сжимающая сила N_0 / $N_{0\,u}$ = 88.0 / 559.9 = **0.157** <= 1 M_1 / $M_{1\,u}$ = 11.0 / 70.2 = **0.157** <= 1 mpu z = 1.73 m


Проверка допустимости перемещения и угла поворота головы сваи

Комбинация нагрузок

Н [кН]	М [кНм]	Нагрузка(Коэффициент)
10.0	0.0	1 (1.00)

Перемещение и

Угол поворота ψ х 1000

Позиция	t509		Страниц	a 440
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/509	Версия	2025.000

Перемещение u_0 / u_u = 0.25 / 5.00 = 0.049 <= 1 Угол поворота ψ_0 / ψ_u = 0.0013 / 0.0100 = 0.126 <= 1

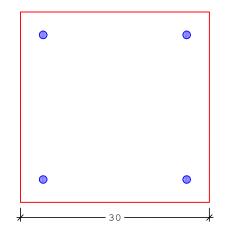
Проверка трещиностойкости сваи

Комбинация нагрузок	Нагрузка (Коэффициен	(T)
	1 (1.0	00)

Усилия в свае

Z	N	M_1	M ₂
[M]	[ĸH]	[кНм]	[кНм]
1.73	80.0	10.0	0.0

Расчет по образованию трещин


Трещины		M _{2,сгс} [кНм]	M ₁ ,crc [кНм]	N _{crc} [кН]
не образуются	не	0.0	19.5	80.0

Работоспособность сваи обеспечена

Расчет выполнен модулем 509 программы СТАТИКА 2025 © ООО Техсофт

<u>Поз. t510</u> <u>Подбор сваи</u>

Свая	Вид сваи	висячая	забивная	железс	бетонна	я свая
	Ширина сечения	я сваи	(d =	: 30	CM
	Длина сваи			1 =	8.00	М
Арматура	Число стержней Диаметр стержи Защитный слой	ней		n _s = d _s = a ₃ =	4 12 30	— ММ ММ

Стержни: 4 ϕ 12 Защитный слой: as = 30 мм

Свая погружается молотом

Принимается шарнирное сопряжение сваи с ростверком

Глубина заложения ростверка от поверхности рельефа $d_n = 3.00$ м от уровня планировки $d_0 = 3.00$ м

 Позиция
 t510
 Страница
 441

 Проект
 CTATИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 CTATИКА/510
 Версия
 2025.000

Грунт

Слой	Название слоя	h [м]	Вид грунта
1	тиот	3.00	Суглинок просадочный
2		10.00	Глина полутвердая

Удельный вес грунта выше уровня подошвы ростверка нормативное значение $\gamma_{0n} = 20.0 \, \text{ kH/m3}$ расчетное значение $\gamma_{0} = 18.0 \, \text{ kH/m3}$

Удельный вес грунта

Слой	W	е	Sr	γs	γ	γ _{sat}
	[응]	[-]	[-]	[кН/м3]	[кН/м3]	[кН/м3]
1	4.0	0.50	0.21	26.0	18.0	20.7
2	15.0	0.66	0.59	26.0	18.0	

 $\gamma_{ exttt{sat}}$ - удельный вес водонасыщенного грунта

Консистенция глинистого грунта

Слой	₩ _p [%]	₩ _L [%]	I _p [%]	I _L [-]	I _{Lsat} [-]
1	5.0	13.0	8.0	-0.12	1.55
2	10.0	30.0	20.0	0.25	

 $I_{ t Lsat}$ - показатель текучести водонасыщенного грунта

Примечание

Сопротивление просадочного грунта определяется при показателе текучести $\mathbf{I}_{\texttt{Lsat}}$

Примечание

Сопротивление грунта при показателе текучести > 1 не учитывается

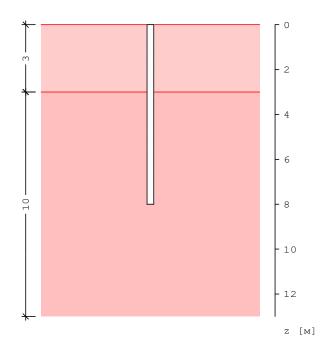
Коэфф. надежности

γα(ς)	γα (φ)	γα (γ)
1.50	1.15	1.10

Характеристики грунта

Слой	CII	ϕ_{II}	γιι	СI	$\phi_{\mathtt{I}}$	γΙ	E	ν
	[кПа]	[град]	[кН/м3]	[кПа]	[град]	[кН/м3]	[МПа]	[-]
1	5.0	20.0	20.7	3.3	17.4	18.8	29.0	0.35
2	15.0	25.0	18.0	10.0	21.7	16.4	20.0	0.30

Примечание


Значения с и ϕ для просадочного грунта задаются для состояния грунта при полном водонасыщении

 Позиция
 t510
 Страница
 442

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/510
 Версия
 2025.000

Схема геологического разреза

Нагрузки

$N_{\bar{0}}$	Вид нагрузки	γ _f	Группа	Знак
1	Постоянная	1.10		

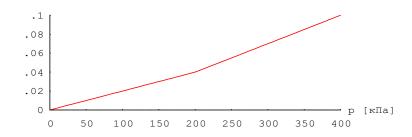
Nº	N	Н1	Н ₂	M ₁	M ₂
	[ĸH]	[ĸH]	[ĸH]	[кНм]	[кНм]
1	300.0	10.0			

Вес сваи G = 18.0 Коэффициент надежности $\gamma_{\rm f}$ = 1.10

Расчет

Согласно СП 24.13330.2021, СП 63.13330.2018, СП 20.13330.2016

Бетон Коэффициент условий работы Арматура Сопротивление бетона Сопротивление арматуры

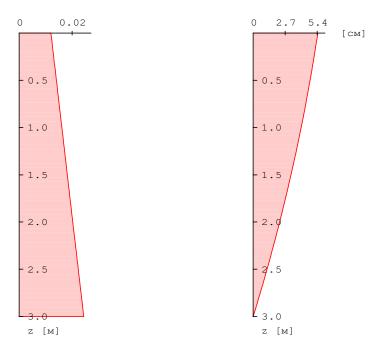

 $egin{array}{lll} {f B} & {f 25} & ({f TЯЖЕЛЫЙ}) \\ {m \gamma}_{b} & = & 0.900 & - \\ {f A500} & & & & & \\ {m \gamma}_{b} {R}_{b} & = & 13.05 & {\it M}\Pi a \\ {R}_{s} & = & 435 & {\it M}\Pi a \\ {R}_{sc} & = & 400 & {\it M}\Pi a \end{array}$

кН

Определение отрицательной силы трения просадочного грунта согласно СП 24.13330.2011

Слой	Относит	ельная	просадоч	иность	εsl	(Давл	ение	р)
1	0.020	(100.0)	0.040	(200.0	0) 0	.100	(400	.0)

График зависимости $\epsilon_{\,\mathrm{s}\,\mathrm{l}}=\,\mathrm{f}\,(\mathrm{p})$

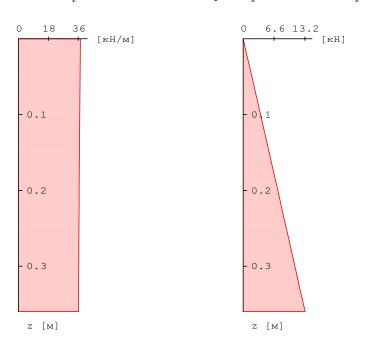


 Позиция
 t510
 Страница
 443

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/510
 Версия
 2025.000

Относительная просадочность $\epsilon_{ exttt{sl}}$ Просадка $exttt{s}_{ exttt{sl}}$



Тип грунтовых условий по просадочности II тип

Просадка грунта $s_{s1} = 5.5$ см

Отрицательное трение грунта учитывается до глубины $h_{\text{sl}} \ = \ \text{0.36} \qquad \text{м}$

Погонная сила трения ит Суммарная сила трения

Погонная сила трения

Слой	7. 1	Z 2	<u>ر</u> ع	۲ ،	11 T. 1	11 τ ο
CJIODI	[M]	[M]	[-]	[-]	[кН/м]	[кН/м]
1	0 - 00	0.36	1.65	1.41	37.4	36.2

 Позиция
 t510
 Страница
 444

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

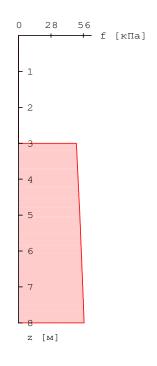
 Разраб.
 Разработчик
 СТАТИКА/510
 Версия
 2025.000

 $\gamma_{\rm C} P_{\rm n} = 0.4$ кн

Примечание γ_{C} определено при s_{u} = 8.0 см

Проверка прочности грунта основания сваи при сжимающей нагрузке

Комбинация нагрузок


N [KH]	Нагрузка(Коэффициент)
330.0	1 (1.10)

Сопротивление грунта под концом сваи

 $R = 4.36 \ \text{MПa}$ при глубине заложения $h = 11.00 \ \text{м}$

Коэффициент условий работы $\gamma_{R,R} = 1.00$ -

Сопротивление грунта на боковой поверхности сваи f

Сопротивление на боковой поверхности

Слой	z ₁	z ₂	γ _{R,f}	f ₁	f ₂
	[M]	[M]	[-]	[кПа]	[кПа]
2	3.00	8.00	1.00	50.0	56.7

Примечание

Значение f для просадочного грунта при глубине расположения слоя > 5м принимается для глубины 5м

Площадь опирания на грунт A = 900.0 см2 Периметр сечения сваи u = 120.0 см

Коэффициент условий работы сваи при сжатии

 $\gamma_{\text{C}} = 1.00$

Несущая способность сваи

 $F_d = F_{dR} + F_{df} = 392.4 + 321.1 = 713.5$ кН

Условие прочности $N_0 \gamma_n \gamma_{c,q} / F_d =$

Проверка допустимости давления на грунт боковой поверхностью сваи

Комбинация нагрузок

Н [кН]	М [кНм]	Нагрузка(Коэффициент)
11.0	0.0	1 (1.10)

 Позиция
 t510
 Страница
 445

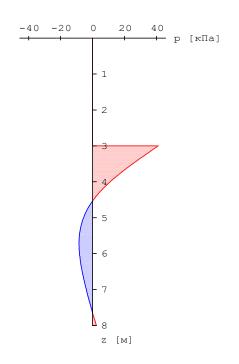
 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

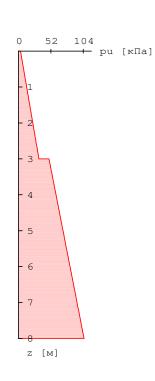
 Разраб.
 Разработчик
 СТАТИКА/510
 Версия
 2025.000

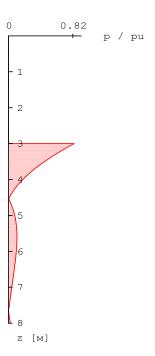
Коэффициент постели

Слой	OT Z	до z	K		С	Z
	[M]	[м]	[кН/м4]	[кН/	м3]
1	0.00	3.00	0	0	_	0
2	3.00	8.00	5000	15000	_	40000

Примечание


Коэффициент постели c_z = Kz


Условная ширина сваи $b_p = 1.5d + 50 = 95.0$ см Модуль упругости E = 30.00 ГПа Жесткость сваи EI = 20.25 МНм2


Коэффициент деформации $\alpha_{\epsilon} = 0.748 \ 1/\text{M}$ при К = 5000 кH/м4 $(1 - 3.00) \, \alpha_{\epsilon} = 3.74 -$

Давление р

Предельное давление p_u

 Позиция
 t510
 Страница
 446

 Проект
 CTATИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 CTATИКА/510
 Версия
 2025.000

Коэффициенты в условии допустимости давления (Б.8) $\eta_1 = 1.0$ $\eta_2 = 0.400$ $\xi = 0.6$

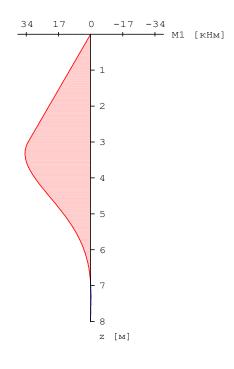
 η_2 определяется по формуле (Б.9) приложения Б при n = 2.50 - M_C = 62.4 кНм M_t = 0.0 кНм

 $M_{C} = 62.4$ кНм

р / p_u = 7.7 / 61.8 = 0.125 <= 1 при z = 3.00 + 0.85 / α_ϵ = 4.14 м

Примечание

Проверка проведена для глубины, указанной в нормах


Проверка прочности материала сваи

Комбинация нагрузок

Условие допустимости

N [KH]	Нагрузка(Коэффициент)
330.0	1 (1.10)

Изгибающий момент

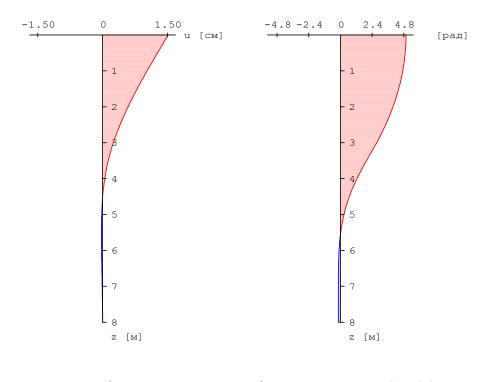
Сжимающая сила

$$N_0$$
 / N_{0u} = 330.0 / 589.4 = **0.560** <= 1
 M_1 / M_{1u} = 34.7 / 61.9 = **0.560** <= 1
 $\pi p \mu z$ = 3.33 μm

Момент M_1

Проверка допустимости перемещения и угла поворота головы сваи

Комбинация нагрузок	Н [кН]	М [кНм]	Нагрузка(Коэффициент)
	10.0	0.0	1 (1.00)


 Позиция
 t510
 Страница
 447

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/510
 Версия
 2025.000

Перемещение и

Угол поворота ψ х 1000

Перемещение

$$u_0 / u_u = 1.52 / 3.00 = 0.506 <= 1$$

Угол поворота

$$\psi_0$$
 / ψ_u = 0.0050 / 0.0050 = **0.994** <= 1

Проверка трещиностойкости сваи

 Комбинация нагрузок
 Нагрузка (Коэффициент)

 1 (1.00)

Усилия в свае

Z	N	M_1	M ₂
[M]	[ĸH]	[кНм]	[кНм]
3.33	300.0	31.5	0.0

Расчет по образованию трещин

N _{crc}	M ₁ ,crc	M _{2,crc}	Трещины
[ĸH]	[кНм]	[кНм]	
300.0	31.6	0.0	не образуются

Проверка допустимости осадки сваи

Комбинация нагрузок

N [KH]	Нагрузка (Коэффициент)
300.0	1 (1.00)

Расчетный диаметр сваи d

Модули сдвига и коэфф. Пуассона

G ₁	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	G ₂	v_2
[МПа]	[-]	[МПа]	[-]
8.84	0.32	7.69	0.30

Расчетная нагрузка

$$N = 331.2$$
 kH

33.9

СМ

Параметр

$$\kappa = G_1 1/G_2 d = 30.63$$

Осадка сваи (7.34)

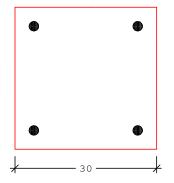
$$s = \beta N/G_1 1 = 0.36$$
 CM
 $\beta = 0.761$ -

Условие допустимости

$$s / s_u = 0.36 / 8.0 = 0.045 <= 1$$

Работоспособность сваи обеспечена

 Позиция
 t510
 Страница
 448


 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

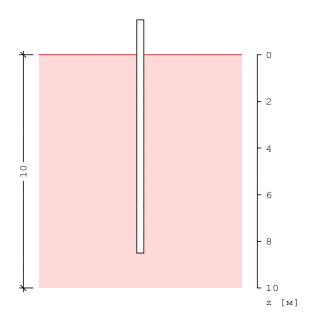
 Разраб.
 Разработчик
 СТАТИКА/510
 Версия
 2025.000

Расчет выполнен модулем 510 программы СТАТИКА 2025 © 000 Техсофт

Поз. t511 Свая в вечномерзлом грунте

Свая	Вид сваи	буроопускная	железоб	етонная	свая
	Ширина сечения св	аи	d =	30	СМ
	Длина сваи Длина верхней час	ти сваи	1 = 1 ₀ =	10.00 1.50	M M
Арматура	Число стержней Диаметр стержней Защитный слой бет	•	n _s = d _s = =	4 20 30	– ММ ММ

Стержни: 4 **Ø**20 Защитный слой: аз = 30 мм


Принимается шарнирное сопряжение сваи с ростверком

Грунт

Слой	Название слоя	h [м]	Вид грунта	
1	грунт 1	10.00	Супесь	

Грунт континентального типа засоления

Схема геологического разреза

 Позиция
 t511
 Страница
 449

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024


 Разраб.
 Разработчик
 СТАТИКА/511
 Версия
 2025.000

Характеристики грунта

Слой	ρ _s [кг/м3]	ρ [кг/м3]	ρ _d [кг/м3]	W _{tot}	W _m [≥ 1	W _p	I _p	D _{sal}
1	2700	[KF/M3] 1800	1636	10.0	5.0	5.0	5.0	0.005

Температура грунта

Z	Т	Z	Т	Z	Т
[M]	[°C]	[м]	[°C]	[м]	[°C]
0.50	15.00	1.00	10.00	2.00	5.00
3.00	-1.00	4.00	-2.00	5.00	-3.00
6.00	-4.00	7.00	-5.00	8.00	-6.00

Глубина оттаивания грунта $d_{\text{th}} = 2.86$

Средняя по глубине температура мерзлого грунта ${\rm T_{\rm Cp}} \ = \ -3.65 \qquad {^{\circ}{\rm C}}$

M

Нагрузки

Расчет

Nº	Вид нагрузки	γf	Группа
1	Постоянная	1.10	

N ₀	N	H ₁	Н2	M ₁	M ₂
	[ĸH]	[ĸH]	[ĸH]	[кНм]	[кНм]
1	200 0	5 0	5 0		

Вес сваи G = 22.5 кН Коэффициент надежности γ_{f} = 1.10 -

Согласно СП 25.13330.2020, СП 63.13330.2018, СП 20.13330.2016

Грунт используется в мерзлом состоянии (принцип I)

В 25 (тяжелый) Бетон Коэффициент условий работы 0.900 γ_b **A**500 Арматура Сопротивление бетона 13.05 МΠа $\gamma_b R_b$ Сопротивление арматуры = 435МΠа Rs ${\rm R}_{\rm s\,c}$ = 400МΠа

Определение температурного коэффициента согласно приложению П

Среднегодовая температура мерзлого грунта ${\tt T}_0 \ = \ -5.00 \ {\rm ^{\circ}C}$

Амплитуда колебаний температуры воздуха A = 30.00 $^{\circ}$ C

Позиция t511 Страница 450 проект СТАТИКА тест всех модулей дата 28.10.2024 Разраб. Разработчик СТАТИКА/511 Версия 2025.000

Среднеквадратическое отклонение средней температуры воздуха σ = 5.00 $^{\circ}$ C

= 50

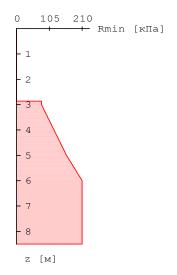
Число лет эксплуатации т

Данные для определения температурного коэффициента γ_{t} по формуле (П.1)

$$\begin{array}{l} \gamma_{\text{t}} = 1.15 \, (1 + \nu^2) \, - \, 1.61 \nu \, [\ln \left(\tau / \nu\right)\,]^{1/2} \\ \nu = 0.45 \, [\left(T_{\text{bf}} \, - \, T_0\,'\right) / \text{A}]^{1/3} \sigma D_{\text{e}} / \left[T_{\text{bf}} \, - \, T_{\text{e}} \, - \, 0.24 \left(T_{\text{bf}} \, - \, T_{\text{e}}\right)^{1/2}\right] \\ \end{array}$$

z '	C _f ·10 ⁻⁶	$\lambda_{ extsf{f}}$	T _{bf}	T _O '	D _e	Te	ν
[M]	[Дж/(м ^{3о} С)]	$[BT/(M^{\circ}C)]$	[°C]	[°C]	[-]	[°C]	[-]
5.64	1.781	1.338	-0.17	-5.00	0.640	-3.65	0.258

 $C_{\rm f}$, $\lambda_{\rm f}$ - средние по глубине характеристики грунта T_0 '= T_0 + ΔT согласно (Д.1а), ΔT принимается по табл.Д.2 $T_{\rm e}$ = $T_{\rm CP}$


Температурный коэффициент $\gamma_{t} = 0.272$ -

Проверка прочности грунта основания сваи

Комбинация нагрузок

N [ĸH]	Нагрузка (Коэффі	ициент)
220.0	1	(1.10)

Сопротивление сдвигу R_{min} = min(R_{af} , R_{sh})

Сопротивление сдвигу

Слой	z ₁ [м]	z ₂ [м]	T ₁	T ₂	R _{min,1} [κ∏a]	R _{min,2} [κΠa]
1	2.86	8.50	-0.17	-6.00	80.0	210.0

Значения R_{af} принимаются по табл. В.6 Значения R_{sh} принимаются по табл. В.6

Суммарная сила сопротивления сдвигу

$$u\Sigma R_{min,i}h_i = 1153.2$$
 κH

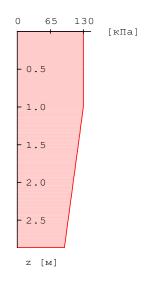
Коэффициент условий работы $\gamma_{\text{C}} = 1.00$

Несущая способность сваи $F_{\rm u} = F_{\rm uR} + F_{\rm uRmin} = 33.7 + 313.9 = 347.6$ кн

Позиция t511 Страница 451 Дата 28.10.2024 Разраб. Разработчик СТАТИКА/511 Версия 2025.000

Условие прочности

$$F\gamma_n / F_u = 244.8 \cdot 1.10 / 347.6 = 0.775 <= 1$$


Проверка устойчивости сваи при морозном пучении

Комбинация нагрузок

N [ĸH]	Нагрузка (Коэффи	ициент)
220.0	1	(1.10)

Расчетная нагрузка F = 0.9 (N + G) = 218.3 кН

Силы пучения $\tau_{\, \text{fh}}$

Силы пучения

Слой	z ₁	z ₂	Ι _L	Sr	$\tau_{\text{fh,1}}$	$\tau_{fh,2}$
	[M]	[M]	[-]	[-]	[кПа]	[кПа]
1	0.00	2.86	1.00	0.42	130.0	92.8

Силы пучения принимаются по табл.7.8

Суммарная сила пучения $F_{\text{fh}}=405$ кН Суммарная удерживающая сила $F_{\text{r}}=1153$ кН

Условие устойчивости

$$\gamma_n$$
 (F_{fh} - F) / F_r = **0.178** <= 1

Проверка прочности материала сваи согласно СП 63

Комбинация нагрузок Нагрузка (Коэффициент)

Изгибная длина сваи $l_1 = l_0$


 $l_1 = l_0 + d_{th} + 1.5d = 4.81$

 Позиция
 t511
 Страница
 452

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/511
 Версия
 2025.000

Изгибающие моменты

Усилия

z ₀	N	M_1	M_2	N _{дл}	М _{1дл}	Мадл
[M]	[ĸH]	[кНм]	[кНм]	[ĸH]	[кНм]	[кНм]
4 81	220 0	26 5	26 5	220 0	26 5	26 5

Координата z_0 отсчитывается от подошвы ростверка

Pасчетная длина сваи $l_0 = 9.62$ м

Жесткости $E_{b}I = 20.25 \text{ MHm2}$ $E_{s}I_{s} = 3.04 \text{ MHm2}$

Расчетные моменты

Пл.	δ _e	φ1	D	Ncr	η	η*Μ
			[МНм2]	[ĸH]		[кНм]
1	0.401	2.000	4.30	458	1.926	51.0
2	0.401	2.000	4.30	458	1.926	51.0

Условия прочности

$$N / N_u = 220.0 / 224.3 = 0.981 <= 1$$

 $M_1 / M_{1u} = 51.0 / 52.0 = 0.981 <= 1$
 $M_2 / M_{2u} = 51.0 / 52.0 = 0.981 <= 1$

Проверка трещиностойкости сваи

 Комбинация нагрузок
 Нагрузка (Коэффициент)

 1 (1.00)

Усилия

z ₀	N	M_1	M_2	$N_{\pi\pi}$	$^{ m M}_{ m 1 д \pi}$	М _{2дл}
[M]	[ĸH]	[кНм]	[кНм]	[ĸH]	[кНм]	[кНм]
4.81	200.0	24.1	24.1	200.0	24.1	24.1

Расчет по образованию трещин

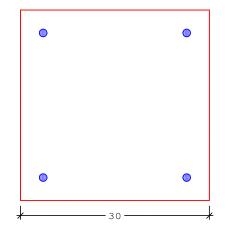
N _{crc}	M ₁ ,crc	M _{2,crc}	Трещины
200.0	15.3	15.3	образуются

Непродолж. раскрытие a_{c1} / $a_{c1,u}$ = 0.118 / 0.300 = **0.395** <= 1

Продолж. раскрытие a_{c2} / a_{c2} , u = 0.118 / 0.200 = **0.592** <= 1

Работоспособность сваи обеспечена

Расчет выполнен модулем 511 программы СТАТИКА 2025 © 000 Техсофт


 Позиция
 t512
 Страница
 453

 Проект
 CTATИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 CTATИКА/512
 Версия
 2025.000

Поз. t512 Короткая железобетонная свая

Свая	Вид сваи	висячая	забивная	железоб	етонная	свая
	Ширина сечени	я сваи		d =	30	СМ
	Длина сваи		<u>:</u>	1 =	2.00	М
Арматура	Число стержне Диаметр стерж Защитный слой	ней		n _s = d _s = =	4 12 30	– ММ ММ

Стержни: 4 ϕ 12 Защитный слой: as = 30 мм

Свая погружается молотом

Принимается шарнирное сопряжение сваи с ростверком

 Грунт
 Слой h [м]
 Вид грунта

 1
 5.00
 Глина полутвердая

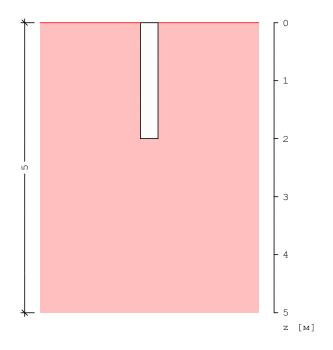
Удельный вес грунта

Слой	M	е	Sr	γs	γ
	[응]	[-]	[-]	[кН/м3]	[кН/м3]
1	15.0	0.66	0.59	26.0	18.0

Консистенция глинистого грунта

Слой	Wp	$W_{ m L}$	Ip	$I_{ m L}$
	[응]	[응]	[응]	[-]
1	10.0	30.0	20.0	0.25

Коэффициенты надёжности


γ _{g(c)}	γ _{g (φ)}	γ _g (γ)
1.50	1.15	1.10

Характеристики грунта

Слой	CII	ϕ_{II}	γ_{II}	CI	$\phi_{\mathtt{I}}$	γ _I	E	ν
	[кПа]	[град]	[кН/м3]	[кПа]	[град]	[кН/м3]	[MПa]	[-]
1	15.0	25.0	18.0	10.0	21.7	16.4	20.0	0.30

t512 Позиция 454 Страница СТАТИКА тест всех модулей 28.10.2024 Проект Дата Разработчик **СТАТИКА/512** Версия 2025.000 Разраб.

Схема геологического разреза

Нагрузки

Nº	Вид нагрузки	γ _f	Группа	Знак
1	Постоянная	1.10		

Nº	N	Н1	Н ₂	M ₁	М2
	[ĸH]	[ĸH]	[ĸH]	[кНм]	[кНм]
1	200.0				

Вес сваи кН Коэффициент надёжности 1.10 γf

Расчет

Согласно СП 24.13330.2021, СП 63.13330.2018, СП 20.13330.2016

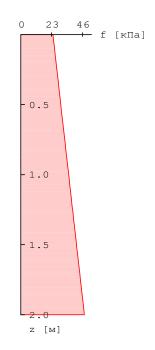
Бетон Коэффициент условий работы Арматура Сопротивление бетона Сопротивление арматуры

В 25 (тяжелый) 0.900 γ_b A500 $\gamma_b R_b$ 13.05 МΠа Rs = 435МΠа = 400R_{sc} МΠа

Проверка прочности грунта основания сваи при сжимающей нагрузке

Комбинация нагрузок

N [KH]	Нагрузка (Коэффициент)
220.0	1 (1.10)


Сопротивление грунта под концом сваи по таблице 7.21 2.981 R МΠа Коэффициент условий работы 1.00 $\gamma_{R,R} =$

Сопротивление грунта на боковой поверхности сваи f

 Позиция
 t512
 Страница
 455

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/512
 Версия
 2025.000

Сопротивление на боковой поверхности по табл. f₂ z₂ Слой z₁ f₁ γ_R,f [M] [M] [кПа] [кПа] 2.00 0.00 1.00 24.0 47.5

Коэффициент условий работы сваи при сжатии

 $\gamma_{\rm C} = 1.00$

кН

Несущая способность сваи

 $F_d = F_{dR} + F_{df} = 268.3 + 85.8 = 354.1$

Условие прочности $N_0 \gamma_n \gamma_{c,g} / F_d =$

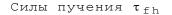
225.0 * 1.00 * 1.40 / 354.1 = **0.889** <= 1

Проверка устойчивости сваи при морозном пучении

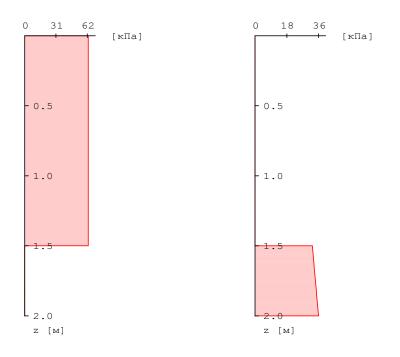
Глубина сезонного промерзания-оттаивания

 $d_{th} = 1.50$

Комбинация нагрузок


N [KH]	Нагрузка(Коэффициент)
220.0	1 (1.10)

Расчетная нагрузка $F = 0.9 \cdot (N + G) = 202.1$ кН


 Позиция
 t512
 Страница
 456

 проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/512
 Версия
 2025.000

Удерживающие силы f

Силы пучения и удерживающие силы

Слой	z ₁	z ₂	$\tau_{ { t fh} 1}$	τ_{fh2}	f ₁	f ₂
	[M]	[M]	[кПа]	[кПа]	[кПа]	[кПа]
1	0.00	1.50	63.0	63.0	0.0	0.0
	1.50	2.00	0.0	0.0	32.5	36.0

Коэффициент при определении τ_{fh} = 0.900

Суммарная сила пучения $F_{\text{fh}}=113.4$ кН Суммарная удерживающая сила $F_{\text{rf}}=20.5$ кН

Условие устойчивости

$$1.1 * (F_{fh} - F) / F_{rf} = -4.745 <= 1$$

Проверка прочности материала сваи

Комбинация нагрузок

N [KH]	Нагрузка(Коэффициент)
220.0	1 (1.10)

Сжимающая сила

$$N_0 / N_{0u} = 225.0 / 1355 = 0.166 <= 1$$

Проверка допустимости осадки сваи

Комбинация нагрузок

N [ĸH]	Нагрузка (Коэффи	ициент)
200.0	1	(1.00)

Расчетный диаметр сваи d

Модули сдвига и коэфф. Пуассона

G ₁	ν_1	G ₂	v_2
[МПа]	[-]	[МПа]	[-]
7.69	0.30	7.69	0.30

Расчетная нагрузка

$$N = 204.5$$
 KH

33.9

СМ

Параметр

$$\kappa = G_1 1/G_2 d = 6.67$$

Осадка сваи (7.38)

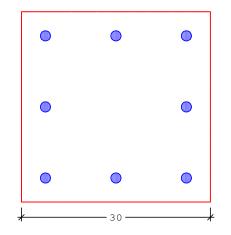
$$s = \zeta'N/G_2d = 0.57$$
 cm $\zeta' = 0.073$ -

Условие допустимости

$$s / s_u = 0.57 / 5.0 = 0.114 <= 1$$

Работоспособность сваи обеспечена

 Позиция
 t512
 Страница
 457


 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/512
 Версия
 2025.000

Расчет выполнен модулем 512 программы СТАТИКА 2025 © 000 Техсофт

<u>Поз. t513</u> <u>Свая опоры ЛЭП</u>

	Опора ЛЭП			анкер	ная
Размеры сваи	Ширина сечения	d	=	30	СМ
	Длина	1	=	6.00	М
Арматура	Число стержней Диаметр стержней Защитный слой бетона	n _s d _s as	= = =	8 16 30	– MM MM

Стержни: 8 ϕ 16 Защитный слой: as = 30 мм

Свая погружается молотом

Принимается шарнирное сопряжение сваи с ростверком

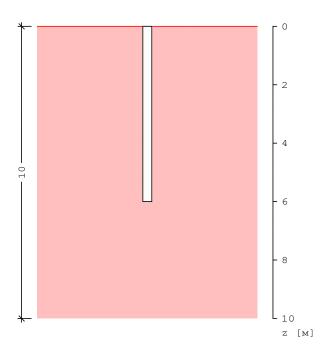
Грунт	Слой	h [м]	Вид грунт	a		
	1	10.00	Глина пој	іутвердая	[
Удельный вес	Слой	M	е	Sr	γs	γ
грунта		[%]	[-]	[-]	[кН/м3]	[кН/м3]
	1	1 - 0	0 ((0 [0	260	100

 1
 15.0
 0.66

 Консистенция глинистого грунта
 Слой Wp

 [%]

Слой	₩ _p [%]	W _L [%]	I _p [%]	I _L
1	10.0	30.0	20.0	0.25


Коэфф. надежности $\gamma_{g(c)}$ $\gamma_{g(\phi)}$ $\gamma_{g(\gamma)}$ 1.50 $\gamma_{g(\gamma)}$ 1.15

Характеристики грунта

Слой	CII	φ _{II}	γιι	СI	φΙ	γΙ	E	ν
	[кПа]	[град]	[кН/м3]	[кПа]	[град]	[кН/м3]	[MПa]	[-]
1	15.0	25.0	18.0	10.0	21.7	16.4	20.0	0.30

t513 Позиция 458 Страница 28.10.2024 СТАТИКА тест всех модулей Проект Дата Разработчик **СТАТИКА/513** Версия 2025.000 Разраб.

Схема геологического разреза

Нагрузки

$N_{\bar{0}}$	Вид нагрузки	γf	Группа	Знак
1	Постоянная	1.10		

Nº	N	Н1	Н ₂	M ₁	M ₂
	[KH]	[ĸH]	[ĸH]	[кНм]	[кНм]
1	100.0	20.0		20.0	

кН Коэффициент надежности γf 1.10

Расчет

Согласно СП 24.13330.2021, СП 63.13330.2018, СП 20.13330.2016

Бетон

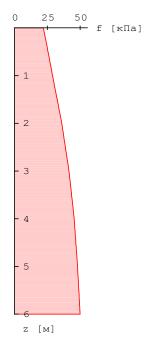
Коэффициент условий работы Арматура Сопротивление бетона Сопротивление арматуры

В 25 (тяжелый) 0.900 γ_b A500 $\gamma_b R_b$ 13.05 МΠа R_s = 435 МΠа R_{sc} = 400МΠа

Проверка прочности грунта основания сваи при сжимающей нагрузке

Комбинация нагрузок

N [ĸH]	Нагрузка (Коэффи	ициент)
110.0	1	(1.10)


Сопротивление грунта под концом сваи

3.60 R МΠа

Коэффициент условий работы 1.00 $\gamma_{R,R} =$

Сопротивление грунта на боковой поверхности сваи f

t513 Позиция 459 Страница 28.10.2024 СТАТИКА тест всех модулей Проект Дата Разраб. Разработчик **СТАТИКА/513** Версия 2025.000

Сопротивление на боковой поверхности

Слой	z ₁	z ₂	γ _{R,f}	$\gamma_{R,f1}$	f ₁	f ₂
	[M]	[M]	[-]	[-]	[кПа]	[кПа]
1	0.00	6.00	1.00	1.00	22.0	50.0

 $\gamma_{\text{R,fl}}$ - дополнительный коэффициент условий работы

Коэффициент условий работы сваи при сжатии

 $\gamma_{\rm C} = 1.00$

Несущая способность сваи

$$F_d = F_{dR} + F_{df} = 324.0 + 283.2 = 607.2$$
 kH

Условие прочности $N_0 \gamma_n \gamma_{c,q} / F_d =$

Проверка устойчивости сваи при морозном пучении

Глубина сезонного промерзания-оттаивания

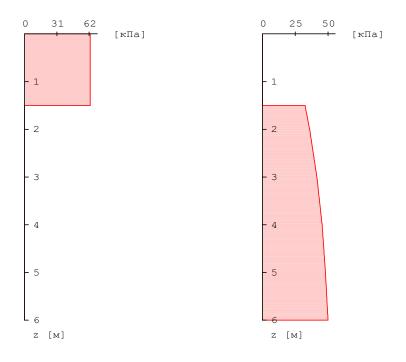
 $d_{th} =$ 1.50

Комбинация нагрузок

N [ĸH]	Нагрузка (Коэффициент)
110.0	1 (1.10)

Расчетная нагрузка

F = 0.9 * N =99.0


Силы пучения $au_{ ext{fh}}$ Удерживающие силы f

кН

 Позиция
 t513
 Страница
 460

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/513
 Версия
 2025.000

Силы пучения и удерживающие силы

Слой	z ₁	z ₂	$\tau_{ \text{fh1}}$	τ_{fh2}	f ₁	f ₂
	[M]	[м]	[кПа]	[кПа]	[кПа]	[кПа]
1	0.00	1.50	63.0	63.0	0.0	0.0
1	1.50	6.00	0.0	0.0	32.5	50.0

Коэффициент при определении τ_{fh} = 0.900

Суммарная сила пучения $F_{\text{fh}} = \tau_{\text{fh}} A_{\text{fh}} = 113.4$ кН Суммарная удерживающая сила $F_{\text{rf}} = 234.1$ кН

Условие устойчивости

$$1.1 * (F_{fh} - F) / F_{rf} = 0.068 <= 1$$

Проверка допустимости давления на грунт боковой поверхностью сваи

 Комбинация нагрузок
 H [кН]
 M [кНм]
 Нагрузка (Коэффициент)

 22.0
 22.0
 1 (1.10)

Коэффициент

Слой	OT Z	до z	K	Cz
	[M]	[M]	[кН/м4]	[кН/м3]
1	0.00	6.00	5000	0 - 30000

Примечание

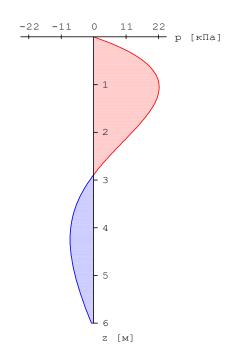
постели

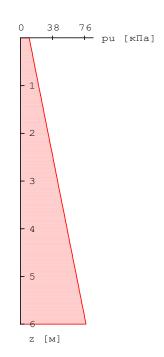
Коэффициент постели c_z = Kz

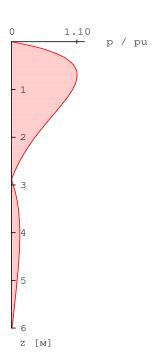
Условная ширина сваи $b_p = 1.5d + 50 = 95.0$ см Модуль упругости E = 30.00 ГПа Жесткость сваи EI = 20.25 МНм2

Коэффициент деформации $\alpha_{\epsilon} = 0.748 \ 1/\text{м}$ при К = 5000 кH/м4 $1\alpha_{\epsilon} = 4.49 -$

.


Давление р


Предельное давление ри


 Позиция
 t513
 Страница
 461

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/513
 Версия
 2025.000

Коэффициенты в условии допустимости давления (Б.8)
$$\eta_1 = 1.0$$
 $\eta_2 = 0.400$ $\xi = 0.6$

 η_2 определяется по формуле (Б.9) приложения Б при n = 2.50 - M_C = 80.8 кНм M_t = 0.0 кНм

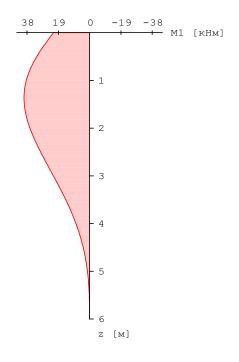
Условие допустимости

р /
$$p_u$$
 = 22.2 / 23.1 = **0.959** <= 1 при z = 0.85 / α_ϵ = 1.14 м

Примечание Проверка проведена для глубины, указанной в нормах

Проверка прочности материала сваи

 Позиция
 t513
 Страница
 462


 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/513
 Версия
 2025.000

Комбинация нагрузок

N [KH]	Нагрузка (Коэффициент)
110.0	1 (1.10)

Изгибающий момент

Сжимающая сила

$$N_0 / N_{0u} = 110.0 / 259.6 = 0.424 <= 1$$

Момент М1

$$M_1 / M_{1u} = 39.8 / 94.0 = 0.424 <= 1$$

при z = 1.34

= 240

lan

кНм

MM

Определение длины анкеровки арматуры в верхнем сечении сваи

Комбинация нагрузок N [кН]

N [kH]	Нагрузка(Коэффициент)
110.0	1 (1.10)

Изгибающие моменты в верхнем сечении сваи $M_1 = 22.0$ кНм $M_2 = 0.0$

Требуемая площадь арматуры $A_s=1.43$ см2

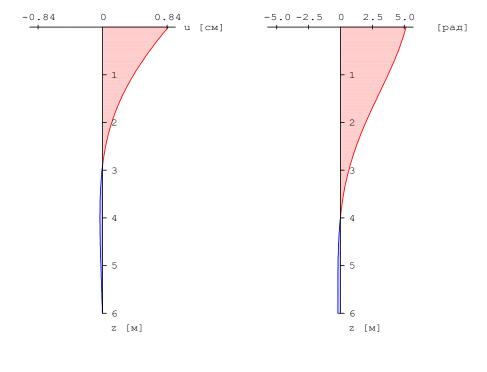
Примечание Значение l_{an} определено для растянутых стержней

Проверка допустимости перемещения и угла поворота головы сваи

Длина анкеровки

 Комбинация нагрузок
 H [кН]
 M [кНм]
 Нагрузка (Коэффициент)

 20.0
 20.0
 1 (1.00)


 Позиция
 t513
 Страница
 463

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/513
 Версия
 2025.000

Перемещение и

Угол поворота ψ х 1000

Перемещение

$$u_0 / u_u = 0.85 / 3.00 = 0.285 <= 1$$

Угол поворота

$$\psi_0$$
 / ψ_u = 0.0051 / 0.0100 = **0.514** <= 1

Проверка трещиностойкости сваи

 Комбинация нагрузок
 Нагрузка (Коэффициент)

 1 (1.00)

Усилия в свае

Z	N	M_1	M_2	$N_{\pi\pi}$	$M_{1 \mu \pi}$	М _{2дл}
[м]	[ĸH]	[кНм]	[кНм]	[ĸH]	[кНм]	[кНм]
1.34	100.0	36.2	0.0	100.0	36.2	0.0

Расчет по образованию трещин

N _{crc}	M _{1,crc}	M ₂ ,crc	Трещины
[ĸH]	[кНм]	[кНм]	
100.0	21.3	0.0	образуются

Непродолж. раскрытие

$$a_{c1} / a_{c1,u} = 0.147 / 0.300 = 0.489 \le 1$$

Продолж. раскрытие

$$a_{c2} / a_{c2,u} = 0.147 / 0.200 = 0.734 <= 1$$

Проверка допустимости осадки сваи

Комбинация нагрузок

N	[ĸH]	Нагрузка	(Коэффі	ициент)
1	00.0		1	(1.00)

Расчетный диаметр сваи

d = 33.9

СМ

кН

Модули сдвига и коэфф. Пуассона

G ₁	v_1	G ₂	v_2
[МПа]	[–]	[МПа]	[-]
7.69	0.30	7.69	0.30

Расчетная нагрузка

$$N = 113.5$$

Параметр

$$\kappa = G_1 1/G_2 d = 20.00$$

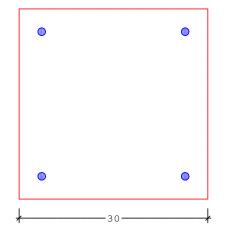
$$s = \beta N/G_1 1 = 0.16$$
 cm
 $\beta = 0.647$ -

 Позиция
 t513
 Страница
 464

 Проект
 CTATИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 CTATИКА/513
 Версия
 2025.000

Условие допустимости


 $s / s_u = 0.16 / 5.0 = 0.032 <= 1$

Работоспособность сваи обеспечена

Расчет выполнен модулем 513 программы СТАТИКА 2025 © 000 Техсофт

Поз. t514 Забивная свая при высоком ростверке

Свая	Вид сваи	висячая	забивная	железо	обетонная	и свая
	Ширина сечения	н сваи	C	d =	= 30	СМ
	Длины частей с	сваи	- - -	O	= 1.00 = 5.00	M M
Арматура	Число стержней Диаметр стержн Защитный слой	ней		~s	= 4 = 12 = 30	– ММ ММ

Стержни: 4 ϕ 12 Защитный слой: аз = 30 мм

Свая погружается молотом

Принимается шарнирное сопряжение сваи с ростверком

Грунт

Слой	Название слоя	h [м]	Вид грунта
1	игэ 921	10.00	Песок крупный средней плотности

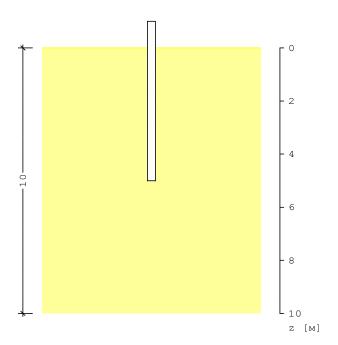
Удельный вес грунта

Слой	W	е	Sr	γs	γ
	[응]	[-]	[-]	[кН/м3]	[кН/м3]
1	16.0	0.68	0.62	26.0	18.0

Коэфф. надежности

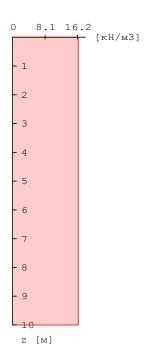
γ _{α (c)}	γα (φ)	γα (γ)
1.50	1.10	1.10

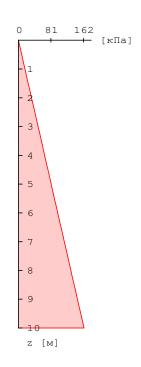
Характеристики грунта


Слой	CII	φ _{ΙΙ}	γιι	CI	$\phi_{\mathtt{I}}$	γι	E	ν
	[кПа]	[град]	[кН/мЗ]	[кПа]	[град]	[кН/м3]	[МПа]	[-]
1	2.0	38.0	18.0	1.3	34.5	16.4	30.0	0.25

 Позиция
 t514
 Страница
 465

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024


 Разраб.
 Разработчик
 СТАТИКА/514
 Версия
 2025.000


Схема геологического разреза

Удельный вес $\gamma_{\, extsf{I}}$

Напряжение от веса σ_{zg}

Напряжение от веса грунта

Слой	z ₁	z ₂	σ _{zg1}	σ _{z g 2}
	[м]	[м]	[κΠα]	[κΠa]
1	0 00	10 00	0 0	163 6

Позиция **t**514 466 Страница СТАТИКА тест всех модулей 28.10.2024 Проект Дата Разработчик **СТАТИКА/514** Версия 2025.000 Разраб. Нагрузки Νº Группа Знак Вид нагрузки γf 1 1.05 Постоянная Νº Ν H_1 H_2 M_1 M_{2} [KH] [KH] [KH] [кНм] [кНм] 300.0 10.0 G = 13.5 кН Вес сваи 1.10 Коэффициент надежности γf Комбинации нагрузок Номера нагрузок и коэффициенты 1 (1.05) Согласно СП 24.13330.2021, СП 63.13330.2018, Расчет СП 20.13330.2016 В 25 (тяжелый) Бетон = 0.900 Коэффициент условий работы γ_b Сопротивление бетона $\gamma_b R_b$ = 13.05 MΠa Для бетона применяется трехлинейная диаграмма Арматура A500 Сопротивление арматуры Rs = 435МΠа R_{sc} = 400МΠа Примечание Координата z_0 отсчитывается от подошвы ростверка Координата z отсчитывается от поверхности грунта Проверка прочности грунта основания сваи при сжимающей нагрузке Комбинация нагрузок N [ĸH] Нагрузка (Коэффициент) 315.0 1 (1.05) Сопротивление грунта под концом сваи 7.00 R МΠа при глубине заложения h 5.00 Коэффициент условий работы $\gamma_{R,R} =$ 1.00 Сопротивление грунта на боковой поверхности сваи f 28 56 + f [кПа] 1 2 3 4 z [M]

Позиция t514 Проект СТАТИКА тест в Разработчик	всех модулей СТАТИКА/514	Страница 467 Дата 28.10.2024 Версия 2025.000
Сопротивление на боковой поверхности	Слой z_1 z_2 $\gamma_{R,f}$ $[M]$ $[M]$ $[-]$ 1 0.00 5.00 1.00	f ₁ f ₂ [кПа] 28.0 56.0 сжатии = 1.00 -
Условие прочности	Несущая способность сваи $F_{d} = F_{dR} + F_{df} = 630.0 + 264.0$ $N_{0}\gamma_{n}\gamma_{c,g}/F_{d} =$	= 894.0 ĸH
Проверка допустимос:	329.9 * 1.00 * 1.40 / 894.0 ги давления на грунт боковой поверхн	
Комбинация нагрузок		ка(Коэффициент) 1 (1.05)
Коэффициент постели	Слой от z до z К [м] [м] [кн/м4] 1 0.00 5.00 6652	с _z [кН/м3] 0 - 33259
Примечание	Коэффициент постели $c_z = Kz$ Условная ширина сваи $b_p = 1.5d + 50$ Модуль упругости E Жесткость сваи EI Коэффициент деформации α_{ϵ} при K $1\alpha_{\epsilon}$ Давление p Предельно -11.4-5.7 0 5.7 11.4 p [кПа] -0.5 -1.0 -1.5	= 30.00 ГПа = 20.25 МНм2 = 0.792 1/м = 6652 кН/м4 = 3.96 - е давление р _u
	$\eta_{1} = 1.0$ $\eta_{2} = 0.400$ ξ η_{2} определяется по формуле (Б.9) пр $\eta_{1} = 37.0$ кнм $\eta_{2} = 37.0$ кнм $\eta_{2} = 37.0$ кнм $\eta_{3} = 3.0$	-3.0 -3.5 -4.0 -4.5 -5.0 z [м] давления (Б.8) = 0.6

Позиция t514
Проект СТАТИКА тест всех модулей СТАТИКА/514

Разраб. Разработчик СТАТИКА/514

Страница 468
Дата 28.10.2024
Версия 2025.000

Условие допустимости

р /
$$p_u$$
 = 11.4 / 25.0 = **0.456** <= 1 при z = 0.85 / α_ϵ = 1.07 м

Проверка прочности материала сваи

Комбинация нагрузок

N [кН]	Нагрузка(Коэффициент)
315.0	1 (1.05)

Изгибающий момент

Сжимающая сила

$$N_0 / N_{0u} = 315.0 / 843.7 = 0.373 <= 1$$

Момент М1

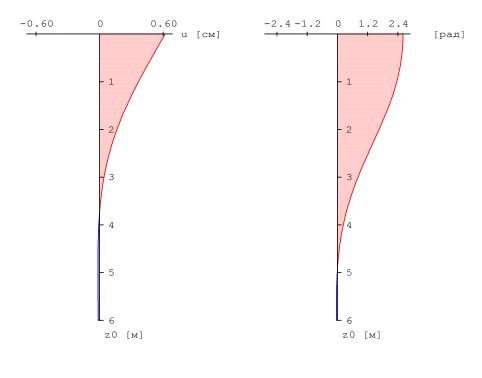
$$M_1 / M_{1u} = 18.4 / 49.3 = 0.373 <= 1$$

 $при z_0 = 2.29$ м

Проверка допустимости перемещения и угла поворота головы сваи

Комбинация нагрузок

Н [кН]	М [кНм]	Нагрузка (Коэффициент)
10.0	0.0	1 (1.00)


 Позиция
 t514
 Страница
 469

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/514
 Версия
 2025.000

Перемещение и

Угол поворота ψ х 1000

Перемещение

$$u_0 / u_u = 0.62 / 3.00 = 0.206 \le 1$$

Угол поворота

$$\psi_0$$
 / ψ_u = 0.0026 / 0.0100 = **0.260** <= 1

Проверка трещиностойкости сваи

 Комбинация нагрузок
 Нагрузка (Коэффициент)

 1 (1.00)

Усилия в свае

z ₀	N	$_{1}$	M ₂
[м]	[ĸH]	[кНм]	[кНм]
2.29	300.0	17.5	0.0

Расчет по образованию трещин

N _{crc}	M ₁ ,crc	$M_{2,crc}$	Трещины
[ĸH]	[кНм]	[кНм]	
300.0	31.6	0.0	не образуются

Проверка допустимости осадки сваи

Комбинация нагрузок

N [ĸH]	Нагрузка (Коэффі	ициент)
300.0	1	(1.00)

Расчетный диаметр сваи

d = 33.9

СМ

Модули сдвига и коэфф. Пуассона

G ₁	v_1	G ₂	v_2
[МПа]	[-]	[МПа]	[-]
12.00	0.25	12.00	0.25

Расчетная нагрузка

N = 313.5 κH

Параметр

 $\kappa = G_1 1/G_2 d = 16.67$

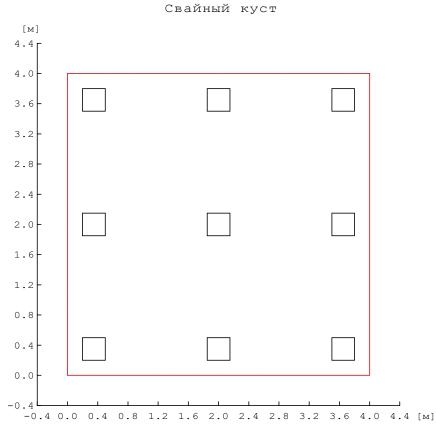
Осадка сваи (7.34)

$$s = \beta N/G_1 1 = 0.33$$
 cm
 $\beta = 0.629$ -

Условие допустимости

$$s / s_u = 0.33 / 3.0 = 0.110 <= 1$$

Работоспособность сваи обеспечена


t514 Позиция 470 Страница СТАТИКА тест всех модулей 28.10.2024 Проект Дата Разраб. Разработчик **СТАТИКА/514** Версия 2025.000

Расчет выполнен модулем 514 программы СТАТИКА 2025 © 000 Техсофт

Поз. t515

Свайный фундамент с плитным ростверком

Фундамент

Размеры ростверка в пла	не l _x	=	4.00	М
	ly	=	4.00	M
Толщина ростверка	h_	=	45	CM
Число свай в ряду по ост	и х п _х	=	3	_
по ост	иy n _y	=	3	_
Расстояние от грани рос	тверка до	осей	крайних	свай
по ост	их a _x	=	35	CM
по ост	иу ау	=	35	CM

Расстояние между осями свай в ряду s_x по оси х

1.65 M по оси у sy 1.65

висячие забивные железобетонные сваи Вид свай

Ширина сечения сваи d 30 CM4.00 Длина сваи M 4 Число стержней n_s Диаметр стержней 12 ds MM

aз

30

MM

Арматура в свае

Размещение свай

Защитный слой бетона

t515 Позиция СТАТИКА тест всех модулей Проект

Разраб. Разработчик **СТАТИКА/515**

Страница 28.10.2024 Дата

Версия 2025.000

471

Стержни: 4 **Ø**12 Защитный слой: аз = 30 мм

Свая погружается молотом

- 30 -

Принимается шарнирное сопряжение сваи с ростверком

Глубина заложения ростверка от поверхности рельефа

от уровня планировки

 d_n 3.00 М d_0 3.00 М

Грунт

Слой	h [м]	Вид грунта
1	10.00	Глина полутвердая

Удельный вес грунта выше уровня подошвы ростверка = 20.0 kH/m3нормативное значение γ_{0n} расчетное значение 18.0 кН/м3 γ 0

Удельный вес грунта

Слой	W	е	Sr	γs	γ
	[%]	[-]	[-]	[кН/м3]	[кН/м3]
1	15.0	0.66	0.59	26.0	18.0

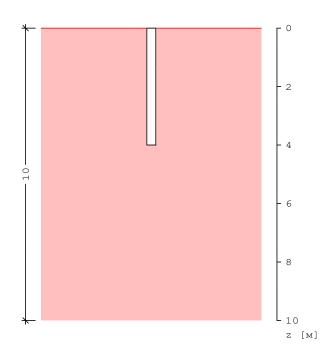
Консистенция глинистого грунта

Слой	W _p [%]	₩ _L [%]	I _P [%]	I ^T
1	10.0	30.0	20.0	0.25

Коэфф. надежности

γα (c)	γα (ω)	γα (γ)
1.50	1.15	1.10

Характеристики грунта


Слої	йс _{II}	φ _{II}	γιι	СI	$\phi_{\mathtt{I}}$	γΙ	E	Ee	ν
	[кПа]	[°]	[кН/м3]	[кПа]	[°]	[кН/м3]	[M∏a]	[M∏a]	[-]
1	15.0	25.0	18.0	10.0	21.7	16.4	20.0	100.0	0.30

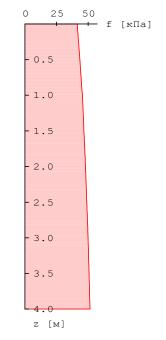
 Позиция
 t515
 Страница
 472

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/515
 Версия
 2025.000

Схема геологического разреза

Нагрузки		ц нагрузки стоянная	γ 1.3		Знак
Nº x y [M] [M 1 2.00 2.00		Н _х [кН]	Н _У [кН]	М _ж [кНм]	М _у [кНм]
Нагрузки на уровне подошвы ростверка	Nº N [KH 1 3000.		Н _У [кН]	М _ж [кНм]	М _У [кНм]
	Вес роствер:		G _p γ _f	= 180.0 = 1.10	кН -
	Вес сваи Коэффициент	надежности	G _C γf	= 9.0 = 1.10	кН -
Расчет	Согласно СП СП 20.13330	24.13330.2021, .2016	СП 63.13	3330.2018,	
Материал ростверка	Бетон Коэффициент	условий работы	B 25 γ _b	(тяжелый) = 0.90	0 –
Материал сваи	Бетон Коэффициент Арматура Сопротивлен Сопротивлен		B 20 γ _b A500 γ _b R _b R _s R _{sc}	(тяжелый) = 0.90 = 10.35 = 435 = 400	0 - МПа МПа МПа
Проверка прочности	грунта осно	вания сваи при	сжимающей	й нагрузке	
Комбинация нагрузок		Номера	нагрузо	к и коэффи 1	циенты (1.10)
Нагрузка на куст свай	N [KH] 3498.0	М Ня]	21		М _У [кНм]



Нагрузка на сваю сжимающая N = 388.7 кН

Сопротивление грунта под концом сваи

Коэффициент условий работы $\gamma_{R,R} = 1.00$ -

Сопротивление грунта на боковой поверхности сваи f

Сопротивление на боковой поверхности

Слой	z ₁	z ₂	γ _{R,f}	f ₁	f ₂
	[M]	[M]	[-]	[кПа]	[кПа]
1	0.00	4.00	1.00	41.5	51.5

Площадь опирания на грунт A = 900.0 см2 Периметр сечения сваи u = 120.0 см

Коэффициент условий работы сваи при сжатии

 $\gamma_{\rm C} = 1.00$

Несущая способность сваи

$$F_d = F_{dR} + F_{df} = 342.0 + 228.0 = 570.0$$

Условие прочности

$$N_0 \gamma_n \gamma_{c,g} / F_d =$$

Проверка прочности материала сваи

Комбинация нагрузок

номера	нагрузок	И	коэффициенты	
			1 (1.10)	

Нагрузка на куст свай

N	H _x	H_{V}	M_{x}	M_{V}
[KH]	[ĸH]	[ĸĤ]	[кНм]	[кНм]
3498.0				

Нагрузки на сваи

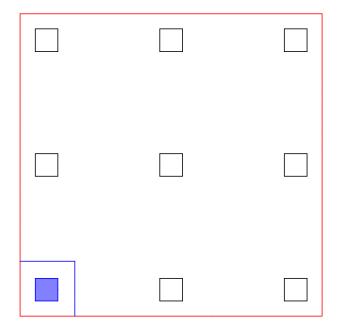
$$N_{\text{max}} = 388.7 \quad \text{kH}$$

$$N_{min} = 388.7$$

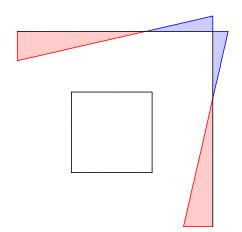
кН

кН

Сжимающая сила


$$N_0 / N_{0u} = 398.6 / 11$$

Проверка прочности ростверка при продавливании сваей


 Позиция
 t515
 Страница
 474

 Проект
 CTATИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Pазработчик
 CTATИКА/515
 Версия
 2025.000

Распределение напряжения τ в расчетном сечении

 $au_{\text{min}} = -1.315$ МПа $au_{\text{max}} = 2.506$ МПа Условие прочности $au_{\text{max}} / \gamma_{\text{b}} R_{\text{bt}} = 0.893 / 0.945 = 0.945 <= 1$ Примечание $au_{\text{max}} / \tau_{\text{b}} / \tau_{\text{b}} R_{\text{bt}} = 0.893 / 0.945 = 0.945 <= 1$

Проверка допустимости осадок свай в кусте

Комбинация нагрузок	Номера	нагрузок и	коэффициенты
			1 (1.00)

Позиция t515			Страниц	•
Проект СТАТИКА тест Разработчик	всех модуле	й СТАТИКА/515	Дата Версия	28.10.2024 2025.000
Нагрузка на куст свай	N [kH] 3180.0	[k	М _ж :Нм]	М _У [кнм]
Модули сдвига и коэфф. Пуассона	G ₁ [МПа]	v ₁ [-]	G ₂ [МПа]	v ₂ [-]

2.00

3.65

Осадка свай

$N_{\bar{0}}$	X	У	N	s
	[м]	[м]	[ĸH]	[см]
1	0.35	0.35	362.3	1.14
2	2.00	0.35	362.3	1.37
3	3.65	0.35	362.3	1.14
4	0.35	2.00	362.3	1.37
5	2.00	2.00	362.3	1.70
6	3.65	2.00	362.3	1.37
7	0.35	3.65	362.3	1.14

3.65

3.65

Условие допустимости

$$s / s_u = 1.70 / 8.0 = 0.212 <= 1$$

7.69

362.3

362.3

1.37

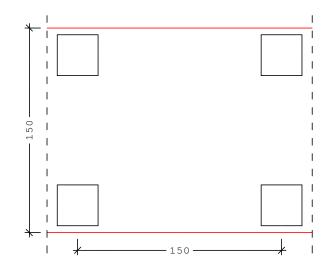
Работоспособность фундамента обеспечена

0.30

Расчет выполнен модулем 515 программы СТАТИКА 2025 © 000 Техсофт

8

9

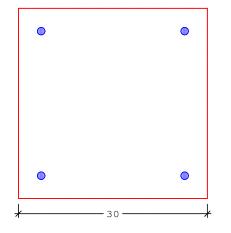

7.69

Поз. t516

Свайный фундамент с ленточным ростверком

Фундамент

Свайная лента


Ширина ростверка Толщина ростверка	b h		150 50	CM CM
Число рядов свай Рядовое размещение свай	n	=	2	-
Шаг свай в ряду	S	=	150	СМ
Расстояние от грани ростверка	до ос	сей	свай	

a = 20.0

СМ

ſ	Позиция	t516		Страниц	a 476
	Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
	Разраб.	Разработчик	СТАТИКА/516	Версия	2025.000

	Вид свай висячие з	забивные железобетонные с	ваи
	Ширина сечения сваи	d = 30	СМ
	Длина сваи	1 = 6.00	М
Арматура в свае	Число стержней Диаметр стержней Защитный слой бетона	$n_s = 4$ $d_s = 12$ $a_s = 30$	– MM MM

Стержни: 4 ϕ 12 Защитный слой: as = 30 мм

Свая погружается молотом

Принимается шарнирное сопряжение сваи с ростверком

Глубина заложения ростверка от поверхности рельефа от уровня планировки

 $d_n = 3.00$ M $d_0 = 3.00$ M

Грунт

Слой h [м] Вид грунта 1 10.00 Глина полутвердая

Удельный вес грунта выше уровня подошвы ростверка нормативное значение $\gamma_{0n} = 20.0 \, \text{ kH/m3}$ расчетное значение $\gamma_{0} = 18.0 \, \text{ kH/m3}$

Удельный вес грунта

Слой	W	е	Sr	γs	γ
	[응]	[-]	[-]	[кН/м3]	[кН/м3]
1	15.0	0.66	0.59	26.0	18.0

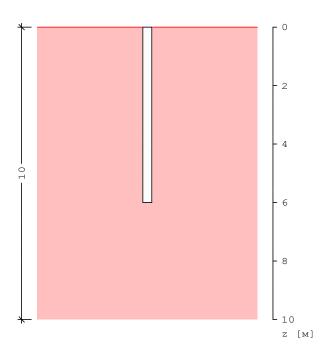
Консистенция глинистого грунта

Слой	m _p	$W_{ m L}$	Ip	I _L
	[응]	[응]	[응]	[-]
1	10.0	30.0	20.0	0.25

Коэфф. надежности

h	Y	~
/ g (c)	/ σ (φ)	/ q (γ)
1.50	1.15	1.10

Характеристики грунта


Слой	CII	ϕ_{II}	γιι	CI	$\phi_{\mathtt{I}}$	γΙ	E
	[кПа]	[град]	[кН/м3]	[кПа]	[град]	[кН/м3]	[МПа]
1	15.0	25.0	18.0	10.0	21.7	16.4	20.0

 Позиция
 t516
 Страница
 477

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

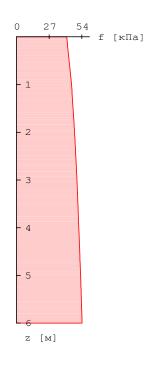
 Разраб.
 Разработчик
 СТАТИКА/516
 Версия
 2025.000

Схема геологического разреза

Нагрузки	№ Вид нагрузки 1 Постоянная	γ _f	Группа З	нак
	1 Постоянная	1.10		
Распределенные	Nº N	Н	M	
силы и момент	[кH/м]	[кН/м]	[кНм	- 1
0310121 31 14014-0111	1 500.0	25.0		5.0
	Погонный вес ростверка	$G_p =$	18.8 K	Н/м
	Коэффициент надежности	$\gamma_f =$	1.10	_
	Вес сваи	G _C =	13.5	кН
	Коэффициент надежности	$\gamma_f =$		_
Pacчeт	Согласно СП 24.13330.2021,	СП 63.1333	0.2018,	
	СП 20.13330.2016			
Материал ростверка	Бетон	в 25 (т	яжелый)	
	Коэффициент условий работы	γ _b =		_
	Арматура	A500		
	Сопротивление бетона	$\gamma_b R_b =$	13.05	МΠа
	Сопротивление арматуры	5		МΠа
		$R_{sc} =$	400	МПа
Материал сваи	Бетон	в 20 (т	яжелый)	
_	Коэффициент условий работы	γ _b =	0.900	-
	Арматура	A500		
	Сопротивление бетона	$\gamma_b R_b =$	10.35	МПа
	Сопротивление арматуры	3		МΠа
		$R_{sc} =$: 400	МПа
Проверка прочности	грунта основания сваи при	сжимающей н	агрузке	
T0				
Комбинация нагрузок	N H M [кН/м] [кН/м] [кНм/м]		. (Коэффицие:	HT)
	550.0 27.5 27.5		1 (1.	10)
Нагрузка на сваю	наибольшая сжимающая	N =	484.2	кН

 Позиция
 t516
 Страница
 478

 Проект
 CTATИКА тест всех модулей
 дата
 28.10.2024


 Разраб.
 Разработчик
 CTATИКА/516
 Версия
 2025.000

Сопротивление грунта под концом сваи

 $R = 4.10 \ \text{MПа}$ при глубине заложения $h = 9.00 \ \text{м}$

Коэффициент условий работы $\gamma_{R,R} = 1.00$ -

Сопротивление грунта на боковой поверхности сваи f

Сопротивление на боковой поверхности

Слой	z ₁	z ₂	γ _{R,f}	f ₁	f ₂
	[м]	[м]	[-]	[кПа]	[кПа]
1	0.00	6.00	1.00	41.5	54.2

Площадь опирания на грунт A = 900.0 см2 Периметр сечения сваи u = 120.0 см

Коэффициент условий работы сваи при сжатии

 $\gamma_{\rm C} = 1.00$

Несущая способность сваи

$$F_d = F_{dR} + F_{df} = 369.0 + 355.0 = 724.0$$
 kH

Условие прочности $N_0 \gamma_n \gamma_{c,g} / F_d =$

Проверка допустимости давления на грунт боковой поверхностью сваи

 Комбинация нагрузок
 H [кН/м]
 Нагрузка (Коэффициент)

 27.5
 1 (1.10)

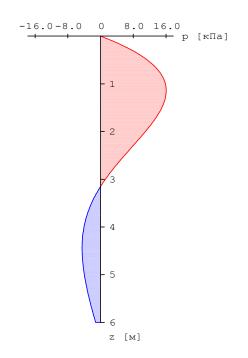
Hагрузка на сваю H=20.6 кН

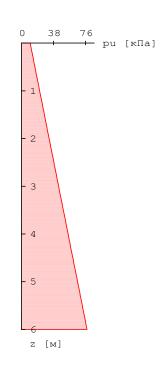
Коэффициент постели

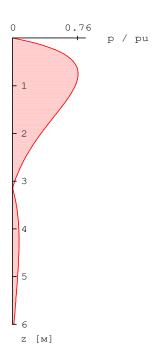
Слой	OT Z	до z	K	C _Z
	[M]	[м]	[кН/м4]	[кН/м3]
1	0.00	6.00	5000	0 - 30000

Примечание Коэффициент постели c_z = Kz

Условная ширина сваи $b_p = 1.5d + 50 = 95.0$ см Модуль упругости E = 27.50 ГПа Жесткость сваи EI = 18.56 МНм2


Позиция	t516		Страница	a 479
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/516	Версия	2025.000


Коэффициент деформации


 $lpha_{\epsilon}$ = 0.761 1/м при К = 5000 кН/м4 1 $lpha_{\epsilon}$ = 4.57 -

Давление р

Предельное давление ри

Коэффициенты в условии допустимости давления (Б.8)
$$\eta_1 \ = \ 1.0 \ \ \eta_2 \ = \ 0.400 \ \xi \ = \ 0.6$$

 η_2 определяется по формуле (Б.9) приложения Б при n = 2.50 - M_C = 54.2 кНм Mt = 0.0 кНм

Условие допустимости

р /
$$p_u$$
 = 16.0 / 22.9 = **0.700** <= 1 при z = 0.85 / α_ϵ = 1.12 м

Позиция t516 СТАТИКА тест всех модулей Проект

Разработчик СТАТИКА/516

Страница Дата

28.10.2024 Версия 2025.000

480

Примечание

Проверка проведена для глубины, указанной в нормах

Проверка прочности материала сваи

Комбинация нагрузок

N	Н	M	Нагрузка(Коэффициент)
[кН/м]	[кН/м]	[кНм/м]	
550.0	27.5	27.5	1 (1.10)

Нагрузка на сваи $N_{\text{max}} = 484.2$ кН

$$N_{\text{max}} = 484.2$$

$$N_{min} = 371.7$$
 кН
Н = 20.6 кН

Изгибающий момент

Сжимающая сила

$$N_0 / N_{0u} = 484.2 / 786.4 = 0.616 <= 1$$

Изгибающий момент

$$M / M_u = 20.8 / 33.7 = 0.616 <= 1$$
 $\pi p \mu z = 1.73 M$

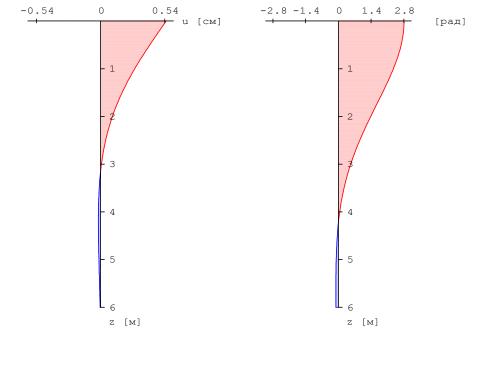
Проверка допустимости перемещения и угла поворота головы сваи

Комбинация нагрузок

Н	[кН/м]	Нагрузка (Коэффициент)
	25 0	1 (1 00)

Нагрузка на сваю

$$H = 18.8$$


кН

1.73

t516 Позиция 481 Страница 28.10.2024 СТАТИКА тест всех модулей Проект Дата Разраб. Разработчик **СТАТИКА/516** Версия 2025.000

Перемещение и

Угол поворота ψ х 1000

Перемещение

$$u_0 / u_u = 0.55 / 3.00 = 0.184 <= 1$$

Угол поворота

$$\psi_0$$
 / ψ_u = 0.0028 / 0.0050 = **0.561** <= 1

Проверка трещиностойкости сваи

Комбинация на	грузок
---------------	--------

N	H	M	Нагрузка(Коэффициент)
[кН/м]	[кН/м]	[кНм/м]	
500.0	25.0	25.0	1 (1.00)

Нагрузка на сваи

$$N_{\text{max}} = 440.2 \quad \text{kH}$$

$$N_{min} = 337.9$$

H = 18.8

кН

кН

Усилия в свае

z [M]	N [ĸH]	М [кНм]
1.73	337.9	18.9

Расчет по образованию трещин

N _{crc}	M _{crc}		Трещины
[ĸH]	[кНм]		
337.9	31.6	не	образуются

Проверка допустимости осадки свайной ленты

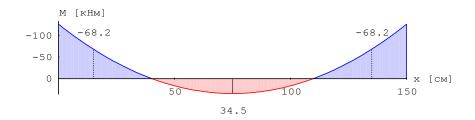
Комбинация нагрузок	N [кН/м] 500.0	Нагруз	ка	(Коэффиці	иент)
	300.0				1.007
	Погонный вес фундамента	G_Φ	=	36.8	кН/м
	Ширина условного фундамента	b	=	2.00	М
	Среднее давление	р	=	268.4	кПа
	Глубина сжимаемой толщи	Н _С	=	2.89	М
	Напряжение при z = H_C σ_{zp}	σ_{zp} / σ_{zg}	=	110.0	кПа -
	Осадка условного фундамента	S	=	2.09	CM
Условие допустимости	$s / s_u = 2.09$	/ 8.0	=	0.261	<= 1

 Позиция
 t516
 Страница
 482

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/516
 Версия
 2025.000

Расчет ростверка как многопролетной балки с учетом ширины опор


Модуль упругости E = 30.00 ГПа Жесткость ростверка EI = 468.75 МНм2

Комбинация нагрузок

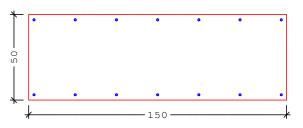
Ν [кΗ/м]	Нагрузка(Коэффициент)
550.0	1 (1.10)

Изгибающий момент

q [кН/м]	М _О [кНм]	Мп	[кНм]
570.6	-68.2		34.5

Требуемая площадь арматуры

верхней нижней


$$A_{SB} = 3.39 \text{ cm2}$$

 $A_{SH} = 1.70 \text{ cm2}$

Подобранная арматура

Арматура	n _s	ds	a _s	As
		[MM]	[MM]	[см2]
верхняя	7	12	25	7.92
нижняя	7	12	25	7.92

Процент содержания арматуры верхней нижней

 $\mu_{\text{SB}} = 0.11$ $\mu_{\text{SH}} = 0.11$

Стержни:

вверху внизу

Защитный слой:

7 **Ø**12

7 **Ø**12

as = 25 MM

Проверка прочности ростверка

$$M_{\circ}$$
 / M_{u-} = 68.2 / 157.9 = **0.432** <= 1

$$M_n / M_{u+} = 34.5 / 157.9 = 0.218 <= 1$$

Проверка трещиностойкости ростверка

 Комбинация нагрузок
 N [кН/м]
 Нагрузка (Коэффициент)

 500.0
 1 (1.00)

Изгибаюший момент

q [кН/м]	М _О [кНм]	М _п [кНм]
518.8	-62.0	31.3

Расчет по образованию трещин

М	M _{crc}	M/M _{crc}	Трещины
[кНм]	[кНм]		
-62.0	-169.4	0.366	не образуются
31.3	169.4	0.185	не образуются

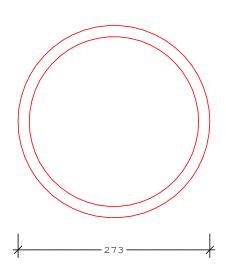
Работоспособность фундамента обеспечена

 Позиция
 t516
 Страница
 483

 Проект
 CTATИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 CTATИКА/516
 Версия
 2025.000

Расчет выполнен модулем 516 программы СТАТИКА 2025 © 000 Техсофт


Поз. t517 Трубобетонная свая

Свая Вид сваи висячая забивная трубобетонная свая

Сортамент труба горячекатаная - ГОСТ 8732-78*

Диаметр трубы d=273 мм Tолщина трубы t=16.0 мм

Длины частей сваи $1_0 = 2.00$ м 1 = 4.50 м

Фундамент с однорядным расположением свай

Грунт

Слой	Название слоя	h [м]	Вид грунта
1	игэ 922	10.00	Песок средней крупности плотный

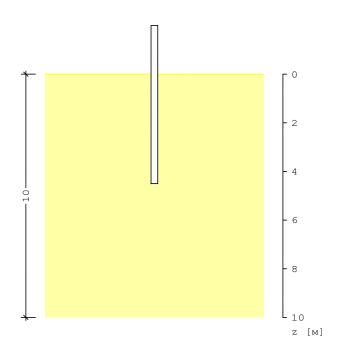
Удельный вес грунта

Слой	W	е	Sr	γs	γ
	[%]	[-]	[-]	[кН/м3]	[кН/м3]
1	10.0	0.51	0.51	26.0	19.0

Коэфф. надежности

Y a (c)	γα (α)	γα (γ)
1.50	1.15	1.10

Характеристики грунта


Слой	c _{II}	ϕ_{II}	γιι	CI	$\phi_{\mathtt{I}}$	γΙ	E	ν
	[кПа]	[град]	[кН/м3]	[кПа]	[град]	[кН/м3]	[M∏a]	[-]
1	2.0	39.0	19.0	1.3	33.9	17.3	45.0	0.25

 Позиция
 t517
 Страница
 484

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/517
 Версия
 2025.000

Схема геологического разреза

$N_{\tilde{0}}$	Вид нагрузки	γf	Группа	Знак
1	Постоянная	1.05		

Nº	N	Н	M
	[ĸH]	[ĸH]	[кНм]
1	100.0	10.0	10.0

Вес сваи Коэффициент надежности G = 14.0 κH $\gamma_f = 1.10$ -

Расчет

Согласно СП 24.13330.2021, СП 63.13330.2018, СП 20.13330.2016, СП 266.1325800.2016

Бетон **В 25 (тяжелый)**Коэффициент усповий работы у, = 0.90

Коэффициент условий работы γ_b = 0.900 - Сопротивление бетона $\gamma_b R_b$ = 13.05 МПа

Для бетона применяется трехлинейная диаграмма

Сталь С 255

Сопротивление стали $R_{y}=240$ МПа Коэффициент условий работы $\gamma_{c}=1.000$ - Предельная деформация стали $\epsilon_{\text{lim}}=1.17$ %.

Примечание

Координата z_0 отсчитывается от подошвы ростверка Координата z отсчитывается от поверхности грунта

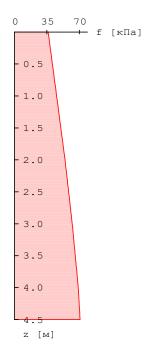
Проверка прочности грунта основания сваи при сжимающей нагрузке

Комбинация нагрузок

N [ĸH]	Нагрузка (Коэффи	ициент)
105.0	1	(1.05)

Сопротивление грунта под концом сваи

 $R = 5.28 \quad MПа$ при глубине заложения $h = 4.50 \quad M$


Коэффициент условий работы $\gamma_{R,R} = 1.00$

 Позиция
 t517
 Страница
 485

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/517
 Версия
 2025.000

Сопротивление грунта на боковой поверхности сваи f

Сопротивление на боковой поверхности

Слой	z ₁	z ₂	γ _{R,f}	f ₁	f ₂
	[M]	[M]	[-]	[кПа]	[кПа]
1	0.00	4.50	0.52	36.4	70.9

Коэффициент условий работы сваи при сжатии

 $\gamma_{\rm C} = 1.00$

Несущая способность сваи

$$F_d = F_{dR} + F_{df} = 309.1 + 111.5 = 420.6$$
 kH

Условие прочности $N_0 \gamma_n \gamma_{c,q} / F_d =$

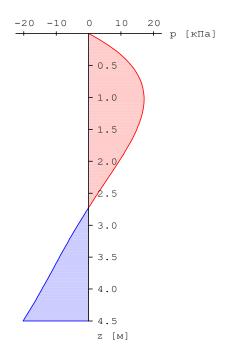
Проверка допустимости давления на грунт боковой поверхностью сваи

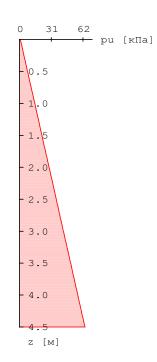
 Комбинация нагрузок
 Н [кН]
 М [кНм]
 Нагрузка (Коэффициент)

 10.5
 10.5
 1 (1.05)

Коэффициент постели

Слой	OT Z	до z	K	Cz	
	[M]	[M]	[кН/м4]	[кН/м3]	
1	0.00	4.50	6000	0 - 27000	


Примечание Коэффициент постели c_z = Kz


Условная ширина сваи $b_p = 1.5d + 50 = 91.0$ см Жесткость сваи EI = 27.02 МНм2

Коэффициент деформации $\alpha_{\epsilon}=0.726~1/\mathrm{M}$ при К = 6000 кH/M4

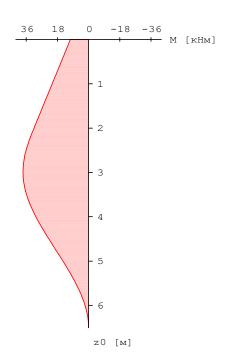
при К = 6000 кH/м4 $1\alpha_{\epsilon}$ = 3.27 -

Давление р Предельное давление p_{u}

Коэффициенты в условии допустимости давления (Б.8) $\eta_1 = 1.0$ $\eta_2 = 0.250$ $\xi = 0.6$

 η_2 определяется по формуле (Б.9) приложения Б при n = 4.00 - M = 60.4 кнм

Условие допустимости


р /
$$p_u$$
 = 16.9 / 17.3 = **0.974** <= 1 при z = 0.85 / α_ϵ = 1.17 м

Проверка прочности материала сваи

Комбинация нагрузок

N [KH]	Нагрузка (Коэффи	циент)
105.0	1	(1.05)

Изгибающий момент

 Позиция
 t517
 Страница
 487

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

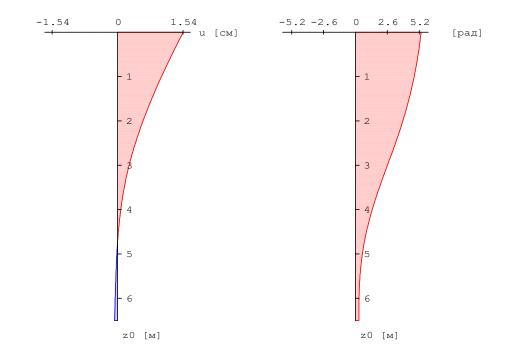
 Разраб.
 Разработчик
 СТАТИКА/517
 Версия
 2025.000

Деформации и напряжения в предельном состоянии по несущей способности

Деформации	Максимальная	деформация	Минимальная	деформация
бетона	ε [%.]	σ [ΜΠα]	ε [%.]	σ [ΜΠα]
	0.81	0.00	-1.04	-10.17

Деформации	Максимальная	деформация	Минимальная	деформация
стали	ε [%.]	σ [ΜΠα]	ε [%.]	σ [MΠa]
	0.94	192.66	-1.17	-240.00

Сжимающая сила N_0 / $N_{0\,u}$ = 105.0 / 498.0 = **0.211** <= 1 Изгибающий момент M / M_u = 37.8 / 179.3 = **0.211** <= 1 при z_0 = 2.99 м


Проверка допустимости перемещения и угла поворота головы сваи

 Комбинация нагрузок
 Н [кН]
 М [кНм]
 Нагрузка (Коэффициент)

 10.0
 10.0
 1 (1.00)

Перемещение и

Угол поворота ψ х 1000

Перемещение u_0 / u_u = 1.54 / 3.00 = 0.515 <= 1 Угол поворота ψ_0 / ψ_u = 0.0053 / 0.0100 = 0.535 <= 1

Проверка допустимости осадки сваи

Комбинация нагрузок N [кН] Нагрузка (Коэффициент) 100.0 1 (1.00)

Модули сдвига и коэфф. Пуассона

G ₁	v_1	G ₂	v_2
[МПа]	[–]	[МПа]	[-]
18.00	0.25	18.00	0.25

Расчетная нагрузка N = 114.0 кН Параметр $\kappa = G_1 1/G_2 d$ = 16.48 -

Позиция t517 Проект СТАТИКА тест всех модулей СТАТИКА/517 Разраб. Разработчик СТАТИКА/517 Страница 488 28.10.2024 Версия 2025.000

Осадка сваи (7.34) $s = \beta N/G_1 l = 0.09$ $\beta = 0.641$

Условие допустимости

 $s / s_{11} = 0.09 / 3.0 = 0.030 <= 1$

Работоспособность сваи обеспечена

Расчет выполнен модулем 517 программы СТАТИКА 2025 © 000 Техсофт

Поз. t518 Стальная свая

 Свая
 Вид сваи
 висячая забивная стальная свая

 Сортамент
 труба горячекатаная - ГОСТ 8732-78*

 Диаметр трубы
 d = 325
 мм

Толщина трубы t = 8.0 мм 10 = 2.00 м 10 = 4.50 м

Свая погружается с открытым нижним концом

Фундамент с однорядным расположением свай

Грунт

Слой	Название слоя	h [м]	Вид грунта
1	игэ 927	10.00	Песок пылеватый плотный

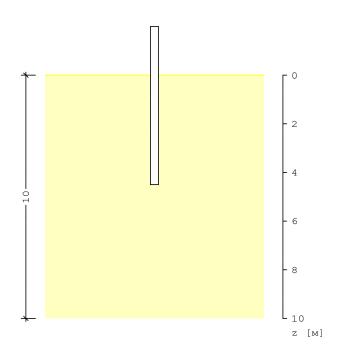
Удельный вес грунта

Слой	W	е	Sr	γs	γ
	[%]	[-]	[-]	[кН/м3]	[кН/м3]
1	16.0	0.51	0.82	26.0	20.0

Коэфф. надежности

γα(c)	γα (φ)	γα (γ)
1.50	1.10	1.10

Характеристики грунта


Слой	CII	φ _{II}	γιι	c _I	$\phi_{\mathtt{I}}$	γΙ	E	ν
	[кПа]	[град]	[кН/м3]	[кПа]	[град]	[кН/м3]	[МПа]	[-]
1	7.0	35.0	20.0	4.7	31.8	18.2	33.0	0.25

 Позиция
 t518
 Страница
 489

 Проект
 CTATИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 CTATИКА/518
 Версия
 2025.000

Схема геологического разреза

Нагрузки	N₀	Вид нагрузки		γ -	-	Группа	Знак
	1	Постоянная		1.0) 5		
	№	N		H			M
		[ĸH]		[ĸH]			[кНм]
	1	100.0		10.0			10.0
	Вес сваи Коэффици	1 1ент надежности		G γ _f	=	4.1	кН -
<u>Расчет</u>		о СП 24.13330.2021, 3330.2016	СП	16.13	3330).2017,	
	Сталь			C 245	5		

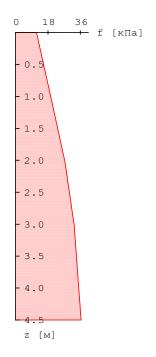
Коэффициент условий работы $\gamma_{\rm C}=1.00$ Расчетное сопротивление $R_{\rm y}=240$ МП

Примечание Координата z_0 отсчитывается от подошвы ростверка Координата z отсчитывается от поверхности грунта

Проверка прочности грунта основания сваи при сжимающей нагрузке

Предполагается формирование грунтовой пробки

Комбинация нагрузок	N [ĸH]	Нагрузка(Коэффициент)
	105.0	1 (1.05)


Сопротивление	грунта под коні	цом сва	и		
		R	=	2.23	МΠа
при гл	убине заложения	h	=	4.50	М
Коэффициент у	словий работы	γ _{R,R}	=	0.50	-

Сопротивление грунта на боковой поверхности сваи f

 Позиция
 t518
 Страница
 490

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/518
 Версия
 2025.000

Сопротивление на боковой поверхности

Слой	z ₁	z ₂	γ _{R,f}	f ₁	f ₂
	[м]	[м]	[-]	[кПа]	[кПа]
1	0.00	4.50	0.52	11.7	36.4

Коэффициент условий работы сваи при сжатии

 $\gamma_{\rm C} = 1.00$

Несущая способность сваи

 $F_d = F_{dR} + F_{df} = 92.5 + 64.0 = 156.6$ KH

Условие прочности $N_0 \gamma_n \gamma_c$, q / F_d =

109.5 * 1.00 * 1.40 / 156.6 = **0.979** <= 1

Проверка допустимости давления на грунт боковой поверхностью сваи

 Комбинация нагрузок
 Н [кН]
 М [кНм]
 Нагрузка (Коэффициент)

 10.5
 10.5
 1 (1.05)

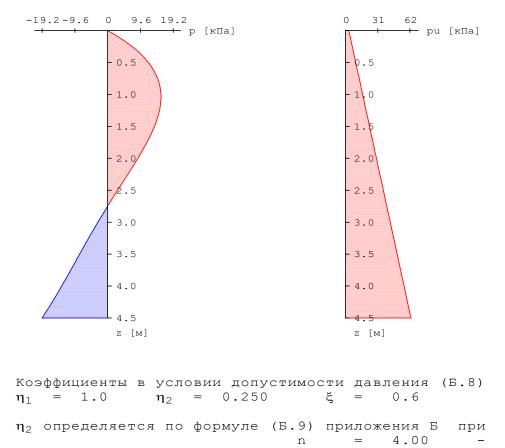
Коэффициент постели

Слой	OT Z	до z	K	C _Z
	[M]	[м]	[кН/м4]	[кН/м3]
1	0 00	4 50	4000	0 - 18000

Примечание Коэффициент постели c_z = Kz

Условная ширина сваи $b_p = 1.5d + 50 = 98.8$ см Жесткость сваи EI = 20.63 МНм2

Коэффициент деформации $\alpha_{\epsilon} = 0.718 \ 1/\text{M}$ при К = 4000 кH/M4 $1\alpha_{\epsilon} = 3.23 \ -$


 $1\alpha_{\varepsilon} = 3.23$

Давление р Предельное давление ри

 Позиция
 t518
 Страница
 491

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/518
 Версия
 2025.000

M_t

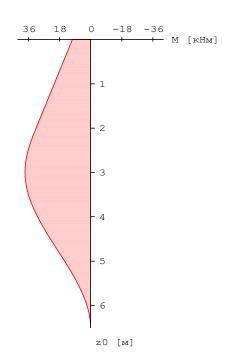
 $p / p_u = 15.4 / 19.0 = 0.812 \le 1$

при z = 0.85 / α_{ϵ} =

0.0

1.18 м

кНм


Проверка прочности и устойчивости сваи

Комбинация нагрузок N [кН] Нагрузка(Коэффициент) 105.0 1 (1.05)

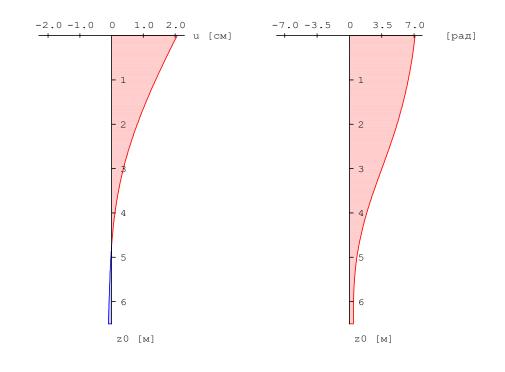
 $M_{\rm C} = 60.7$ кнм

Изгибающий момент

Условие допустимости

Позиция	t518		Страниц	a 492
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/518	Версия	2025.000

M = 37.9при $z_0 = 2.99$ Изгибающий момент кНм 2.99 M σ / R_y γ _C = 74.7 / 240.0 = Условие прочности **0.311** <= 1 Длина стержня l_1 = l_0 + 2 / α_{ϵ} 4.78 9.57 Расчетная длина Условная гибкость 2.913 N / ϕ_e AR $_y\gamma_c$ **0.295** <= 1 Условие устойчивости


Проверка допустимости перемещения и угла поворота головы сваи

Комбинация нагрузок

Н	[ĸH]	M [кНм]	Нагрузка(Коэффициент)	
	10.0		10.0	1 (1.00)	

Перемещение и

Угол поворота ψ х 1000

Перемещение

$$u_0 / u_u = 2.06 / 3.00 = 0.688 <= 1$$

Угол поворота

 ψ_0 / ψ_u = 0.0071 / 0.0100 = **0.709** <= 1

Проверка допустимости осадки сваи

Комбинация нагрузок

N	[K]	Η]	Нагрузка (Коэф	фи	ЦИ	∋нт)
1	00	. 0		1	(1	.00)

Модули сдвига и коэфф. Пуассона

G ₁	ν_1	G ₂	v_2
[МПа]	[-]	[МПа]	[-]
13.20	0 - 2.5	13.20	0.25

Расчетная нагрузка

$$N = 104.1$$
 KH

Параметр

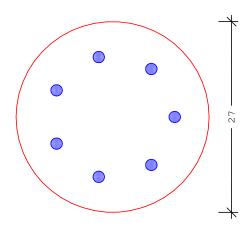
$$\kappa = G_1 1/G_2 d = 13.85$$

Осадка сваи (7.34)

$$s = \beta N/G_1 1 = 0.11$$
 CM
 $\beta = 0.634$

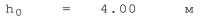
Условие допустимости

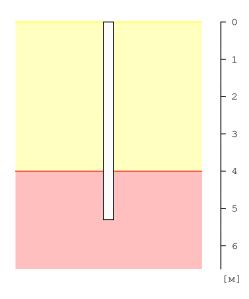
$$s / s_u = 0.11 / 3.0 = 0.037 \le 1$$


Работоспособность сваи обеспечена

Позиция	t518		Страниц	a 493
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/518	Версия	2025.000

Расчет выполнен модулем 518 программы СТАТИКА 2025 © 000 Техсофт


Поз. t519 Свая в полускальном грунте


Свая	Диаметр сваи	d	=	27.0	CM
	Длина сваи	1,	=	5.30	М
	Принимается шарнирное	сопряжение	сваи (с роств	ерком
Арматура	Число стержней Диаметр стержней Защитный слой бетона	n _s d _s a ₃	= = =	7 16 40	– мм мм

Грунт

Глубина залегания скального грунта

Нормативное и расчетное значения предела прочности при сжатии грунта в водонасыщенном состоянии

$$R_{c,n} = 30.0$$
 MПа $R_{c} = R_{c,n} / \gamma_{g} = 21.4$ МПа

Позиция t519 Проект СТАТИКА тест I	всех модулей		Страница 494 Дата 28.10.2024
Разраб. Разработчик	СТАТИКА/519		Версия 2025.000
	Коэффициент надежности	γ_g	= 1.4 -
	Показатель качества скальной	породы RQD	= 50 %
	Коэффициент снижения прочност	и скалі К _s	ьного грунта = 0.32 -
Нагрузки	Вертикальная нагрузка	N	= 700.0 KH
	Горизонтальная нагрузка	Н	= 5.0 KH
	Удельный вес сваи Коэффициент надежности Вес сваи	γ γ _f G	= 25.00 kH/m3 = 1.10 - = 7.6 kH
Расчет	Согласно СП 24.13330.2021, СП	63.13	330.2018
	Бетон Коэффициент условий работы Арматура	B 25 γ _b A500	(тяжелый) = 0.765 -
	Сопротивление бетона Сопротивление арматуры	γ _b R _b R _s R _{s c}	= 11.09 МПа = 435 МПа = 400 МПа
	Модуль упругости бетона Модуль упругости арматуры	E _b E _s	= 30.0 ГПа = 200.0 ГПа
	Для бетона применяется трехли Для арматуры применяется двух.		
Проверка прочности	грунта основания сваи при вда	вливаю	щей нагрузке
	Сопротивление грунта под концо $R = K_{s}R_{c}(1 + 0.6)$ $l_{d} = 0.6$	41 _d /d)	
	Сопротивление грунта на боков $R_{s} = 0.63 (p_{a})$	ой пов R _c) ^{1/2} Pa	ерхности сваи = 0.52 МПа = 100 кПа
	под нижним концом сваи		е сопротивления = 1149 кн
	Несущая способность сваи при на боковой поверхности $F_{ds} = 1$		е сопротивления = 575.3 кн
	Расчетная нагрузка $N_0 = N$	+ γ _f G	= 708.3 KH
	Расчетная несущая способность $F_d = \max(F_{db})$		= 1149 KH
Условие прочности	Noγnγc,	g/ F _d	=
	708.3 * 1.10 * 1.40 /	1149	= 0.950 <= 1
Проверка прочности	материала сваи		
	Принимается, что свая защемле	на на :	глубине h ₀
	Жесткость сечения бетона арматуры		= 7.83 MHM2 = 1.07 MHM2

 Позиция
 t519
 Страница
 495

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/519
 Версия
 2025.000

Расчетный момент

_ 0. 0 _ 0							
Mo	δ _e	φ_1	D	10	N _{cr}	η	$M=\eta M_0$
[кНм]	[-]	[-]	[MHm2]	[M]	[ĸH]	[-]	[кНм]
20.0	0.15	2.00	2.050	2.80	2588.2	1.37	27.4

$$\text{D} = 0.15/[\phi_{\text{l}}(0.3 + \delta_{\text{e}})]\text{EI}_{\text{b}} + 0.7\text{EI}_{\text{s}}, \ l_{0} = \mu h_{0}, \ \eta = 1/(1 - \text{N/N}_{\text{cr}})$$

Условия прочности

$$N / N_u = 700.0 / 736.0 = 0.951 <= 1$$

$$M / M_u = 27.4 / 28.8 = 0.951 \le 1$$

Несущая способность сваи обеспечена

Расчет выполнен модулем 519 программы СТАТИКА 2025 © 000 Техсофт


Поз. t520

Ленточный фундамент

Фундамент

1	b	h	b _f	h _{f1}	h _{f2}
[м]	[CM]	[CM]	[CM]	[CM]	[CM]
10.00	100	5.0			

Сечение

Глубина заложения фундамента от уровня планировки

d d_n 3.00 3.00

M M

Конструктивная схема сооружения является гибкой

Колонны

N ₀	Хk	h _k
	[M]	[см]
1	2.00	40
2	5.00	4 0
3	8.00	4 0

от поверхности рельефа

Грунт

Удельный вес грунта выше уровня подошвы фундамента $\gamma_{\,0} \quad = \quad 18.0 \quad \text{кH/м3}$

Слой Название	h	Вид грунта	γs	γ	M	Ι _L
	[M]		[кН/мЗ]	[кН/м3]	[%]	[-]
1	10.00	Глина	26.0	18.0	3.0	0.25

Характеристики грунта

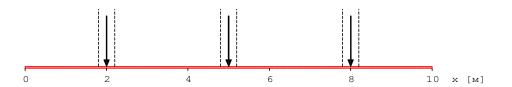
Слой	CII	φ _{II}	E	Еe
	[кПа]	[град]	[MПa]	[МПа]
1	15.0	25.0	20.0	100.0

 Позиция
 t520
 Страница
 496

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/520
 Версия
 2025.000

Схема геологического разреза


Нагрузки

Nº	Вид нагрузки	γf	Группа	Знак
1	Постоянная	1.10		

Силы и моменты

Нагрузка	Колонна	V [кН]	М [кНм]
1	1	1000.0	
	2	1000.0	
	3	1000.0	

Нагрузка 1

Расчет

СП 63.13330.2018,СП 20.13330.2016,СП 22.13330.2016

Расчетная модель

Балка на упругом основании с переменным коэффициентом постели $k\left(x\right)$

При определении k(x) учитывается вся толща грунта

Материалы

Бетон В 25 (тяжелый) Продольная арматура А500 Поперечная арматура А400 Коэффициент условий работы $\gamma_b = 0.90$

Коэффициент условий работы $\gamma_{\rm b}=0.900$ - Для бетона применяется трехлинейная диаграмма Для арматуры применяется двухлинейная диаграмма

Расчетные сопротивления

 $\gamma_b R_b = 13.05$ МПа $\gamma_b R_{bt} = 0.95$ МПа $R_s = 435$ МПа $R_{sc} = 400$ МПа $R_{sw} = 280$ МПа

 Позиция
 t520
 Страница
 497

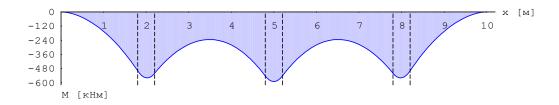
 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/520
 Версия
 2025.000

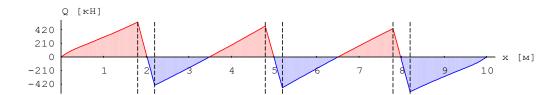
Комбинации нагрузок

К	Номер	нагрузки	(Коэффі	ициент)
1			1	(1.10)

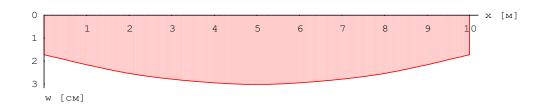
Изгибная жесткость с учетом арматуры

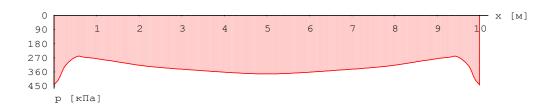

A _{SB}	A _{s H}	EI _C	ЕІприв
[см2]	[см2]	[MHm2]	[МНм2]
4.69	29.99	312.50	344.48

Расчет для комбинации нагрузок К = 1


К 1 Усилия, осадка, давление

Х	М	Q	W	р
[M]	[кНм]	[кН]	[CM]	[кПа]
0.00	0.0	0.0	1.72	442.6
1.80	-499.6	536.7	2.47	309.0
2.20	-519.4	-436.6	2.60	323.4
4.80	-542.5	475.5	3.01	371.9
5.20	-542.5	-475.5	3.01	371.9
7.80	-519.4	436.6	2.60	323.4
8.20	-499.6	-536.7	2.47	309.0
10.00	0.0	0.0	1.72	442.6


Изгибающий момент


Поперечная сила

Осадка

Давление

 Позиция
 t520
 Страница
 498

 Проект
 CTATИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 CTATИКА/520
 Версия
 2025.000

Требуемая продольная арматура

а _в	а _н	A _{s B}	А _{sн}	$\mu_{ t S t B}$	$\mu_{ exttt{SH}}$
[CM]	[CM]	[см2]	[см2]	[%]	[응]
3.10	3.30	4.69	30.05	*0.10	0.64

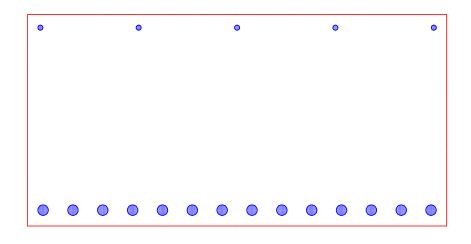
^{*} Минимальная площадь арматуры

По расчету на действие поперечной силы для обеспечения прочности поперечная арматура не требуется.

Конструирование

Данные для подбора продольной арматуры

Место	d _{mіn} [мм]	d _{max} [мм]	n _{max}	а _{min} [мм]
Вверху	12	28	15	25
Внизу	12	28	15	25


Арматура подобрана по ограничению ширины трещин

Размещение стержней

Место	Ряд	n	ds	аз
			[MM]	[MM]
Вверху		5	12	25
Внизу		14	25	25

Подобранная продольная арматура

A _{s B}	A _{s H}	μ _{s B}	μѕн
[см2]	[CM2]	[%]	[%]
5.65	68.72	0.12	1.49

Стержни: вверху 5 ϕ 12 внизу 14 ϕ 25 Защитный слой: аз в = 25 мм аз н = 25 мм

Трещиностойкость

Расчет по образованию и раскрытию трещин

Предельная ширина раскрытия трещин

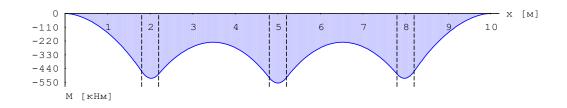
Непродолжительное раскрытие Продолжительное раскрытие $a_{c1,u} = 0.30$ MM $a_{c2,u} = 0.20$ MM

Комбинации нагрузок

К	Номер	нагрузки	(Коэффи	ициент)
1			1	(1.00)

Изгибная жесткость с учетом арматуры

A _{s B}	А _{зн} [см2]	EI _C	ЕΙ _{прив} [МНм2]
5.65	68.72	312.50	375.66


Расчет для комбинации нагрузок К = 1

К 1 Момент, осадка, давление

X	М	W	р
[M]	[кНм]	[CM]	[кПа]
0.00	0.0	1.60	416.3
1.80	-462.6	2.24	280.5
2.20	-483.0	2.36	292.9
4.80	-513.1	2.72	335.3
5.20	-513.1	2.72	335.3
7.80	-483.0	2.36	292.9
8.20	-462.6	2.24	280.5
10.00	0.0	1.60	416.3

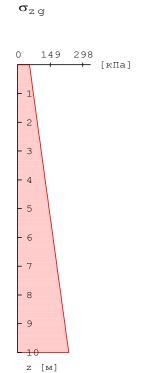
Позиция t520 Страница 499
Проект СТАТИКА тест всех модулей Дата 28.10.2024
Разраб. Разработчик СТАТИКА/520 Версия 2025.000

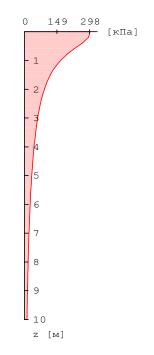
Изгибающий момент

К 1 Ширина раскрытия трещин

х [м]	М [кНм]	М ₁ [кНм]	М _{сгс} [кНм]	а _{стс1} [мм]	a _{crc2} [мм]
1.80	-462.6	-462.6	-166.6	0.165	0.165
2.20	-483.0	-483.0	-166.6	0.176	0.176
4.80	-513.1	-513.1	-166.6	0.192	0.192
5.20	-513.1	-513.1	-166.6	0.192	0.192
7.80	-483.0	-483.0	-166.6	0.176	0.176
8.20	-462.6	-462.6	-166.6	0.165	0.165

Осадка


Расчет осадки основания по формуле (5.16)


Вертикальная нагрузка $V_{\text{max}} = 3000$ кН Среднее давление на грунт р = 300.0 кПа

Расчетное сопротивление грунта основания R = 458.2 кПа Примечание. Значение R увеличено на 20% по 5.6.24

Проверка допустимости давления на грунт р / R = 300.0 / 458.2 = 0.655 <= 1

 σ_{zg} σ_{zp}

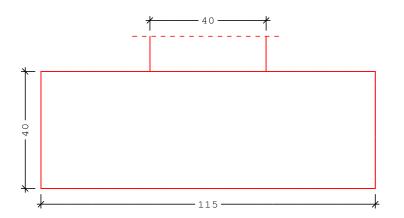
Глубина сжимаемой толщи $H_{C}=3.23$ м Напряжение при $z=H_{C}$ $\sigma_{zp}/\sigma_{zg}=56.1$ кПа $\sigma_{zp}/\sigma_{zg}=0.500$ - Осадка основания $\sigma_{zp}/\sigma_{zg}=0.55$

 Позиция
 t520
 Страница
 500

 Проект
 CTATИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 CTATИКА/520
 Версия
 2025.000

 $s / s_u = 1.55 / 8.00 = 0.193 \le 1$


Расчет выполнен модулем 520 программы СТАТИКА 2025 © 000 Техсофт

Поз. t521

Ленточный фундамент под стену

Фундамент

Толщина стены $b_{\rm C} = 40$ см Ширина сечения b = 115 см Высота сечения h = 40 см

Глубина заложения фундамента

от уровня планировки $d=3.00\,$ м от поверхности рельефа $d_n=3.00\,$ м

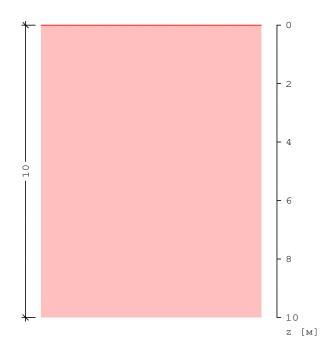
Конструктивная схема сооружения является гибкой

Грунт

Удельный вес грунта выше уровня подошвы фундамента $\gamma_{\,0} \quad = \quad 18.0 \quad \text{кH/м3}$

Слой Название	h	Вид грунта	γs	γ	W	Ι _L
	[M]		[кН/м3]	[кН/м3]	[응]	[-]
1	10.00	Глина	26.0	18.0	3.0	0.25

Характеристики грунта


Слой	CII	ϕ_{II}	E	Еe	ν
	[кПа]	[град]	[МПа]	[МПа]	[-]
1	15.0	25.0	20.0	100.0	0.30

 Позиция
 t521
 Страница
 501

 Проект
 CTATИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 CTATИКА/521
 Версия
 2025.000

Схема геологического разреза

Нагрузки

N^{o}	Вид нагрузки	γf	Группа	Знак
1	Постоянная	1.10		
2	Вес фундамента	1.10		

Nº	N [кH/м]	М [кНм/м]
1	500.0	10.0
2	11.5	

Расчет

СП 63.13330.2018,СП 20.13330.2016,СП 22.13330.2016

Ветон В 25 (тяжелый) Арматура В 500 Коэффициент условий работы γ_b = 0.900

Коэффициент условии расоты γ_b — 0.900 — Для бетона применяется трехлинейная диаграмма Для арматуры применяется двухлинейная диаграмма

Расчетные сопротивления $\gamma_b R_b = 13.05$ МПа $\gamma_b R_{bt} = 0.95$ МПа $R_s = 435$ МПа $R_{sc} = 400$ МПа

Данные для определения расчетного сопротивления грунта основания R по формуле (5.7)

γc1	γ _{c2}	k	M_{γ}	Ma	M _C	k _z
1.25	1.00	1.10	0.780	4.110	6.670	1.00

ſ	b	d_1	d _b	γιι	γ' _{ΙΙ}	ϕ_{II}	CII
	[M]	[M]	[M]	[кН/м3]	[кН/м3]	[град]	[кПа]
ſ	1.15	3.00	0.00	18.0	18.0	25.0	15.0

Учтено, что ϕ_{II} и с $_{\text{II}}$ приняты по таблицам прилож.Б

Значение по формуле (5.7) R = 384.2 кПа

 Позиция
 t521
 Страница
 502

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/521
 Версия
 2025.000

Расчетное сопротивление

R = 461.1

кПа

Проверка допустимости давления на грунт от нормативных нагрузок

Комбинация нагрузок

N	M	Давление	[кПа]	Нагрузка
[кН/м]	[кНм/м]	max	min	(Коэффициент)
511.5	10.0	490.2	399.4	1 (1.00)
				2 (1.00)

Давление на грунт

 $p_{min} / p_{max} = 0.815$

Среднее давление на грунт р = 444.8 кПа

 p_{max} / 1.2R = 490.2 / 553.3 = **0.886** <= 1

p / R = 444.8 / 461.1 = **0.965** <= 1

Подбор арматуры поперечного направления

Комбинация нагрузок

N	M	Давление	[кПа]	Нагрузка
[кН/м]	[кНм/м]	max	min	(Коэффициент)
562.6	11.0	539.2	439.4	1 (1.10)
				2 (1.10)

Вылет консоли фундамента с = 37.5 см с / h = 0.94 - Изгибающий момент M_0 = 37.1 кНм/м Требуемая площадь арматуры A_s = 2.38 см2/м

Данные для подбора арматуры

min d _s	max d _s	min s	max s
[MM]	[MM]	[CM]	[см]
12	28	5	15

Подобранная арматура

ds	S	As	μ	а _з
[MM]	[CM]	[см2/м]	[%]	[MM]
12	15	7.54	0.21	30

Примечание

Учтен минимальный коэффициент армирования

Проверка прочности фундамента при действии поперечных сил

 $Q / Q_b = 196.1 / 860.0 = 0.228 <= 1$

Проверка трещиностойкости консолей фундамента

Комбинация нагрузок

N	M	N_{\perp}	M_1	Нагрузка
[кН/м]	[кНм/м]	[кН/м]	[кНм/м]	(Коэффициент)
511.5	10.0	511.5	10.0	1 (1.00)
				2 (1.00)

Момент образования трещин $M_{\text{crc}} = 73.5 \, \text{кHm/m}$ Изгибающий момент $M_0 = 33.8 \, \text{кHm/m}$

Трещины не образуются

Расчет осадки основания по формуле (5.16)

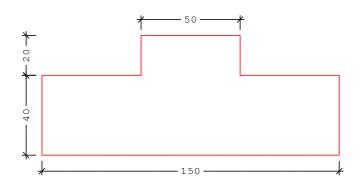
Позиция	t521		Страниц	a 503
Проект	СТАТИКА тест всех модуле	й	Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/521	Версия	2025.000

N = 511.5 kH/MВертикальная нагрузка Глубина сжимаемой толщи ${\rm H}_{\rm C}$ 4.48 M Hапряжение при $z = H_C$ σ_{zp} 67.4 кПа $\sigma_{zp} / \sigma_{zq}$ 0.500 Осадка основания 2.99 s CM $s / s_u = 2.99 / 8.00 =$ **0.373** <= 1

Расчет крена фундамента по формуле (5.24)

Моментная нагрузка M $= 10.0 \, \text{kHm/m}$ Коэффициент в формуле (5.24) D·10³ = 45.5 1/МПа 0.070 -Коэффициент по табл. 5.9 ke Крен фундамента i 0.00193 $i / i_u = 0.00193 / 0.005 = 0.385 \le 1$

Расчет выполнен модулем 521 программы СТАТИКА 2025 © ООО Техсофт


Поз. t522

Ленточный фундамент под колонны

Фундамент

1	b	h	b _f	h _{f1}	h _{f2}
[M]	[CM]	[CM]	[CM]	[CM]	[CM]
10.00	50	60	150	4 0	40

Сечение

Колонны

Nº	х _к	h _k
	[M]	[см]
1	2.00	40
2	5.00	40
3	8.00	4 0

Глубина заложения фундамента d от уровня планировки 3.00 = 3.00 от поверхности рельефа dn

 Позиция
 t522
 Страница
 504

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/522
 Версия
 2025.000

Грунт

Удельный вес грунта выше уровня подошвы фундамента $\gamma_{\,0} \quad = \quad 18.0 \quad \text{кH/м3}$

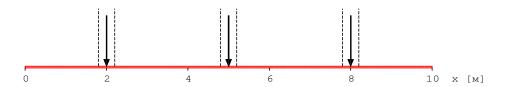
Слой	h	γs	е	γ	С	φ	E
	[M]	[кН/мЗ]	[-]	[кН/м3]	[кПа]	[град]	[МПа]
1	5.00	26.0	0.00	18.0	15.0	25.0	20.0

Воздействия

Nº	Тип воздействия	Описание		
1 Постоянное		Постоянное воздействие		
	постоянное -			

Коэффициент упр. надежностью $K_{FI} = 1.1$

При комбинировании применяется формула (6.10)


Коэффициенты

$N_{\bar{0}}$	γ _{sup}	γinf	Ψ_0	Ψ_1	Ψ_2	Группа	Знак
1	1.35	1.00					

Вертикальные силы и моменты

Nº	Колонна	V	М
		[KH]	[кНм]
1	1	1000.0	
	2	1000.0	
	3	1000.0	

Воздействие 1

Расчет

согласно MSZ EN 1992-1-1, MSZ EN 1997-1

Расчетная модель

Балка на упругом основании с переменным коэффициентом постели $k\left(x\right)$

При определении k(x) учитывается вся толща грунта

Материалы

Бетон

C25/30

Продольная арматура Предел текучести арматуры **\$500** $f_{yk} = 500$

Предел текучести арматуры Предел прочности арматуры

 $f_{tk} = 525$

МПа МПа

Поперечная арматура

Предел текучести арматуры

 $f_{ywk} = 400$

S400

МПа

Выбранные комбинации

I	K	Номер	воздействия	(Коэффи	ициент)
I	1			1	(1.49)

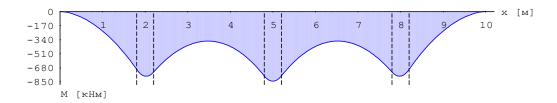
Изгибная жесткость с учетом арматуры

A _{s B}	А _{зн} [см2]	EI _C	EI _{прив} [МНм2]
0.00	41.83	497.48	523.83

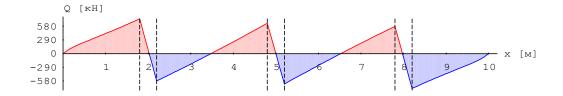
Расчет для комбинации воздействий К = 1

К 1 Усилия, осадка, давление

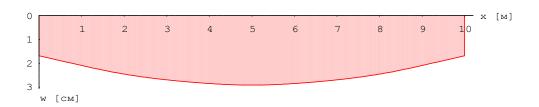
	x M	Q	W	р
[м] [кНм] [KH]	[CM]	[кПа]
0.	00	0.0	1.68	441.1
1.	80 -698.	9 737.7	2.39	275.0
2.	20 -730.	6 -578.1	2.51	287.9
4.	80 -777.	642.8	2.91	331.6
5.	20 -777.	6 -642.8	2.91	331.6
17.	80 -730.	578.1	2.51	287.9


 Позиция
 t522
 Страница
 505

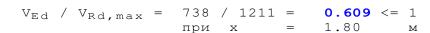
 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024


 Разраб.
 Разработчик
 СТАТИКА/522
 Версия
 2025.000

8.20	-698.9	-737.7	2.39	275.0
10.00	0.0	0.0	1.68	441.1


Изгибающий момент

Поперечная сила



Осадка

Давление

Требуемая продольная арматура

а _в	а _н	A _{SB}	A _{s H}	$ ho_{ t S B}$	$ ho_{ exttt{s} exttt{H}}$
[CM]	[CM]	[cm2]	[CM2]	[응]	[%]
	6.20		41.88		1.56

Требуемая арматура в полке

Свес	pcp	M	$a_{\scriptscriptstyle H}$	As
[CM]	[кПа]	[кНм/м]	[CM]	[см2/м]
50.0	297.2	37.2	4.60	2.35

Требуемая поперечная арматура

х [м]	V _{Ed} [ĸH]	V _{Rd,c} [ĸH]	Z [CM]	cotθ [-]	V _{Rd} ,s [ĸH]	V _{Rd,max} [κH]	А _{sw} /s [см2/м]	ρ _w [%]
1.22	506.6	176.1	44.19	2.50	506.6	685.7	13.18	0.26
2.74	339.7	176.1	43.60	2.50	339.7	676.5	8.96	0.18
4.26	376.3	176.1	43.50	2.50	376.3	675.0	9.95	0.20
5.74	376.3	176.1	43.50	2.50	376.3	675.0	9.95	0.20

Позиция Проект	t522 СТАТИКА т	ест всех	модуле	й			Страница Дата 28.1	506 0.2024
Разраб.	Разработчи	1K		CTA	ГИКА/522		Версия 202	5.000
7.26		176.1	43.60	2.50	339.7	676.5	8.96	0.18
8.78	506.6	176.1	44.19	2.50	506.6	685.7	13.18	0.26

Расчет проведен для сечений не ближе d от колонны (d - рабочая высота сечения)

Расчет свеса полки на поперечную силу

d	Pcp	Q	V _{Rd,c}	Q/V _{Rd,c}
[CM]	[кПа]	[кН/м]	[кН/м]	
35.4	297.2	43.4	259.9	0.167

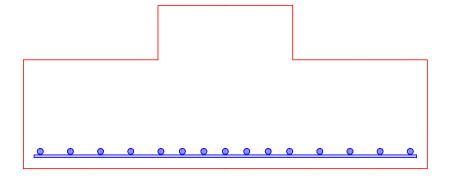
d - расстояние от ребра до расчетного сечения

При расчете свеса $V_{\text{Rd,C}}$ определяется по формуле (6.2a) с учетом указаний 6.2.2(6)

Конструирование

Данные для подбора продольной арматуры

Место	d_{min}	d_{max}	n _{max}	a _{min}
	[MM]	[мм]		[MM]
Вверху	12	28	15	25
Внизу	12	28	15	25


Арматура подобрана по ограничению ширины трещин

Размещение стержней

Место	Ряд	n	ds	c _{nom}
			[MM]	[MM]
Внизу		15	22	52

Подобранная продольная арматура

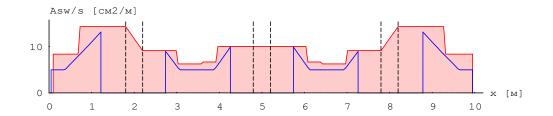
A _{SB}	А _{зн}	$ ho_{ t S B}$	$ ho_{ t s ext{H}}$
[CM2]	[CM2]	[%]	[응]
	57.02		2.12

Стержни: $15 \, \phi \, 22$ Защитный слой: cnom н = 40 мм

Подобранная арматура в полке

ds	S	As	$ ho_{ t s}$	c _{nom}
[MM]	[CM]	[см2/м]	[응]	[MM]
12	15	7.54	0.21	40

Данные для подбора поперечной арматуры


d _{sw}	Число	s _{max}	Δ s	s_1
[MM]	ветвей	[CM]	[CM]	[CM]
8	2	3 0	5	s/2

Размещение хомутов

Колонна	Место	Участок	Длина	Число	s	A_{sw}/s
			[M]	хомутов	[CM]	[см2/м]
1	Слева	1-й	1.085	16	7	14.36
		2-й	0.600	5	12	8.38
	Справа	а 1-й	0.825	8	11	9.14

Позиция	t522		Страниц	a 507
Проект	СТАТИКА тест всех м	одулей	Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/522	Версия	2025.000

		2-й	0.320	2	16	6.28
2	Слева	1-й	0.850	9	10	10.05
		2-й	0.300	2	15	6.70
	Справа	1-й	0.850	9	10	10.05
		2-й	0.300	2	15	6.70
3	Слева	1-й	0.825	8	11	9.14
		2-й	0.320	2	16	6.28
	Справа	1-й	1.085	16	7	14.36
		2-й	0.600	5	12	8.38

Трещиностойкость

Расчет по образованию и раскрытию трещин

Предельная ширина трещин

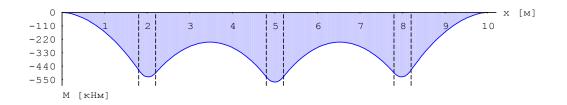
 $w_{\text{max}} = 0.30$

MM

Постоян. комбинации

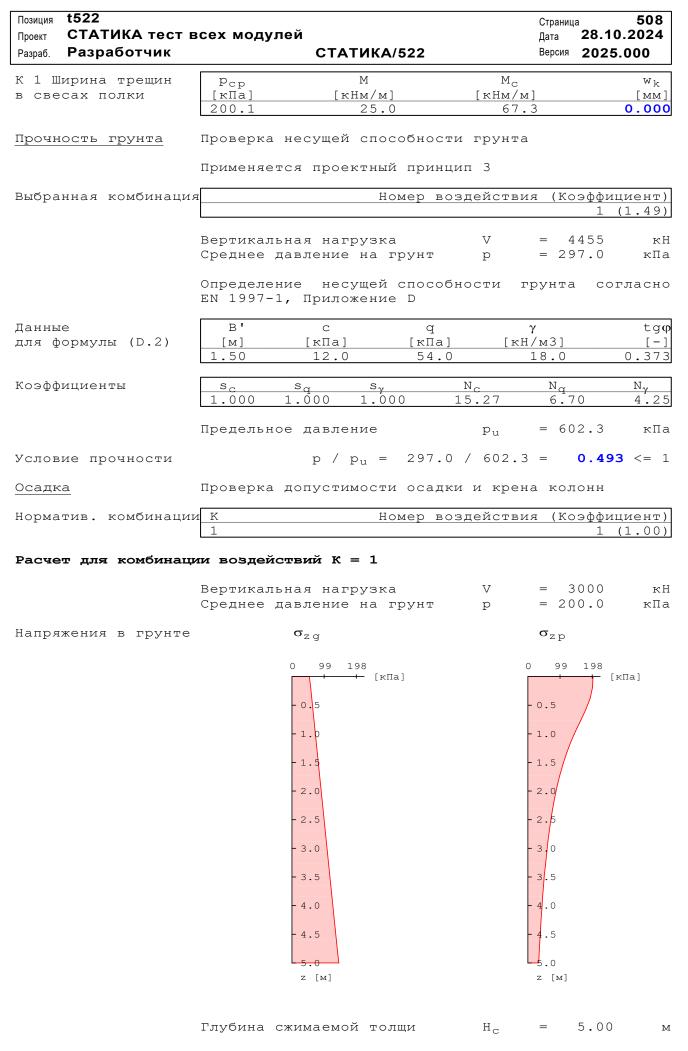
K	Номер	воздействия	(Коэффі	ициент)
1			1	(1.00)

Изгибная жесткость с учетом арматуры


A _{SB}	A _{s H}	EI _C	ЕІприв
[см2]	[см2]	[МНм2]	[МНм2]
0.00	57.02	497.48	532.52

Расчет для комбинации воздействий К = 1

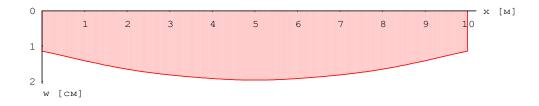
К 1 Момент, осадка, давление


X	M	W	р
[M]	[кНм]	[CM]	[кПа]
0.00	0.0	1.14	298.9
1.80	-472.3	1.61	185.2
2.20	-494.0	1.69	193.7
4.80	-527.4	1.96	223.0
5.20	-527.4	1.96	223.0
7.80	-494.0	1.69	193.7
8.20	-472.3	1.61	185.2
10.00	0.0	1.14	298.9

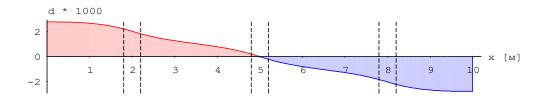
Изгибающий момент

К 1 Ширина трещин

Х	M	M _C	w _k
[M]	[кНм]	[кНм]	[MM]
1.80	-472.3	-177.6	0.215
2.20	-494.0	-177.6	0.228
4.80	-527.4	-177.6	0.248
5.20	-527.4	-177.6	0.248
7.80	-494.0	-177.6	0.228
8.20	-472.3	-177.6	0.215


Позиция	t522		Страниц	a 509
Проект	СТАТИКА тест всех модулей			28.10.2024
Разраб.	Разработчик	СТАТИКА/522	Версия	2025.000

Напряжение при z = H_c σ_{zp} = 33.2 кПа σ_{zp} / σ_{zg} = 0.231 -


К 1 Осадка, крен, давление

Х	W	d	р
[M]	[CM]	[-]	[кПа]
0.00	1.14	0.00278	298.9
1.80	1.61	0.00222	185.2
2.20	1.69	0.00183	193.7
4.80	1.96	0.00021	223.0
5.20	1.96	-0.00021	223.0
7.80	1.69	-0.00183	193.7
8.20	1.61	-0.00222	185.2
10.00	1.14	-0.00278	298.9

Осадка

Поворот

Осадка и крен колонн

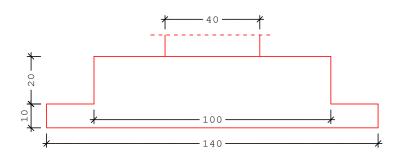
K	Колонна	Осадка	Крен
		[CM]	[-]
1	1	1.65	0.00202
	2	1.96	0.00000
	3	1.65	0.00202

Деформация превышает предельное значение

Расчет выполнен модулем 522 программы СТАТИКА 2025 © 000 Техсофт

Поз. t523 Ленточный фундамент под стену (MSZ EN 1992)

Фундамент	Толщина стены	b _c	= 40	CM
	Ширина верхней ступени	b _в	= 100	CM
	Высота верхней ступени	h _в	= 20	CM
	Ширина нижней ступени	b _н	= 140	CM
	Высота нижней ступени	h _н	= 10	CM


Позиция t523
Проект СТАТИКА тест всех модулей

Разработчик

СТАТИКА/523

Страница **510** Дата **28.10.2024**

Версия 2025.000

Глубина заложения фундамента

от уровня планировки от поверхности рельефа d = 3.00 $d_n = 3.00$

M M

Грунт

Разраб.

Удельный вес грунта выше уровня подошвы фундамента $\gamma_0 = 18.0 \text{ кH/M3}$

Слой	h	γ _s	е	γ	С	φ	E
	[M]	[кН/м3]	[-]	[кН/мЗ]	[кПа]	[град]	[МПа]
1	8.00	26.0	0.50	18.0	10.0	25.0	30.0

Воздействия

Nº	Тип воздействия	Описание
1	Постоянное	Постоянное воздействие
		постоянное -

Коэффициент упр. надежностью $K_{FT} = 1.0$

При комбинировании применяется формула (6.10)

Коэффициенты

Nº	γ _{sup}	γinf	Ψ_0	ψ_1	Ψ_2	Группа	Знак
1	1.35	1.00					
2*	1.35	1.00					

* - вес фундамента

Нагрузки

Nº	V	M
	[кН/м]	[кНм/м]
1	500.0	20.0
2	8.5	

Расчет

согласно MSZ EN 1992-1-1, MSZ EN 1997-1

Бетон С25/30

Арматура **\$500**

Предел текучести арматуры $f_{y\,k}=500$ МПа Предел прочности арматуры $f_{t\,k}=525$ МПа

Проверка прочности грунта основания

Применяется проектный принцип 3

Выбранная комбинация

Я	v_d	M_d	Воздействие (Коэффициент)
	[кН/м]	[кНм/м]	
	686.5	27.0	1 (1.35) 2 (1.35)

Позиция t523 511 Страница СТАТИКА тест всех модулей 28.10.2024 Проект Дата Разработчик **СТАТИКА/523** Версия 2025.000

Давление на грунт

Наименьшее давление $p_{min} = 407.7$ кПа $p_{\text{max}} = 573.0$ Наибольшее давление кПа $p_{min} / p_{max} =$ 0.712

Определение несущей способности грунта согласно EN 1997-1, Приложение D

Эксцентриситет

0.039 e_B

M

Данные для формулы (D.2)

В'	С	q	γ	tgφ
[M]	[кПа]	[кПа]	[кН/м3]	[-]
1.32	8.0	54.0	18.0	0.373

Коэффициенты

s _c	sa	Sγ	N _C	Na	N_{γ}
1.000	1.000	1.000	15.27	6.70	4.25

Предельное давление

 $R_d/A' = 534.4$ кПа

Условие прочности (6.1) V_d / R_d = 686.5 / 706.1 = **0.972** <= 1

4.67 см2/м

 $A_{s1} =$

Определение требуемой площади арматуры

Выбранная комбинация

Ŧ	V _d	Md	Вс	здейст	вие (Коэффи	циент)
	[кН/м]	[кНм/м]					
L	686.5	27.0		1	(1.3	5) 2	(1.35)
Ε	Расстояние	до ц.т.	арматуры	a	=	3.90	СМ
\mathcal{V}	Вылет консс Ізгибающий Гребуемая г	момент		с ₀ М ₀ А _{s 0}		50.0 69.2 6.04	СМ кНм/м см2/м
	Вылет консо Ізгибаюший		ей ступени	и С ₁ М1	=	20.0	см кНм/м

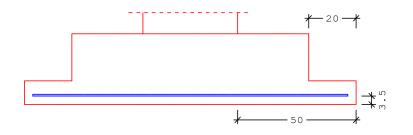
Подбор арматуры и проверка прочности при изгибе

Данные для подбора арматуры

min d _s	max d _s	min s	max s
[MM]	[MM]	[CM]	[CM]
8	20	5	30

Подобранная арматура

ds	S	As	ρ	c _{nom}
[MM]	[CM]	[см2/м]	[%]	[MM]
8	7	7.18	0.28	35


Арматура подобрана по ограничению ширины трещин

Требуемая площадь арматуры

 Позиция
 t523
 Страница
 512

 Проект
 CTATИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 CTATИКА/523
 Версия
 2025.000

Условия прочности

$$M_0$$
 / M_{0u} = 69.2 / 81.7 = **0.846** <= 1
 M_1 / M_{1u} = 11.3 / 16.1 = **0.700** <= 1

Проверка прочности при действии поперечной силы

Выбранная комбинация

v_d	M_d	Воздействие (Коэффициент)
[кН/м]	[кНм/м]	
686.5	27.0	1 (1.35) 2 (1.35)

Рабочая высота $d_0 = 26.1$ см Расстояние от края $c_0 - d_0 = 23.9$ см Поперечная сила $v_0 = 133.6$ кН/м

Условие прочности

$$V_0 / V_{Rd,c} = 133.6 / 223.4 = 0.598 <= 1$$

Рабочая высота Расстояние от края Поперечная сила

$$d_1 = 6.1$$
 cm
 $c_1 - d_1 = 13.9$ cm
 $V_1 = 78.5$ kH/m

Условие прочности

$$V_1 / V_{Rd,c} = 78.5 / 90.4 = 0.868 <= 1$$

Примечание. Значение $V_{\rm Rd,\,C}$ определяется по формуле (6.2a) с учетом указаний 6.2.2(6)

Проверка трещиностойкости

Предельная ширина трещин

 $w_{\text{max}} = 0.30$ MM

Выбранная комбинация

F	v_d	M_d	Воздействие (Коэффициент)
	[кН/м]	[кНм/м]	
	508.5	20.0	1 (1.00) 2 (1.00)

Ширина раскрытия трещин

w _k	Mc	М	С
[MM]	[кНм/м]	[кнм/м]	[CM]
0.243 0.146	38.1	51.2	50.0
0.146	4.1	8 - 4	20.0

Проверка допустимости осадки основания

Рассматривается линейное распределение давления р Определяется осадка в центре подошвы фундамента

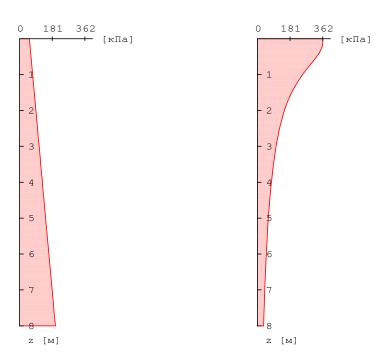
Выбранная комбинация

I	v_d	M_d	Воздействие (Коэффициент)
١	[кН/м]	[кНм/м]	
	508.5	20.0	1 (1.00) 2 (1.00)

Напряжения в грунте

Z	о _{z g} [кПа]	σ _{zp} [кПа]	σ_{zp}/σ_{zg}
			6 706
0.00	54.0	363.2	6.726
0.50	63.0	328.2	5.210
1.00	72.0	250.0	3.472
1.50	81.0	189.8	2.343
2.00	90.0	149.8	1.664
2.50	99.0	122.6	1.239

Позиция	t523		Страниц	a 513
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/523	Версия	2025.000


3.00	108.0	103.2	0.956
3.50	117.0	88.6	0.758
4.00	126.0	77.4	0.614
4.50	135.0	68.2	0.505
5.00	144.0	60.8	0.422
5.50	153.0	54.5	0.356
6.00	162.0	49.2	0.304
6.50	171.0	44.6	0.261
7.00	180.0	40.6	0.225
7.50	189.0	37.1	0.196
8.00	198.0	34.0	0.172

 σ_{zg} - напряжение от веса грунта σ_{zp} - напряжение от нагрузки

Напряжения в грунте

 σ_{zg}

 σ_{zp}

Глубина сжимаемой толщи $H_{C}=7.43$ м Напряжение при $z=H_{C}$ $\sigma_{zp}/\sigma_{zg}=37.5$ кПа $\sigma_{zp}/\sigma_{zg}=0.200$ - Осадка основания $\sigma_{zu}=2.43$ см Условие допустимости $\sigma_{zu}=2.43$

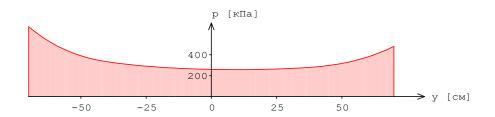
Проверка допустимости крена фундамента

Принимается линейное распределение осадки s(y)

Выбранная комбинация

я	Vd	M_d	Воздействие (Коэффициент)
	[кН/м]	[кНм/м]	
	508.5	20.0	1 (1.00) 2 (1.00)

Применяется итерационный метод Итерационная погрешность ϵ = 0.68


Осадка s(y) = 2.03 - 0.00138 * y

 Позиция
 t523
 Страница
 514

 Проект
 CTATИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Pазработчик
 CTATИКА/523
 Версия
 2025.000

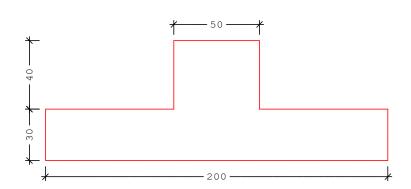
Давление на грунт р(у)

Условие допустимости

$$i / i_u = 0.00138 / 0.0020 = 0.691 <= 1$$

Работоспособность фундамента обеспечена

Расчет выполнен модулем 523 программы СТАТИКА 2025 © 000 ${\tt Texcoфt}$


Поз. t524

Ленточный фундамент под колонны (ТКП EN 1992)

Фундамент

1	b	h	bf	h _{f1}	h _{f2}
[M]	[CM]	[CM]	[CM]	[CM]	[см]
10.00	50	7 0	200	3.0	30

Сечение

Колонны

Nº	Хk	h _k
	[м]	[см]
1	2.00	4 0
2	5.00	4 0
3	8.00	4 0

Глубина заложения фундамента от уровня планировки от поверхности рельефа

d = 3.00 M $d_n = 3.00 M$
 Позиция
 t524
 Страница
 515

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/524
 Версия
 2025.000

Грунт

Удельный вес грунта выше уровня подошвы фундамента $\gamma_{\,0} \quad = \quad 18.0 \quad \text{кH/м3}$

Слой	h	γs	е	γ	С	φ	E
	[M]	[кН/мЗ]	[-]	[кН/м3]	[кПа]	[град]	[МПа]
1	8.00	26.0	0.50	18.0	10.0	30.0	20.0

Воздействия

Nº	Тип воздействия	Описание			
1	Постоянное	Постоянное воздействие			
	постоянное -				

Коэффициент упр. надежностью $K_{FI} = 1.0$

При комбинировании применяются формулы (6.10a,b)

Коэффициенты

Nº	γsup	Yinf	Ψ_0	Ψ_1	Ψ_2	Группа	Знак
1	1.35	1.00					

Вертикальные силы и моменты

Nº	Колонна	V	М
		[ĸH]	[кНм]
1	1	1000.0	
	2	1000.0	
	3	1000.0	

Воздействие 1

Расчет

согласно ТКП EN 1992-1-1, ТКП EN 1997-1

Расчетная модель

Балка на упругом основании с переменным коэффициентом постели $k\left(x\right)$

При определении k(x) учитывается вся толща грунта

Материалы

Бетон

C20/25

Продольная арматура f_{yk} Предел прочности арматуры f_{tk}

 $f_{yk} = 500$ МПа $f_{tk} = 525$ МПа

МΠа

Поперечная арматура

S400

Предел текучести арматуры $f_{ywk} = 400$

Выбранные комбинации

1 (1.35)	I	K	Номер	воздействия	(Коэффі	ициент)
		1			1	(1.35)

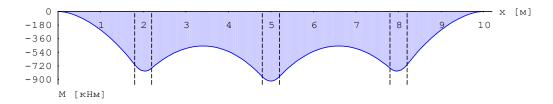
Изгибная жесткость с учетом арматуры

A _{sB}	A _{s H}	EI _C	ЕІприв
[см2]	[см2]	[МНм2]	[МНм2]
0.00	37.81	766.25	791.89

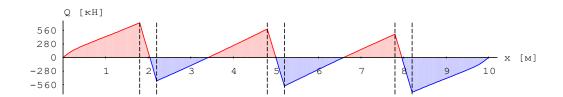
Расчет для комбинации воздействий К = 1

К 1 Усилия, осадка, давление

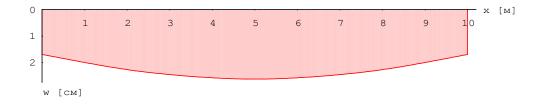
Х	М	Q	W	р
[M]	[кНм]	[ĸH]	[CM]	[кПа]
0.00	0.0	0.0	1.69	349.7
0.30	-29.0	175.8	1.79	225.2
0.60	-99.9	291.7	1.88	177.1
0.90	-203.3	397.5	1.97	174.3
1.20	-338.1	501.3	2.06	176.8
1.50	-504.4	608.0	2.14	180.7

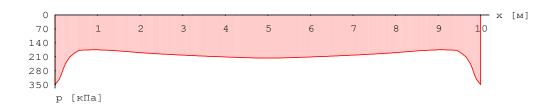

t524 СТАТИКА тест і		Страница Дата 2 8	516 8.10.2024		
Разработчик		СТАТИКА	N/524	Версия 2	025.000
	1.80	-703.1	717.8	2.22	185.6
	2.20	-750.3	-481.1	2.31	192.0
	2.63	-578.3	-312.1	2.40	197.5
	3.07	-480.4	-139.0	2.47	202.1
	3.50	-458.3	37.8	2.52	206.3
	3.93	-513.7	218.3	2.57	210.3
	4.37	-647.9	402.0	2.61	213.8
	4.80	-862.4	588.4	2.62	216.0
	5.20	-862.4	-588.4	2.62	216.0
	5.63	-647.9	-402.0	2.61	213.8
	6.07	-513.7	-218.3	2.57	210.3
	6.50	-458.3	-37.8	2.52	206.3
	6.93	-480.4	139.0	2.47	202.1
	7.37	-578.3	312.1	2.40	197.5
	7.80	-750.3	481.1	2.31	192.0
	8.20	-703.1	-717.8	2.22	185.6
	8.50	-504.4	-608.0	2.14	180.7
	8.80	-338.1	-501.3	2.06	176.8
	9.10	-203.3	-397.5	1.97	174.3
	9.40	-99.9	-291.7	1.88	177.1
	9.70	-29.0	-175.8	1.79	225.2
	10.00	0.0	0.0	1.69	349.7
аюший момент					

Изгибающий момент


Позиция

Проект


Разраб.


Поперечная сила

Осадка

Давление

Позиция t524 Страница 517 Проект СТАТИКА тест всех модулей дата 28.10.2024 Разраб. Разработчик СТАТИКА/524 Версия 2025.000

К 1 Условие (6.5)

 $V_{Ed} / V_{Rd,max} = 718 / 1195 =$ 0.601 <= 1 npu x = 1.80 M

Требуемая продольная арматура

a _B	а _н	A _{s B}	А _{sн}	ρ _{SB}	ρѕн
[CM]	[CM]	[CM2]	[cm2]	[응]	[응]
	5.05		37.84		1.17

Требуемая арматура в полке

Свес	Pcp	M	а _н	As
[CM]	[кПа]	[кНм/м]	[CM]	[см2/м]
75.0	202.7	57.0	3.40	4.89

Требуемая поперечная арматура

Х	$v_{\rm Ed}$	V _{Rd,c}	Z	$\mathtt{cot}\theta$	V _{Rd,s}	V _{Rd,max}	A_{sw}/s	$\rho_{\scriptscriptstyle m W}$
[M]	[ĸH]	[ĸH]	[CM]	[-]	[ĸH]	[кН]	[см2/м]	[응]
1.12	472.9	173.1	54.73	2.50	472.9	694.5	9.94	0.20
2.89	211.5	173.1	54.06	2.50	211.5	686.0	4.50	0.09
4.11	294.2	173.1	53.86	2.50	294.2	683.5	6.28	0.13
5.89	294.2	173.1	53.86	2.50	294.2	683.5	6.28	0.13
7.11	211.5	173.1	54.06	2.50	211.5	686.0	4.50	0.09
8.88	472.9	173.1	54.73	2.50	472.9	694.5	9.94	0.20

Расчет проведен для сечений не ближе d от колонны (d - рабочая высота сечения)

Расчет свеса полки на поперечную силу

Q/V _{Rd,c}	V _{Rd,c}	Q	Pcp	d
	[кН/м]	[кН/м]	[кПа]	[CM]
0.528	185.7	98.1	202.7	26.6

d - расстояние от ребра до расчетного сечения

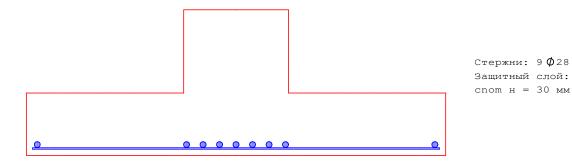
При расчете свеса $V_{\text{Rd,C}}$ определяется по формуле (6.2a) с учетом указаний 6.2.2(6)

Конструирование

Данные для подбора продольной арматуры

Место	d _{min} [мм]	d _{max} [мм]	n_{max}	а _{min} [мм]
Вверху	8	28	4	25
Внизу	8	28	10	25

Арматура подобрана по ограничению ширины трещин


Размещение стержней

Место	Ряд	n	ds	c _{nom}
			[MM]	[MM]
Внизу		9	28	38

Подобранная продольная арматура

A _{SB}	А _{зн}	ρ _{sв}	ρ _{вн}
[cm2]	[CM2]	[%]	[%]
	55.42		1.71

t524 Позиция Страница СТАТИКА тест всех модулей 28.10.2024 Проект Дата Разраб. Разработчик **СТАТИКА/524** Версия 2025.000

Подобранная арматура в полке

ds	S	As	ρ _s	C _{nom}
[MM]	[CM]	[см2/м]	[%]	[MM]
8	9	5.59	0.21	30

Данные для подбора поперечной арматуры

d _{sw}	Число	Smax	Δ s	s ₁
[MM]	ветвей	[CM]	[CM]	[CM]
8	2	30	5	s/2

Размещение хомутов

Колонна	Место	Участок	Длина	Число	s	A_{sw}/s
			[M]	хомутов	[CM]	[см2/м]
1	Слева	1-й	1.150	12	10	10.05
		2-й	0.600	4	15	6.70
	Справа	L	0.990	5	22	4.57
2	Слева	1-й	0.880	6	16	6.28
		2-й	0.420	2	21	4.79
	Справа	1-й	0.880	6	16	6.28
		2-й	0.420	2	21	4.79
3	Слева		0.990	5	22	4.57
	Справа	1-й	1.150	12	10	10.05
		2-й	0.600	4	15	6.70

Трещиностойкость

Расчет по образованию и раскрытию трещин

Предельная ширина трещин

0.30 $w_{max} =$

MM

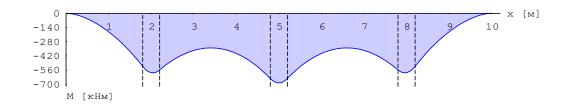
518

Постоян. комбинации

K	Номер	воздействия	(Коэффі	ициент)
1			1	(1.00)

Изгибная жесткость с учетом арматуры

A _{SB}	А _{sн}	ΕΙ _C	ЕІприв
[CM2]	[см2]	[MHm2]	[MHm2]
0.00	55.42	766.25	802.71


Расчет для комбинации воздействий К = 1

К 1 Момент, осадка, давление

Х	M	W	р
[M]	[кНм]	[CM]	[кПа]
0.00	0.0	1.26	260.3
0.30	-21.6	1.33	167.3
0.60	-74.3	1.39	131.5
0.90	-151.2	1.46	129.3
1.20	-251.3	1.52	131.1
1.50	-374.8	1.59	133.9
1.80	-522.3	1.64	137.4
2.20	-557.6	1.71	142.2

Позиция	t524				Страница 51	9
Проект	СТАТИКА тест в	сех модулей			Дата 28.10.202	:4
Разраб.	Разработчик		СТАТИКА/524		Версия 2025.000	
		2.63	-430.6	1.77	146	.2
		3.07	-358.4	1.82	149	. 5
		3.50	-342.4	1.87	152	. 6
		3.93	-383.6	1.90	155	. 6
		4.37	-483.2	1.93	158	. 1
		4.80	-642.2	1.94	159	. 8
		5.20	-642.2	1.94	159	. 8
		5.63	-483.2	1.93	158	. 1
		6.07	-383.6	1.90	155	. 6
		6.50	-342.4	1.87	152	. 6
		6.93	-358.4	1.82	149	. 5
		7.37	-430.6	1.77	146	. 2
		7.80	-557.6	1.71	142	. 2
		8.20	-522.3	1.64	137	. 4
		8.50	-374.8	1.59	133	. 9
		8.80	-251.3	1.52	131	. 1
		9.10	-151.2	1.46	129	. 3
		9.40	-74.3	1.39	131	. 5
		9.70	-21.6	1.33	167	. 3
		10.00	0.0	1.26	260	. 3

Изгибающий момент

К 1 Ширина трещин

X	M	M_{C}	Wk
[M]	[кНм]	[кНм]	[MM]
0.30	-21.6	-218.9	0.000
0.60	-74.3	-218.9	0.000
0.90	-151.2	-218.9	0.000
1.20	-251.3	-218.9	0.087
1.50	-374.8	-218.9	0.134
1.80	-522.3	-218.9	0.221
2.20	-557.6	-218.9	0.242
2.63	-430.6	-218.9	0.167
3.07	-358.4	-218.9	0.125
3.50	-342.4	-218.9	0.119
3.93	-383.6	-218.9	0.140
4.37	-483.2	-218.9	0.198
4.80	-642.2	-218.9	0.293
5.20	-642.2	-218.9	0.293
5.63	-483.2	-218.9	0.198
6.07	-383.6	-218.9	0.140
6.50	-342.4	-218.9	0.119
6.93	-358.4	-218.9	0.125
7.37	-430.6	-218.9	0.167
7.80	-557.6	-218.9	0.242
8.20	-522.3	-218.9	0.221
8.50	-374.8	-218.9	0.134
8.80	-251.3	-218.9	0.087
9.10	-151.2	-218.9	0.000
9.40	-74.3	-218.9	0.000
9.70	-21.6	-218.9	0.000

К 1 Ширина трещин в свесах полки

Pcp	М	M _C	Wk
[кПа]	[кнм/м]	[кНм/м]	[MM]
150.1	42.2	30.5	0.277

 Позиция
 t524
 Страница
 520

 проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/524
 Версия
 2025.000

Прочность грунта Проверка несущей способности грунта

Применяется проектный принцип 3

Выбранная комбинация Номер воздействия (Коэффициент) 1 (1.35)

Вертикальная нагрузка V=4050 кН Среднее давление на грунт p=202.5 кПа

Определение несущей способности грунта согласно

Определение несущеи способности грунта согласно EN 1997-1, Приложение D

Данные для формулы (D.2)
 B'
 C
 q
 γ
 tgφ

 [м]
 [кПа]
 [кПа]
 [кН/м3]
 [-]

 2.00
 8.0
 54.0
 18.0
 0.462

коэффициенты

 s_c
 s_q
 s_γ
 N_c
 N_q
 N_γ

 1.000
 1.000
 1.000
 20.42
 10.43
 8.71

Предельное давление ри

p_u = 883.4 кПа

Условие прочности

 $p / p_u = 202.5 / 883.4 = 0.229 \le 1$

Осадка Проверка допустимости осадки и крена колонн

 Норматив. комбинации
 К
 Номер воздействия (Коэффициент)

 1
 1 (1.00)

Расчет для комбинации воздействий К = 1

Вертикальная нагрузка $V=3000\,$ кН Среднее давление на грунт $p=150.0\,$ кПа

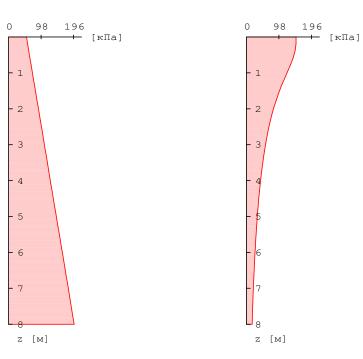
Напряжения в грунте

Z	σ_{zg}	σ_{zp}	σ_{zp}/σ_{zg}
[м]	[кПа]	[кПа]	
0.00	54.0	150.0	2.778
0.50	63.0	143.6	2.279
1.00	72.0	122.6	1.703
1.50	81.0	100.0	1.234
2.00	90.0	81.8	0.909
2.50	99.0	68.1	0.688
3.00	108.0	57.6	0.533
3.50	117.0	49.3	0.422
4.00	126.0	42.7	0.339
4.50	135.0	37.3	0.276
5.00	144.0	32.8	0.228
5.50	153.0	29.1	0.190
6.00	162.0	25.9	0.160
6.50	171.0	23.1	0.135
7.00	180.0	20.8	0.116
7.50	189.0	18.8	0.099
8.00	198.0	17.0	0.086

 $\sigma_{ exttt{z}\, exttt{q}}$ - напряжение от веса грунта

 σ_{zp} - напряжение от нагрузки при x = 5.00 м

 Позиция
 t524
 Страница
 521


 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/524
 Версия
 2025.000

Напряжения в грунте

 $\sigma_{z\,q}$

 σ_{zp}

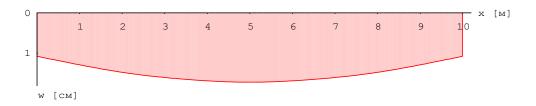
Глубина сжимаемой толщи ${
m H}_{
m C}$

 $I_{\rm C} = 5.36$

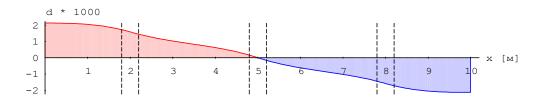
 ${\tt Hanpяжение}$ при ${\tt z}$ = ${\tt H}_{\tt C}$

 $σ_{zp}$ = 30.1 κΠa $σ_{zp}$ / $σ_{zq}$ = 0.200 -

К 1 Осадка, крен, давление


X	W	d	р
[м]	[CM]	[–]	[кПа]
0.00	1.08	0.00213	261.0
0.30	1.14	0.00213	160.2
0.60	1.21	0.00212	127.1
0.90	1.27	0.00208	126.7
1.20	1.33	0.00200	129.5
1.50	1.39	0.00189	133.2
1.80	1.44	0.00173	137.5
2.20	1.51	0.00145	143.0
2.63	1.57	0.00120	147.5
3.07	1.61	0.00100	151.2
3.50	1.65	0.00083	154.6
3.93	1.68	0.00065	157.7
4.37	1.71	0.00044	160.5
4.80	1.72	0.00016	162.2
5.20	1.72	-0.00016	162.2
5.63	1.71	-0.00044	160.5
6.07	1.68	-0.00065	157.7
6.50	1.65	-0.00083	154.6
6.93	1.61	-0.00100	151.2
7.37	1.57	-0.00120	147.5
7.80	1.51	-0.00145	143.0
8.20	1.44	-0.00173	137.5
8.50	1.39	-0.00189	133.2
8.80	1.33	-0.00200	129.5
9.10	1.27	-0.00208	126.7
9.40	1.21	-0.00212	127.1
9.70	1.14	-0.00213	160.2
10.00	1.08	-0.00213	261.0
	·		

 Позиция
 t524
 Страница
 522


 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

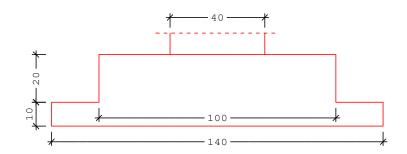
 Разраб.
 Разработчик
 СТАТИКА/524
 Версия
 2025.000

Осадка

Поворот

Осадка и крен колонн

K	Колонна	Осадка	Крен
		[CM]	[-]
1	1	1.48	0.00159
	2	1.72	0.00000
	3	1.48	0.00159


Расчет выполнен модулем 524 программы СТАТИКА 2025 © 000 Техсофт

Поз. t525

Ленточный фундамент под стену (ТКП EN 1992)

Фундамент

Толщина стены	bс	= 40	CM
Ширина верхней ступени	b _в	= 100	CM
Высота верхней ступени	h _в	= 20	CM
Ширина нижней ступени	b _н	= 140	CM
Высота нижней ступени	h _н	= 10	CM

Глубина заложения фундамента от уровня планировки d = 3.00 м от поверхности рельефа d_n = 3.00 м

 Позиция
 t525
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/525
 Версия
 2025.000

Грунт

Удельный вес грунта выше уровня подошвы фундамента $\gamma_{\,0} \quad = \quad 18.0 \quad \text{кH/м3}$

Слой	h	γs	е	γ	С	φ	E
	[M]	[кН/м3]	[-]	[кН/м3]	[кПа]	[град]	[МПа]
1	8.00	26.0	0.50	18.0	10.0	25.0	30.0

Воздействия

Nº	Тип воздействия	Описание		
1	Постоянное	Постоянное воздействие		
	постоянное -			

Коэффициент упр. надежностью $K_{FI} = 1.0$

При комбинировании применяются формулы (6.10a,b)

Коэффициенты

Nº	γsup	Yinf	Ψ_0	Ψ_1	Ψ_2	Группа	Знак
1	1.35	1.00					
2*	1.35	1.00					

* - вес фундамента

Нагрузки

Nº	V	М
	[кН/м]	[кНм/м]
1	500.0	20.0
2	8.5	

Расчет

согласно ТКП EN 1992-1-1, ТКП EN 1997-1

Бетон С20/25

Арматура

Предел текучести арматуры $f_{yk}=500$ МПа Предел прочности арматуры $f_{tk}=525$ МПа

S500

Проверка прочности грунта основания

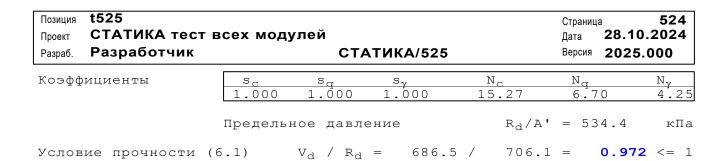
Применяется проектный принцип 3

Выбранная комбинация

Я	v_d	M_d	Воздействие (Коэффициент)
	[кН/м]	[кНм/м]	
	686.5	27.0	1 (1.35) 2 (1.35)

Давление на грунт

Наименьшее давление $p_{\text{min}} = 407.7$ кПа $p_{\text{max}} = 573.0$ кПа $p_{\text{min}} / p_{\text{max}} = 0.712$ -


Определение несущей способности грунта согласно EN 1997-1, Приложение D

Эксцентриситет

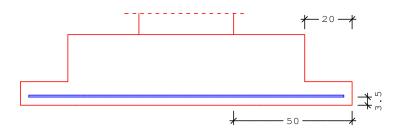
 $e_B = 0.039$

Данные для формулы (D.2)

В'	С	q	γ	tgφ
[M]	[кПа]	[кПа]	[кН/м3]	[-]
1.32	8.0	54.0	18.0	0.373

Определение требуемой площади арматуры

Выбранная	комбинация	V _d	Md	I	Воздейст	вие (Коэффиі	циент)
		[кН/м]	[кНм/м]					
		686.5	27.0		1	(1.3	5) 2	(1.35)
		Расстояние	до ц.т.	арматуры	ы а	=	3.90	СМ
		Вылет консо	оли фунда	амента	c ₀	=	50.0	СМ
		Изгибающий	момент		Μo	=	69.2	кНм/м
		Требуемая г	площадь а	арматуры	A _{s0}	=	6.09	см2/м
		Вылет консо		ей ступен	ни С ₁ М ₁	=	20.0	СМ кНм/м
		Требуемая г		арматуры	A _{s1}	=	4.87	см2/м


Подбор арматуры и проверка прочности при изгибе

Данные для подбора	min d _s	max d _s	min s	max s
арматуры	[MM]	[MM]	[CM]	[CM]
	8	20	5	30
	•			

Подобранная арматура

ds	S	As	ρ	Cnom
[MM]	[CM]	[см2/м]	[응]	[MM]
8	7	7.18	0.28	35

Арматура подобрана по ограничению ширины трещин

Условия прочности

$$M_0$$
 / M_{0u} = 69.2 / 81.0 = **0.854** <= 1
 M_1 / M_{1u} = 11.3 / 15.3 = **0.737** <= 1

Проверка прочности при действии поперечной силы

Выбранная комбинация	. V _d	Md	Возд	цейсти	вие (І	Коэффиц	иент)
	[кН/м]	[кНм/м]					
	686.5	27.0		1	(1.35	5) 2 (1.35)
	Рабочая выс	сота		d_0	=	26.1	CM
	Расстояние	от края	c ₀ -	d_0	=	23.9	CM
	Поперечная	сила		V_0	= [133.6	кН/м
Условие прочности	v_0	$V_{Rd,c} =$	133.6 /	207.4	4 =	0.644	<= 1
	Рабочая выс	сота		d_1	=	6.1	CM
	Расстояние	от края	c ₁ -	d_1	=	13.9	CM
	Поперечная	сила		V_1	=	78.5	кН/м

 Позиция
 t525
 Страница
 525

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/525
 Версия
 2025.000

Условие прочности

 $V_1 / V_{Rd,c} = 78.5 / 83.9 = 0.935 <= 1$

Примечание. Значение $V_{\text{Rd,C}}$ определяется по формуле (6.2a) с учетом указаний 6.2.2(6)

Проверка трещиностойкости

Предельная ширина трещин $w_{\text{max}} = 0$

 $w_{\text{max}} = 0.30 \quad \text{mm}$

Выбранная комбинация

v_d	M_d	Воздействие (Коэффициент)
[кН/м]	[кНм/м]	
508.5	20.0	1 (1.00) 2 (1.00)

Ширина раскрытия трещин

С	M	M _C	Wk
[CM]	[кНм/м]	[кНм/м]	[MM]
50.0	51.2	30.6	0.259
20.0	8.4	3.3	0.154

Проверка допустимости осадки основания

Рассматривается линейное распределение давления р Определяется осадка в центре подошвы фундамента

Выбранная комбинация

Я	v_d	M_d	Воздействие (Коэффициент)
	[кН/м]	[кНм/м]	
	508.5	20.0	1 (1.00) 2 (1.00)

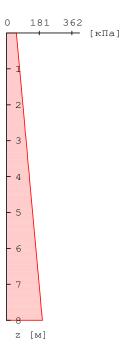
Напряжения в грунте

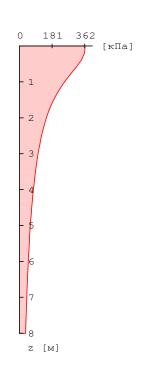
Z	σ_{zg}	σ_{zp}	σ_{zp}/σ_{zg}
[M]	[кПа]	[кПа]	
0.00	54.0	363.2	6.726
0.50	63.0	328.2	5.210
1.00	72.0	250.0	3.472
1.50	81.0	189.8	2.343
2.00	90.0	149.8	1.664
2.50	99.0	122.6	1.239
3.00	108.0	103.2	0.956
3.50	117.0	88.6	0.758
4.00	126.0	77.4	0.614
4.50	135.0	68.2	0.505
5.00	144.0	60.8	0.422
5.50	153.0	54.5	0.356
6.00	162.0	49.2	0.304
6.50	171.0	44.6	0.261
7.00	180.0	40.6	0.225
7.50	189.0	37.1	0.196
8.00	198.0	34.0	0.172

 $\sigma_{ exttt{zg}}$ - напряжение от веса грунта

 σ_{zp} - напряжение от нагрузки

 Позиция
 t525
 Страница
 526


 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024


 Разраб.
 Разработчик
 СТАТИКА/525
 Версия
 2025.000

Напряжения в грунте

 σ_{zp}

Напряжение при $z = H_C$ $\sigma_{zp} = 37.5$ кПа $\sigma_{zp} / \sigma_{zg} = 0.200$ — Осадка основания $\sigma_{zp} / \sigma_{zg} = 0.436$ см

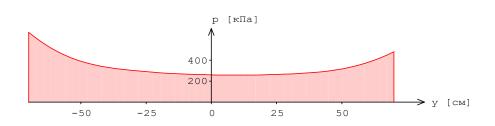
Глубина сжимаемой толщи $H_{c} = 7.43$

Условие допустимости

$$s / s_u = 2.43 / 5.00 = 0.486 \le 1$$

Проверка допустимости крена фундамента

Принимается линейное распределение осадки s(y)


Выбранная комбинация

Я	V _d	M _d	Воздействие (Коэффициент)
	[кН/м]	[кНм/м]	
	508.5	20.0	1 (1.00) 2 (1.00)

Применяется итерационный метод Итерационная погрешность ϵ = 0.68

Осадка s(y) = 2.03 - 0.00138 * y

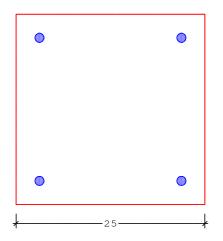
Давление на грунт р(у)

Условие допустимости

$$i / i_u = 0.00138 / 0.0020 = 0.691 <= 1$$

Работоспособность фундамента обеспечена

 Позиция
 t525
 Страница
 527


 Проект
 CTATИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 CTATИКА/525
 Версия
 2025.000

Расчет выполнен модулем 525 программы СТАТИКА 2025 © 000 Техсофт

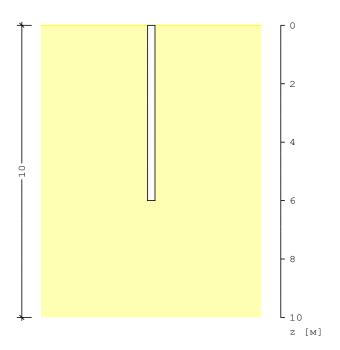
Поз. t526 Расчет сваи на изгиб (схема с дискретными опорами)

Свая	Вид	сваи	висячая	забивная	желез	зобе	тонная	свая	Ι
	Ширі	ина сечения	и сваи		d	=	25	CN	1
Арматура	Диаг	10 стержней метр стержн мтный слой	ней		n _s d _s a ₃		4 12 25	MM MM	
	Длин	на сваи			1	=	6.00	I	1

Стержни: 4 ϕ 12 Защитный слой: as = 25 мм

Грунт

Слой Название слоя	h [M	1]	Вид грун	га		
1 Грунт 1	10.0	0 (Песок мел	пкий плот	ный	
Удельный вес	Слой	W	e	Sr	γs	γ
грунта		[%]	[-]	[-]	[кН/м3]	[кН/м3]
	1	5.0	0.46	0.27	25.0	18.0
Коэфф. надежности	γg(c) 1.50	γ ₉ 1	(φ) .10	γ _{g (γ)} 1.10		


Характеристики	Слой	с _{II}	φ _{II}	γ _{II}	с _І	φ _I	γ _І
грунта		[кПа]	[град]	[кН/м3]	[кПа]	[град]	[кН/мЗ]
	1	0.0	30.0	18.0	0.0	27.3	16.4

 Позиция
 t526
 Страница
 528

 Проект
 CTATИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 CTATИКА/526
 Версия
 2025.000

Схема геологического разреза

Нагрузки

$N_{\bar{0}}$	Вид нагрузки		N	Н	M
			[ĸH]	[ĸH]	[кНм]
1	Постоянная	1.10		15.0	

Расчет

Согласно СП 24.13330.2021

Свая рассчитывается как стержень на упругих опорах с учетом указаний в примечании к пункту Б.8

Бетон **В 25 (тяжелый)** Коэффициент условий работы $\gamma_b = 0.900$ -

Арматура **А500**

Комбинация нагрузок

N [ĸH]	Нагрузка (Коэффициент)
0.0	1 (1.10)

Результаты расчета при 3 итерациях

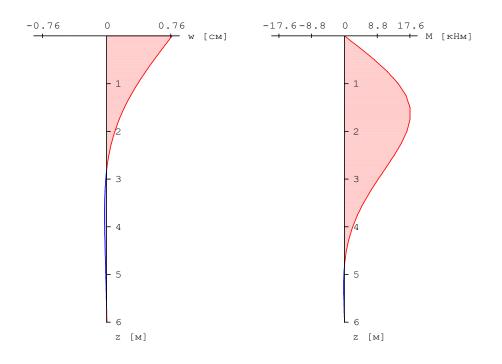
Резуль	таты расчета	я при з ит	ерациях				
Z	С	C *	W	M	р	рu	p/p _u
[M]	[кН/м]	[кН/м]	[CM]	[кНм]	[кПа]	[кПа]	[-]
0.25	328	122	0.67	4.13	3.72	3.80	0.979
0.50	656	290	0.56	8.05	7.44	7.59	0.980
0.75	984	530	0.46	11.56	11.19	11.39	0.982
1.00	1312	887	0.37	14.46	14.95	15.19	0.984
1.25	1641	1438	0.28	16.55	18.73	18.98	0.987
1.50	1969	1969	0.21	17.61	19.03	22.78	0.836
1.75	2297	2297	0.15	17.63	15.67	26.57	0.590
2.00	2625	2625	0.10	16.79	11.78	30.37	0.388
2.25	2953	2953	0.06	15.31	7.80	34.17	0.228
2.50	3281	3281	0.03	13.40	4.07	37.96	0.107
2.75	3609	3609	0.01	11.27	0.83	41.76	0.020
3.00	3938	3938	-0.01	9.10	1.77	45.56	0.039
3.25	4266	4266	-0.02	7.02	3.68	49.35	0.075
3.50	4594	4594	-0.02	5.14	4.91	53.15	0.092
3.75	4922	4922	-0.02	3.53	5.53	56.95	0.097
4.00	5250	5250	-0.02	2.23	5.64	60.74	0.093
4.25	5578	5578	-0.02	1.23	5.34	64.54	0.083
4.50	5906	5906	-0.02	0.52	4.75	68.34	0.070
4.75	6234	6234	-0.01	0.07	3.95	72.13	0.055

Позиция Проект	t526 СТАТИКА тест	Страница Дата 28.	529 10.2024				
Разраб.	Разработчик		СТА	ТИКА/526		Версия 202	25.000
5.00	6562	6562	-0.01	-0.16	3.02	75.93	0.040
5.25	6891 7219	6891 7219	-0.01 -0.00	-0.22 -0.18	2.00 0.92	79.73 83.52	0.025
5.75	7547	7547	0.00	-0.08	0.24	87.32	0.003

-0.00

1.49

6.00


7875

0.00

Прогиб сваи

Изгибающий момент

91.11 0.016

Проверка допустимости давления на грунт боковой поверхностью сваи

Условная ширина сваи
$$b_p = 1.5d + 50 = 87.5$$
 см Жесткость сваи EI = 9.77 МНм2

Коэффициент деформации (Б.3)
$$\alpha_{\epsilon} = 0.883 \ 1/\text{м}$$
 при К = 6000 кH/м4 α_{ϵ} 1 = 5.30 -

Коэффициенты в условии допустимости давления (Б.8)
$$\eta_1 = 1.0 \qquad \eta_2 = 0.400 \qquad \xi = 0.6$$

$$\eta_2$$
 определяется по формуле (Б.9) приложения Б при n = 2.50 - M_C = 37.4 кНм Mt = 0.0 кНм

Условие проверки
$$(p / p_u)_{max} = 18.73 / 18.98 = 0.987 <= 1$$
 при $z = 1.25$ м

Проверка прочности материала сваи

Проверка допустимости перемещения головы сваи от нормативной нагрузки

 $u_0 / u_u = 0.71 / 5.00 = 0.141 <= 1$ Условие проверки

⁷⁸⁷⁵ с - исходная жесткость опор

 c_{\star} - жесткость опор, скорректированная по формуле (Б.10)

р - давление на грунт, определяемое по формуле р = $c_*w/(b_ph_*)$

 b_{p} - условная ширина сваи, h_{\star} - расстояние между опорами

 $p_{\rm u}^{\rm T}$ - предельное давление на грунт, равное правой части условия (Б.8)

 Позиция
 t526
 Страница
 530

 Проект
 CTATИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 CTATИКА/526
 Версия
 2025.000

Работоспособность сваи обеспечена

Расчет выполнен модулем 526 программы СТАТИКА 2025 © 000 Техсофт

Поз. 527	Свая ТИТАН	
Свая	Тип буроинъекционной штанги	титан 127/103
	Диаметр буровой коронки	$d_{K} = 200$ MM
	Расчетный диаметр сваи Рабочая длина сваи	d = 22.0 cM $1 = 3.00$ M
	Свая расположена вертикально	
	Нагрузка на пределе текучести	материала штанги N _y =2030.0 кН
Грунт	Слой h [м] Вид грунта 1 5.00 Песок мелкий пл	отный
Удельный вес грунта	Слой W e S _r [%] [-]	γ _s γ [κΗ/м3] [κΗ/м3]

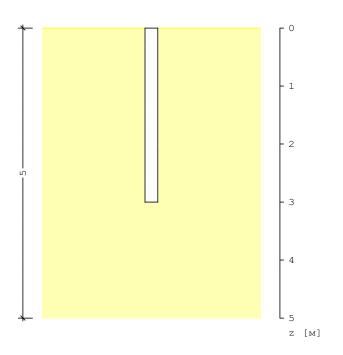

10.0

Схема геологического разреза

0.48

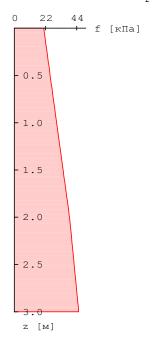
19.0

0.56

 Позиция
 527
 Страница
 531

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/527
 Версия
 2025.000


<u>Нагрузка</u> Вдавливающая нагрузка N = 40.0 кн

Расчет Согласно СП 24.13330.2021

с учетом указаний ТУ-5264-001-01393674-2014

Проверка прочности грунта основания сваи при сжимающей нагрузке

Сопротивление грунта на боковой поверхности сваи f

Сопротивление на боковой поверхности

Слой	z ₁	z ₂	γ _{R,f}	f ₁	f ₂
	[M]	[M]	[-]	[кПа]	[кПа]
1	\cap \cap \cap	3 00	0 90	20.8	15 5

Коэффициент условий работы сваи при вдавливании $\gamma_{\,\text{C}} \quad = \quad 1.00 \quad -$

Несущая способность сваи

Fd = $\gamma_c u \Sigma \gamma_{R,f} f_i h_i = 63.5$ kH

Условие прочности $N\gamma_n\gamma_{c,q}/F_d=$

40.0 * 1.00 * 1.40 / 63.5 = **0.882** <= 1

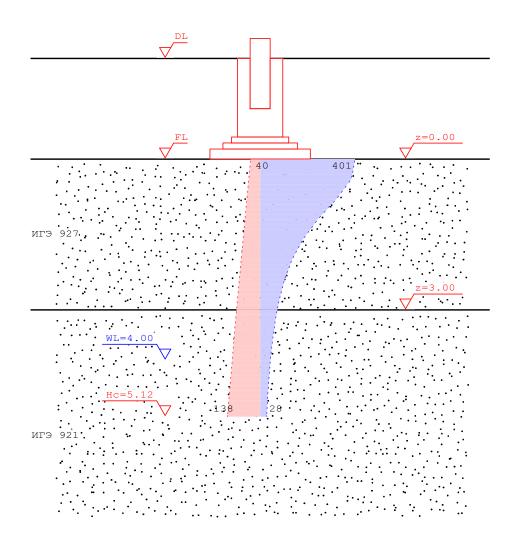
Работоспособность сваи обеспечена

Расчет выполнен модулем 527 программы СТАТИКА 2025 © ООО Техсофт

 Позиция
 t534
 Страница
 532

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/534
 Версия
 2025.000


Поз. t534

Столбчатый фундамент

Данные для расчета

Схема расположения слоев грунта

M = 1 : 75

Грунт

Ν	Слс	й	Тип грунта в слое
1	игэ	927	Пылеватый песок
2	ИГЭ	921	Крупный песок
3	ИГЭ	923	Глина
4	ИГЭ	926	Мелкий песок

Нормативные значения характеристик по слоям.

	тип					c/Rc		ΙL
		[M]	кН/м ³]	[МПа]	[град]	[кПа]	[%]	
игэ	927	0.00	20.0	33.0	35.0	7.0	40.0	
игэ	921	3.00	18.0	30.0	38.0	2.0	40.0	
игэ	923	8.00	17.0	17.0	17.0	48.0	40.0	0.40
игэ	926	12.00	20.0	28.0	32.0	2.0	40.0	

Размеры

Объект	размеры	по	Хи	ПО	Y	высота/глубина h/dc
		[CM]	[C1	и]	[CM]
плита		200.	0 2	200	. 0	20.0
подколон	ник	90.	0	90	. 0	180.0
колонна		40.	0	40	. 0	100.0

Высота фундамента от подошвы 200.0 см

t534 Позиция 533 Страница СТАТИКА тест всех модулей 28.10.2024 Проект Дата Разработчик **СТАТИКА/534** Версия 2025.000 Разраб.

Воздействия

Nº	Тип воздействия	Описание				
1	Постоянное	Постоянное в	оздействие			
		постоян	ное -			
2	Переменное	Категория А: жи	илые здания			
		переменное Ка	атегория-А			

Характеристики

Nº	$\gamma_{ m F}$	ξ	ψ_0	ψ_1	ψ_2	группа	знак
						несоч.	
1	1.35	0.85					
2	1.50		0.70	0.50	0.30		

Коэффициент

управления надежностью конструкции Сочетание воздейст. по формуле (6.10) EN 1990

 $K_{FI} = 1.00$

Нагрузки

N	Нагрузка	N	Μ×	МУ	Q	X	QУ
		[кН] [кН*м]	[кН*м]	[K	:H]	[KH]
1 г	остоянное	- 1000.0	0.0	0.	0	0.0	0.
2 г	переменное	Категория-	A 200	0.0	2.0	2.	0

РСУ Усилия и моменты расчетные сочетания усилий по MSZ EN 1990:2011 для опасных РСУ на высоте Н от подошвы фундамента.

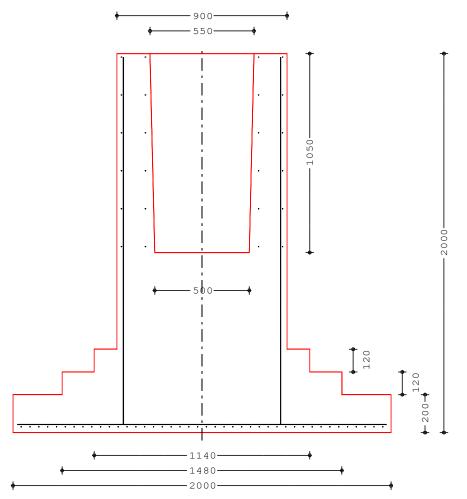
N	Тип	табл.	N	M×	Му	Qx	Qу
	РСУ	коэф.	[ĸH]	[кН*м]	[кН*м]	[ĸH]	[ĸH]
1	п.пос.	. 1	1600.0	0.6	0.6	0.0	0.0
2	основ.	. 2	3000.0	2.0	2.0	0.0	0.0
3	основ.	. 3	4350.0	3.0	3.0	0.0	0.0
4	основ.	. 4	1350.0	0.0	0.0	0.0	0.0

Наиболее опасные сочетания усилий

Наг-	Коз	эффиці	иенты	РСУ	Наг-	Коз	эффиці	иенты	РСУ
руж.	1	2	3	4	руж.	1	2	3	4
1	1.00	1.00	1.35	1.35	2	0.30	1.00	1.50	0.00

Результаты расчета

геометрических характеристик фундамента.


Объект	размеры по Х	и по Ү	высота	h
	[CM]	[CM]	[CM]	
плита 1	200.0	200.0	20.0	
плита 2	148.0	148.0	12.0	
плита 3	114.0	114.0	12.0	
подколо	нник 90.0	90.0	156.0	

 Позиция
 t534
 Страница
 534

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/534
 Версия
 2025.000

Схема фундамента М = 1 :20 вид сбоку

 Позиция
 t534
 Страница
 535

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/534
 Версия
 2025.000

Схема фундамента M = 1 :20 вид сверху

Расчет основания Схема линейно деформируемого полупространства.

Расчет по деформациям

Наибольшая осадка достигается при РСУ № 1. Глубина сжимаемой толщи $\sigma_{z\,q}$ =0.2* $\sigma_{z\,p}$ Hc=5.12Среднее давление под подошвой р=441.4 кПа Эксцентриситеты равнодействующей $e_x = 0.00$ M $e_y = 0.00$ M Краевое давление вдоль оси у $p_{v}^{-}=441.9$ кПа p_x=441.9 кПа Краевое давление вдоль оси х р_{ху}=442.3 кПа Давление в угловой точке s=1.9 cm $< s_u=5.0$ Осадка фундамента Наибольший крен достигается при РСУ № 1, $i=0.0000 < i_u=0.0050$ Крен фундамента

Расчет по несущей

способности с использованием проектного принципа 2 и аналитического метода, приведеного Приложении D. Наиболее опасным по устойчивости является PCУ № 3. Частный коэффициент сопротивления γ_{R2} =1.40 Макс. глубина поверхности скольжения z_m =4.00 м Осредненные по области скольжения параметры грунта γ =16.1 кH/м³ ϕ =36.3 град. c=5.0 кПа Опасное направление по оси Y, эксц. e_{γ} =0.00 м Приведенная ширина фундамента b'=2.00 м Сила предельного сопротивления грунта R=12019 кН N=4537 < R/ γ_{R2} =8585 УСЛОВИЕ ВЫПОЛНЕНО

Позиция t534 536 Страница СТАТИКА тест всех модулей 28.10.2024 Проект Дата Разработчик **СТАТИКА/534** Версия 2025.000 Разраб.

Продавливание.

Расчет по разделу 6.4.4 MSZ EN 1992-1-1.

Бетон С25/30

Плита	РСУ	β	h ₀	u	V _{ed}	V_{rd}	
			[CM]	[CM]	[кН/м]	[кН/м]	
1	3	1.02	16.1	673.2	1011.62	1852.12	
2	3	1.01	28.1	588.3	1059.52	1563.71	
3	3	1.00	40.1	525.5	1048.29	1484.55	

Расчет арматуры

Арматура плиты

по MSZ EN 1992-1-1 с использованием параболическипрямоугольной диаграммы состояния сжатого бетона.

Сталь	S500						
Ось	Коорд.	РСУ	M _{usr}	h ₀	As	d	n
прутка	[M]		[кН*м]	[CM]	[CM ²]	[MM]	
X	0.74	3	73.7	15.7	0.0		
X	0.57	3	201.4	27.7	19.4		
X	0.00	3	1089.0	39.7	69.2	12	42
Y	0.74	3	73.7	-2.9	0.0		
Y	0.57	3	201.4	-2.8	0.0		
Y	0.00	3	1089.0	-2.7	1426.7	12	42

Нижние прутки ориентированы по оси Ү.

Поперечная арматура стакана

Сталь S400

ОСЕ	. Z	РСУ	р	A _s /s	s	d	n
	[CM]		[кН/м]	$[cm^{2}/m]$	[MM]	[MM]	
Y	2.6	3	18.0	0.5	200	8	4
Y	22.6	3	9.9	0.3	200	8	4
Y	42.6	3	2.7	0.1	200	8	4
Y	62.6	3	4.5	0.1	200	8	4
Y	82.6	3	11.7	0.3	200	8	4
Y	102.6	3	18.0	0.5	200	8	4

Координата Z принимется от верхнего края стакана.

Продольная арматура подколонника: **сталь S500** Наиболее опасное РСУ №4 . Диаметр прутков 12 мм. 16 прутков с шагом по оси X 208мм, по оси Y 208мм.

Трещиностойкость

Плита

допусимое раскрытие трещин wk=0.3мм

Ось	Коорд.	РСУ	Мизг	M _{crc}	a _{crc}
	[M]		[кН*м]	[кН*м]	[MM]
Χ	0.74	1	27.1	36.2	0.00
X	0.57	1	74.0	84.9	0.00
X	0.45	1	121.1	147.3	0.00
Y	0.74	1	27.1	37.7	0.00
Y	0.57	1	74.0	86.7	0.00
Y	0.45	1	121.1	149.3	0.00

Плита

Ограничение напряж. <u>по п. 7.2 MSZ EN 1992-1-1:2010</u>

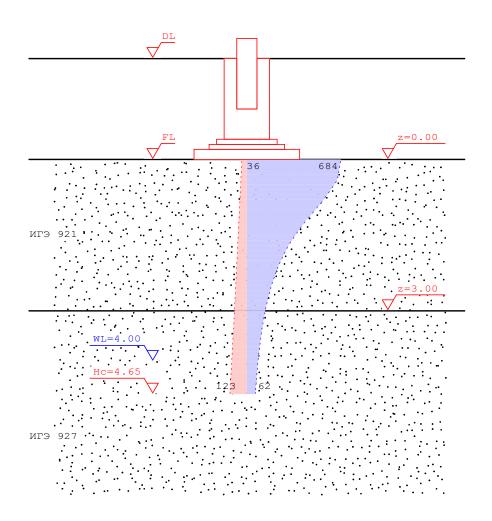
Ось	Коор.	PO	СУ	Mp	Мкп	σ_{pc}	σ_{p6}	σ_{knf}
					[кН*м]			
X	0.74	2	1	50.8	27.1	78.5	-5.9	-3.2
X	0.57	2	1	138.9	74.0	120.0	-7.6	-4.1
X	0.45	2	1	227.2	121.1	136.3	-8.1	-4.4
Y	0.74	2	1	50.8	27.1	72.6	-5.3	-2.8
Y	0.57	2	1	138.9	74.0	114.7	-7.1	-3.9
Y	0 45	2	1	227 2	121 1	132 1	-77	-4 2

Расчет выполнен модулем 534 программы СТАТИКА 2025 © 000 Техсофт

 Позиция
 t535
 Страница
 537

 Проект
 CTATИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 CTATИКА/535
 Версия
 2025.000


Поз. t535

Столбчатый фундамент

Данные для расчета

Схема расположения слоев грунта

M = 1 : 75

Грунт

Ν	Сло	рй	Тип грунта в слое
1	ИГЭ	921	Крупный песок
2	ИГЭ	927	Пылеватый песок
3	ИГЭ	923	Глина
4	ИГЭ	926	Мелкий песок

Нормативные значения характеристик по слоям.

	тип	Z	g	E	fi	c/Rc	е	ΙL
		[M]	кН/м ³]	[МПа]	[град]	[кПа]	[%]	
игэ	921	0.00	18.0	30.0	38.0	2.0	40.0	
игэ	927	3.00	20.0	33.0	35.0	7.0	40.0	
игэ	923	8.00	17.0	17.0	17.0	48.0	40.0	0.40
игэ	926	12.00	20.0	28.0	32.0	2.0	40.0	

Размеры

Объект	размеры	оп и	Χ и	1 ПО	Y	высота/глубина	h/dc
		[CM	[]	[CI	и]	[CM	1]
плита		200.	0	200	. 0	20.	0
подколон	ник	90.	0	90	. 0	180.	0
колонна		40.	0	40	. 0	100.	0

Высота фундамента от подошвы 200.0 см

 Позиция
 t535
 Страница
 538

 Проект
 СТАТИКА тест всех модулей
 СТАТИКА/535
 Версия
 2025.000

Воздействия

Νō	Тип воздействия	Описание
1	Постоянное	Собственный вес ж/б конструкций
2	Кратковременное	
	Равномерно	распределенная нагрузка - жилые помещения

основ.

2

Характеристики воздействий

Nº	γf	k _l	уч С		группа несоч.	знак		
1	1.10							
2	1.30	0.35	+	+				

Нагрузки

учет	С - кратко	вр. нагр	рузка у	читывают	В	сейсм.	PCH
учет	0 - кратко	вр. нагј	оузка у	читывают	В	особом	РСУ
N	Нагрузка.	N	М×	МУ		Qx	QУ
		[кН]	[кН*м]	[кН*м]	[кН]	[кН]
1 П	остоянная	1000.0	0.0	0.0		0.0	0.0
2 K	ратковрем.	2000.0	2.0	2.0		0.0	0.0

 $\frac{\text{РСУ}}{\text{Усилия}}$ и моменты

расч	четные	соче	гания	усилий	по СП 2	0.1333	0.2016
для	опаснь	их РСУ	на выс	оте н от	г подошвы	фунда	мента.
N	Тип	табл.	N	Mx	Му	Qx	QУ
	РСУ	коэф.	[ĸH]	[кН*м]	[кН*м]	[ĸH]	[ĸH]
1	тр.кр.	. 1	3700.0	2.6	2.6	0.0	0.0

2.0

2.0

0.0

0.0

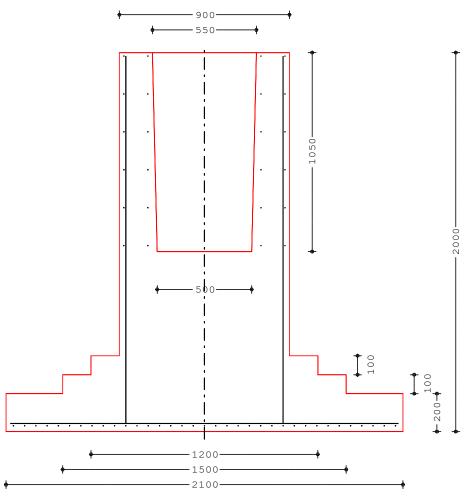
Наиболее опасные сочетания усилий

Наг-	Коз	Коэффициенты			Наг-	Коз	Коэффициенты		
руж.	1	2	3	4	руж.	1	2	3	4
1	1.10	1.00			2	1.30	1.00		

Результаты расчета

геометрических характеристик фундамента.

3000.0

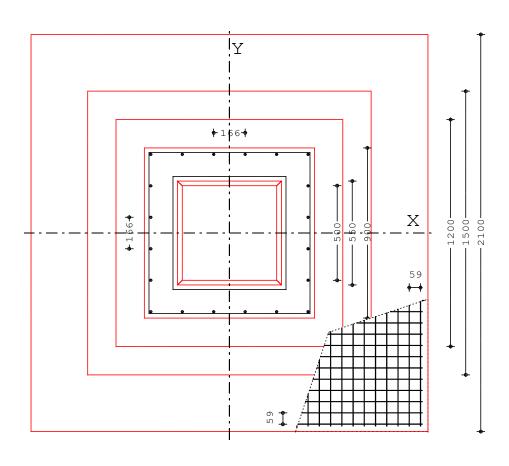

Объект	размеры по Х	и по Ү	высота h
	[cm]	[cm]	[cm]
плита 1	210.0	210.0	20.0
плита 2	150.0	150.0	10.0
плита 3	120.0	120.0	10.0
подколонн	ик 90.0	90.0	160.0

 Позиция
 t535
 Страница
 539

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/535
 Версия
 2025.000

Схема фундамента M = 1 :20 вид сбоку



Позиция t535 540 Страница СТАТИКА тест всех модулей 28.10.2024 Проект Дата Разработчик **СТАТИКА/535** Версия 2025.000 Разраб.

Схема фундамента

вид сверху

M = 1 : 20

по СП 22.13330.2016 Расчет основания

Расчет по деформациям Схема линейно деформируемого полупространства. Наибольшая осадка достигается при РСУ № 2. Глубина сжимаемой толщи Hc = 4.65р=720.0 кПа Среднее давление под подошвой Эксцентриситеты равнодействующей $e_{x} = 0.00$ M $e_{v} = 0.00$ М Расчетн. сопротивление грунта по 5.6.7 \hat{R} =755.2 кПа Сопротивление грунта с учетом 5.6.24 R=794.0 кПа $p_x = 721.3$ кПа Краевое давление вдоль оси х ру=721.3 кПа Краевое давление вдоль оси у р_{жу}=722.6 кПа Давление в угловой точке Сопротивление на глубине z=3.0 м Rz=1056.0 кПа Напряжения на глубине z=3.0 м sigma=223.5 кПа Сопротивление на глубине z = 8.0 M Rz=1223.9 кПа z = 8.0м sigma=191.4 кПа Напряжения на глубине s = 3.1Осадка фундамента $cm < s_u = 5.0$ Наибольший крен достигается при РСУ N 2, Крен фундамента i = 0.0000 $< i_{11} = 0.0050$

Расчет по несущей способности

Наиболее опасным по устойчивости является РСУ \mathbb{N} 1. Макс. глубина поверхности скольжения $z_m = 3.78$ Коэф. надежн. по назначению сооруж. $\gamma_n = 1.15$ Осредненные по области скольжения параметры грунта $\gamma = 16.5 \text{ kH/m}^3$ φ=33.6 град. с=3.8 кПа $e_v = 0.00$ Опасное направление по оси Y, эксц. Приведенная ширина фундамента $b^{-1} = 2.10$ M Сила предельного сопротивления грунта $N_u = 14009$ кН $< \gamma_c N_u / \gamma_n = 12182$ УСЛОВИЕ ВЫПОЛНЕНО N = 3898

Позиция t535 541 Страница СТАТИКА тест всех модулей 28.10.2024 Проект Дата Разработчик **СТАТИКА/535** Версия 2025.000 Разраб.

Продавливание.

Расчет на продавливание по СП 63.13330.2018.

Бетон В 25 (тяжелый)

		(= >=>=	,			
Плита	ось	РСУ	h0	Lx	Lу	η
			[cm]	[cm]	[cm]	
1	Y	1	16.1	166.1	166.10	0.91
2	Y	1	26.1	146.1	146.10	0.84
3	Y	1	36.1	126.1	126.10	0.87

Расчет арматуры

по СП 63.13330.2018 с использованием трехлинейной диаграммы состояния сжатого бетона.

Арматура плиты

			- Porturer 00				•
Сталь	A500						
Ось	Коорд.	РСУ	M _{N3Γ}	h ₀	A _s	d	n
прутка	1 [M]		[кН*м]	[CM]	[cм ²]	[MM]	
X	0.75	1	79.4	15.7	12.4		
X	0.60	1	178.7	25.7	16.9		
X	0.45	1	317.7	35.7	21.5	12	35
Y	0.75	1	79.4	16.9	11.4		
Y	0.60	1	178.7	26.9	16.1		
Y	0.45	1	317.7	36.9	20.8	12	35

Нижние прутки ориентированы по оси Ү.

Поперечная арматура стакана

Сталь А400

Ось	Z	РСУ	р	A _s /s	S	d	n
	[CM]		[кН/м]	$[cm^{2}/m]$	[MM]	[MM]	
Y	2.6	1	15.6	0.6	200	8	4
Y	22.6	1	8.5	0.3	200	8	4
Y	42.6	1	2.3	0.1	200	8	4
Y	62.6	1	3.9	0.1	200	8	4
Y	82.6	1	10.2	0.4	200	8	4
Y	102.6	1	15.6	0.6	200	8	4

Координата Z принимется от верхнего края стакана.

Продольная арматура подколонника: сталь А500

Диаметр прутков 12мм.

20 прутков с шагом по оси Х 166мм, по оси У 166мм.

Трещиностойкость

раскрытия Предельно допустимая ширина трещин принимается по СП 63.13330.2018 из условия обеспечения сохранности арматуры acrc1=0.4мм acrc2=0.3мм

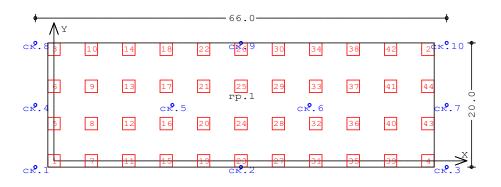
Плита

1011	DIM COMP	ulli	10011	армату	PM GCICI	0 • 1101101	acr cz	0.014141
Ось	Коорд.	P	СУ	Мизг2	Мизг1	Mcrc	acrc2	acrc1
	[M]	2	1	[кН*м]	[кН*м]	[кН*м]	[MM]	[MM]
X	0.75	1	1	79.4	79.4	43.5	0.09	0.09
X	0.60	1	1	178.7	178.7	89.7	0.16	0.16
Х	0.45	1	1	317.7	317.7	149.2	0.22	0.22
Y	0.75	1	1	79.4	79.4	45.9	0.08	0.08
Y	0.60	1	1	178.7	178.7	92.3	0.15	0.15
Y	0.45	1	1	317.7	317.7	152.0	0.21	0.21

Расчет выполнен модулем 535 программы СТАТИКА 2025 © 000 Техсофт

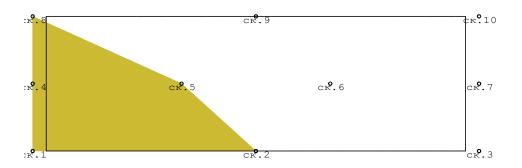
 Позиция
 t536
 Страница
 542

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

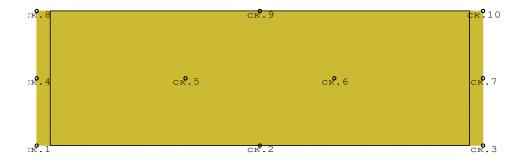

 Разраб.
 Разработчик
 СТАТИКА/536
 Версия
 2025.000

Поз. t536

Под прямоугольное здание


 $\frac{\mbox{Данные для расчета}}{\mbox{План площадки}}$

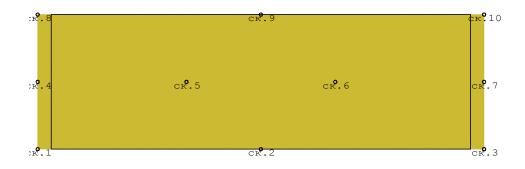
M = 1 : 605


План слоя №2 М = 1 :560

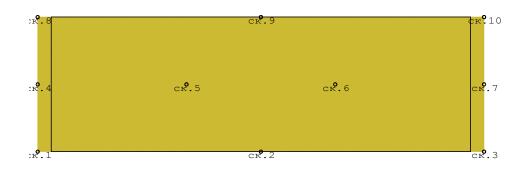
игэ 927

План слоя №3 М = 1 :560

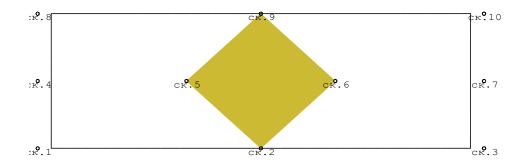
игэ 923



 Позиция
 t536
 Страница
 543


 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/536
 Версия
 2025.000


План слоя №4 М = 1 :560 игэ 922

План слоя №5 М = 1 :560 игэ 927

План слоя №1 М = 1 :560 игэ 921

Колонны: положение и нумерация

$N_{\bar{0}}$	$N_{\bar{0}}$	X	У	угол	$N_{\bar{0}}$	$N_{\bar{0}}$	X	У	угол
кол.	.грп.	[M]	[м]	грд.	сол	.грп.	[м]	[M]	грд.
1	1	0.0	0.0	0.0	2	1	60.0	18.0	0.0
3	1	0.0	18.0	0.0	4	1	60.0	0.0	0.0
5	1	0.0	6.0	0.0	6	1	0.0	12.0	0.0
7	1	6.0	0.0	0.0	8	1	6.0	6.0	0.0
9	1	6.0	12.0	0.0	10	1	6.0	18.0	0.0
11	1	12.0	0.0	0.0	12	1	12.0	6.0	0.0
13	1	12.0	12.0	0.0	14	1	12.0	18.0	0.0
15	1	18.0	0.0	0.0	16	1	18.0	6.0	0.0
17	1	18.0	12.0	0.0	18	1	18.0	18.0	0.0
19	1	24.0	0.0	0.0	20	1	24.0	6.0	0.0
21	1	24.0	12.0	0.0	22	1	24.0	18.0	0.0
23	1	30.0	0.0	0.0	24	1	30.0	6.0	0.0
25	1	30.0	12.0	0.0	26	1	30.0	18.0	0.0

Позиция	t536								Страниц		544
Проект	СТАТИКА тест в	ИКА тест всех модулей дат							Дата	28.10.2024	
Разраб.	Разработчик			СТ	АТИКА/	536			Версия	2025.0	00
		27	1	36.0	0.0	0.0	28	1	36.0	6.0	0.0
		29	1	36.0	12.0	0.0	30	1	36.0	18.0	0.0
		31	1	42.0	0.0	0.0	32	1	42.0	6.0	0.0
		33	1	42.0	12.0	0.0	34	1	42.0	18.0	0.0
		35	1	48.0	0.0	0.0	36	1	48.0	6.0	0.0
		37	1	48.0	12.0	0.0	38	1	48.0	18.0	0.0

60.0

43

Грунт

Ν	Слс	й	Тип грунта в слое
1	ИГЭ	921	Крупный песок
2	ИГЭ	927	Насыщенный водой пылеватый песок
3	ИГЭ	923	Пылевато-глинистый, глина
4	ИГЭ	922	Песок средней крупности
5	ИГЭ	927	Насыщенный водой пылеватый песок

6.0 0.0 44 1

6.0 0.0 18.0 0.0

0.0

12.0

60.0

Нормативные значения характеристик по слоям.

39 1 54.0 0.0 0.0 40 1 54.0

41 1 54.0 12.0 0.0 42 1 54.0

Уд. вес грунта выше подошвы фундамента 16.0 кН/м3. E fi c/Rc e тип [кН/м3][МПа][град] [кПа] [%] 1 игэ 921 18.0 30.0 38.0 2.0 40.0 2 ИГЭ 927 20.0 33.0 35.0 7.0 40.0 48.0 40.0 0.40 3 ИГЭ 923 17.0 17.0 17.0 2.0 40.0 4 ИГЭ 922 19.0 45.0 39.0 5 ИГЭ 927 20.0 33.0 35.0 7.0 40.0

Сооружение II класса γ_n =1.15

Коэффициенты условий работы: основные РСУ $\gamma_{\text{C}} \! = \! 1.00$ особые РСУ $\gamma_{\text{C}} \! = \! 1.00$

Коэффициенты надежности по грунту:

 $\gamma_{g(\gamma)} = 1.10$ $\gamma_{g(\phi)} = 1.10$ $\gamma_{g(c)} = 1.50$

Скважины

			5 1 7		J . ,		
№ 1	x=-3.	координ .00м у=	аты сква -1.00м	и нижа	располо	жение слое	В
	z[M]	0.00	4.00				
2	z[м]	0.00м y= 0.00 1	3.50		6.00	8.00	
3	z [m]	0.00м y= 0.00 3	5.00	9.00			
4	z[M]	0.00м y= 0.00 2	3.50	6.00	7.00 5		
5	z[м]	0.00м y= 0.00	2.00	3.00	7.00 4	9.00	
6	z[м]	0.00м y= 0.00	2.00	8.00	9.00 5		
7	z[M]	0.00 3	6.00	9.50 5			
8	z[м]	0.00 y= 0.00 2	3.00	5.00 4	7.00 5		
9		.00м y=		7.00	9.00		

 Позиция
 t536

 Проект
 СТАТИКА тест всех модулей

Разработчик

СТАТИКА/536

Страница 545 Дата 28.10.2024 Версия 2025.000

№ грн 1 3 4 5 10 x=63.00м y=19.00м z[м] 0.00 5.00 10.00 № грн 3 4 5

Уровень грунтовых вод WL=5.00 м

Нагрузки

Nº	$N_{f \hat{o}}$	N	Mx	Му	Qx	QУ
на	гр. колонны	[ĸH]	[кН*м]	[кН*м]	[ĸH]	[кН]
1	Постоянная	$\gamma_f = 1.10$				
	1	1000.0	0.0	0.0	0.0	0.0
	2	1000.0	0.0	0.0	0.0	0.0
	3	1000.0	0.0	0.0	0.0	0.0
	4	1000.0	0.0	0.0	0.0	0.0
2	 Кратковрем.	$\gamma_{f} = 1.30$				
	1	1000.0	12.0	5.0	-20.0	20.0
	2	1000.0	-12.0	-2.0	20.0	-20.0
	3	1000.0	-2.0	2.0	-20.0	-20.0
	4	1000.0	2.0	-5.0	20.0	20.0

Коэффициенты существенных РСУ

Наг-	Коз	•ффици	≘нты	РСУ	Har-	Коз	эффици	енты	РСУ
руж.	1	2	3	4	руж.	1	2	3	4
1	1.00	1.10			2	1.00	1.30		

Существенные РСУ

Nº	$N_{\bar{0}}$	$N_{\bar{0}}$	N	Mx	Му	Qx	QУ
	коэф	.фунд.	[ĸH]	[кНм]	[кНм]	[ĸH]	[кН]
1	1	4	2000.0	2.0	-5.0	20.0	20.0
2	1	3	2000.0	-2.0	2.0	-20.0	-20.0
3	2	1	2400.0	15.6	6.5	-26.0	26.0
4	2	1	1100.0	0.0	0.0	0.0	0.0
5	2	2	2400.0	-15.6	-2.6	26.0	-26.0
6	2	3	2400.0	-2.6	2.6	-26.0	-26.0
7	2	44	2400.0	-9.5	-3.9	26.0	-8.7
8	1	37	2000.0	-5.3	-1.8	12.0	-6.7
9	1	2	2000.0	-12.0	-2.0	20.0	-20.0

В РСУ для расчета осадок распределенные нагрузки включены в вертикальное усилие ${\tt N}$.

Расчет основания

по СП 22.13330.2016

Расчет по деформациям Схема линейно деформируемого полупространства. Наибольшая осадка достигается при РСУ \mathbb{N}^8

у фундамента №37

Осадка фундамента s=3.9 см < su=15.0 см Наибольший крен достигается при РСУ №9 ,

у фундамента №2

Крен фундамента i=0.0012 < iu=0.0050 Наибольшая неравномерность осадок при РСУ \mathbb{N}^{8}

между фундаментами № 37 и № 1

Неравномерность осадок i=0.0003 < iu=0.0010

Расчет по несущей способности

Наиболее опасным по устойчивости является РСУ N6 для фундамента \mathbb{N}^3 .

Сила предельного сопротивления грунта Nu=3693 кН Сила, действующая на фундамент N=2579 кН

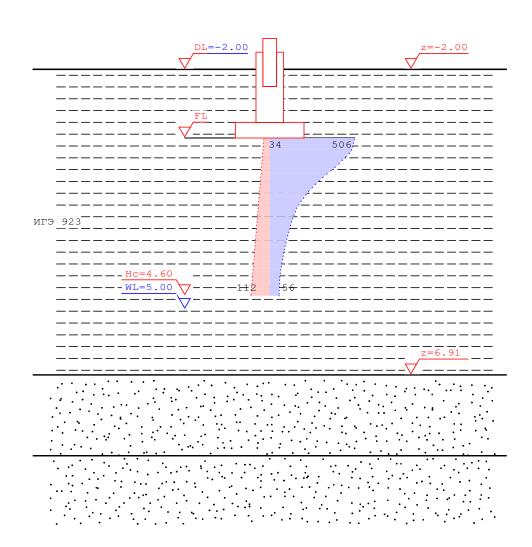
<u>Исходные данные</u> Размеры

и результаты расчета

Объект	размеры	по	X :	И	по	Y	высота/глубина h/dc
		[CM]		[CN	1]	[CM]
плита	1	20.	0	1	20.	0	40.0
подколон	ник	80.	0		80.	0	210.0
колонна		40.	0		40.	0	100.0

Высота фундамента от подошвы 250.0 см

 Позиция
 t536
 Страница
 546


 Проект
 CTATИКА тест всех модулей
 Дата
 28.10.2024

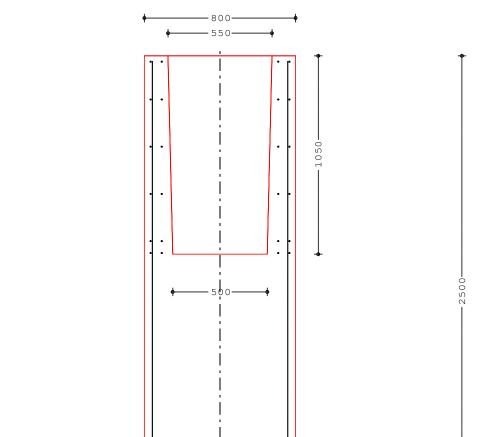
 Разраб.
 Разработчик
 CTATИКА/536
 Версия
 2025.000

Результаты расчета

геометричес	ких характе	ристик	фундамента.		
Объект ра	змеры по Х	и по Ү		высота	h
	[CM]	[CM]		[CM]	
плита 1	200.0	200.0		45.0	
полколонник	80 0	80 0		205 0	

Фундамент №37 М = 1 :110 Схема расположения слоев грунта

Расчет основания по СП 22.13330.2016


Расчет по деформациям Схема линейно деформируемого полупространства. Наибольшая осадка достигается при РСУ $\mathbb{N}8$ Глубина сжимаемой толщи Hc = 4.60р=539.9 кПа Среднее давление под подошвой ру=561.1 кПа Краевое давление вдоль оси у рх=548.4 кПа Краевое давление вдоль оси х рху=569.6 кПа Давление в угловой точке Расчетн. сопротивление грунта по 5.6.7 $R=452.4~\mathrm{kla}$ Сопротивление грунта с учетом 5.6.24 R=542.8 кПа Сопротивление на глубине z=6.9 м Rz=622.4 кПа Напряжения на глубине z=6.9 м sigma=211.4 кПа Сопротивление на глубине z=9.3 м Rz=669.5 кПа Напряжения на глубине z=9.3 м sigma=211.5 кПа Осадка фундамента s=3.9 cm < su=15.0Наибольший крен достигается при РСУ №9 i=0.0012 < iu=0.0050Крен фундамента

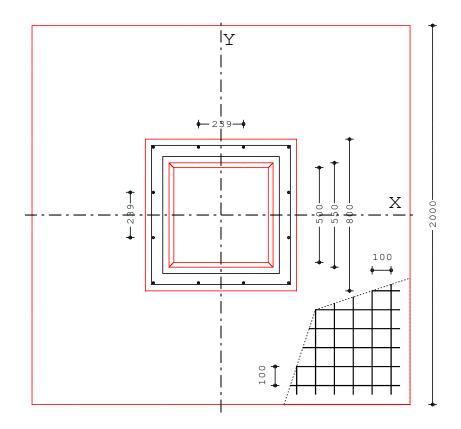
Расчет по несущей Наиболее опасным по устойчивости является РСУ N6

	Позиция	t536		Страниц	a 547
l	Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
	Разраб.	Разработчик	СТАТИКА/536	Версия	2025.000

способности Макс. глубина поверхности скольжения zm=1.92 м Коэф. надежн. по назначению сооруж. γ_n =1.15 опасное направление по оси Y, эксц. e_y =0.02 м Приведенная ширина фундамента b'=1.95 м Сила предельного сопротивления грунта Nu=3693 кН N=2579 < γ_c Nu/ γ_n =3211 УСЛОВИЕ ВЫПОЛНЕНО

Схема фундамента М = 1 :20 вид сбоку

450—


-2000-

Страница Дата **28.10.2024** t536 Позиция Проект СТАТИКА тест всех модулей Разработчик **СТАТИКА/536** Версия 2025.000 Разраб.

Схема фундамента

вид сверху

M = 1 : 20

Осадка и крен

$N_{\tilde{0}}$	осадка	РСУ	крен	РСУ	$N_{\bar{0}}$	осадка	РСУ	крен	РСУ
кол.	. [MM]		[x100]		кол.	[MM]		[x100]	
1	18.6		0.0621		2	37.9	9	0.1208	9
3	37.9	2	0.1208	2	4	37.9	1	0.1208	1
5	19.0		0.0644		6	19.2		0.0666	;
7	18.7		0.0539)	8	19.1		0.0518	
9	19.2		0.0530)	10	38.2		0.1183	
11	18.7		0.0553	3	12	19.3		0.0391	
13	19.3		0.0400)	14	38.2		0.1158	
15	18.7		0.0567	,	16	19.3		0.0262	
17	38.5		0.0473	3	18	38.2		0.1132	
19	18.7		0.0580)	20	22.1		0.0209	
21	21.8		0.0237	,	22	38.2		0.1107	
23	21.3		0.0654		24	21.8		0.0221	
25	21.6		0.0219)	26	21.2		0.0652	
27	38.2		0.1107	,	28	22.9		0.0248	
29	22.4		0.0211	•	30	38.2		0.1057	
31	38.2		0.1132		32	38.5		0.0463	
33	38.5		0.0473	3	34	38.2		0.1032	
35	38.2		0.1158	3	36	38.5		0.0695	
37	38.5	8	0.0710	8	38	38.2		0.1007	
39	38.2		0.1183	3	40	38.5		0.0926	;
41	38.5		0.0946	<u>, </u>	42	38.2		0.0981	
43	38.2		0.1158	1	4 4	38.2		0.1183	

Позиция t536 549 Страница СТАТИКА тест всех модулей 28.10.2024 Проект Дата Разработчик Версия 2025.000 Разраб. **СТАТИКА/536**

Продавливание

Расчет на продавливание по СП 63.13330.2018.

Бетон В 25 (тяжелый)

Deton	D 23	(TAWENI	ועוני			
Плита	ось	РСУ	h0	Lx	Lу	eta
			[CM]	[CM]	[CM]	
1	V	3	3.8.4	118 4	118 40	0 93

Расчет арматуры

по СП 63.13330.2018 с использованием трехлинейной диаграммы состояния сжатого бетона.

Арматура плиты

Сталь 2	Сталь А500											
Ось	Коорд.	РСУ	Мизг	h	As	d	n					
прутка	[M]		[кН*м]	[CM]	[см2]	[MM]						
X	0.40	5	227.0	38.2	14.1	12	19					
Y	0.40	4	227.0	39.4	13.7	12	19					

Нижние прутки ориентированы по оси Ү.

Поперечная арматура стакана

Сталь	A240						
Ось	Z	РСУ	р	As/s	S	d	n
	[CM]		[кН/м]	[см2/м]	[MM]	[MM]	
Y	3.7	6	88.4	5.2	200	6	4
Y	23.7	6	58.8	3.5	250	6	4
Y	48.7	6	27.6	1.6	250	6	4
Y	73.7	7	23.5	1.4	250	6	4
Y	98.7	7	39.1	2.3	63	6	4
Y	105.0	7	39.9	2.3	63	6	4
	_						

Координата Z принимется от верхнего края стакана.

Продольная арматура подколонника: сталь А500

Наиболее опасное РСУ N3 . Диаметр прутков 12мм. 12 прутков с шагом по оси X 238мм, по оси Y 238мм.

Трещиностойкость

Предельно допустимая ширина раскрытия трещин принимается из условия обеспечения сохранности арматуры по СП 63.13330.12 астс1=0.4мм астс2=0.3мм

Мизг1 Ось Коорд. РСУ Мизг2 acrc2 acrc1 Mcrc 2 1 [кН*м] [кН*м] [MM] [M] [кН*м] [MM] 0.40 0.08 1 1 190.4 190.4 186.1 0.08 Υ 0.40 2 190.4 190.4 187.5 0.07 0.07

Расчет выполнен модулем 536 программы СТАТИКА 2025 © 000 Техсофт

Поз. t537

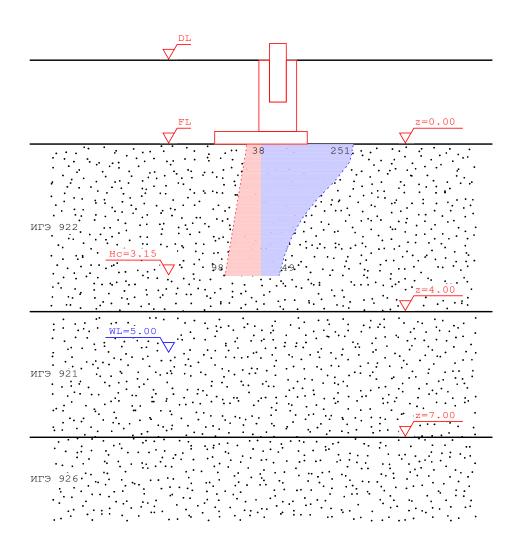
Плита

Несимметричный столбчатый фундамент

ПРЕДУПРЕЖДЕНИЕ

Не выполняется проверка на продавливание.

Данные для расчета


 Позиция
 t537
 Страница
 550

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/537
 Версия
 2025.000

Схема расположения слоев грунта

M = 1 : 90

Грунт

N	Слой		Тип грунта в слое
1	игэ 9:	22 П€	сок средней крупности
2	игэ 9:	21 Kr	упный песок
3	игэ 9:	26 Me	який песок

Нормативные значения характеристик по слоям.

	тип	Z		E		c/Rc	е	ΙL
		[M][кН/м ³]	[МПа]	[град]	[кПа]	[응]	
игэ	922	0.00	19.0	45.0	39.0	2.0	40.0	
игэ	921	4.00	18.0	30.0	38.0	2.0	40.0	
игэ	926	7.00	20.0	28.0	32.0	2.0	40.0	

Размеры

Объект	х оп ыдэмеры	и по Ү	высота/глубина h/dc
	[CM]	[CM]	[CM]
плита	200.0	200.0	30.0
подколонн	ик 90.0	90.0	170.0
колонна	40.0	40.0	100.0

Высота фундамента от подошвы 200.0 см

Нагрузки

N	Нагрузка.	N	M×	My	Qx	QУ
		[ĸH]	[кН*м]	[кН*м]	[ĸH]	[KH]
1	Постоянная	1000.0	0.0	0.0	0.0	0.0
2	Кратковрем.	200.0	0.0	0.0	0.0	0.0

Позиция t537 551 СТАТИКА тест всех модулей 28.10.2024 Проект Дата Разраб. Разработчик **СТАТИКА/537** Версия 2025.000

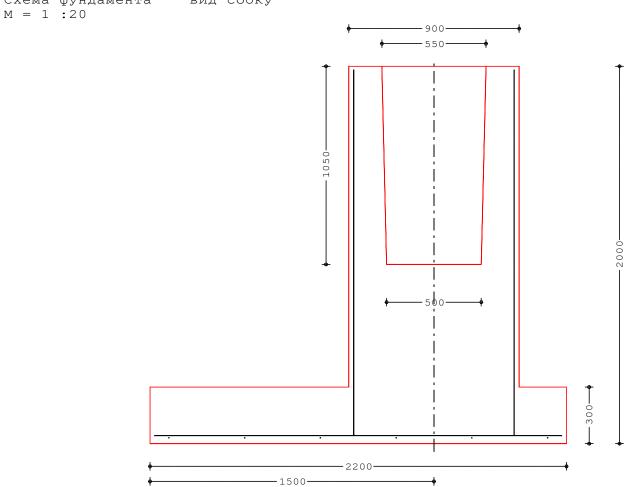
РСУ Усилия и моменты

расчетные сочетания усилий по СП 20.13330.2016 для опасных РСУ на высоте Н от подошвы фундамента.

	011000112		1100 22100	7 - 0 0	<u> </u>	# J	
N	Тип	табл.	N	Mx	Му	Qx	QУ
	РСУ	коэф.	[ĸH]	[кН*м]	[кН*м]	[ĸH]	[ĸH]
1	тр.кр.	. 1	1200.0	0.0	0.0	0.0	0.0
2	основ.	. 2	1360.0	0.0	0.0	0.0	0.0
3	основ.	. 3	1160.0	0.0	0.0	0.0	0.0

Наиболее опасные сочетания усилий

Наг-	Коэ	Коэффициенты			Наг-	Коз	Коэффициенты		
руж.	1	2	3	4	руж.	1	2	3	4
1	1 00	1 10	0 90		2	1 00	1 30	1 30	

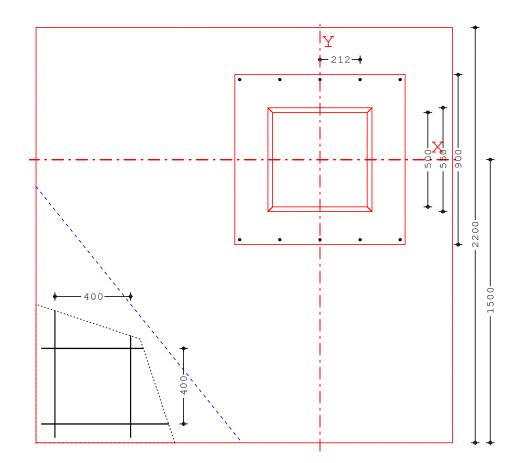

Результаты расчета

геометрических характеристик фундамента.

Объект	размеры по Х	и по У	высота h
	[cm]	[cm]	[cm]
плита 1	220.0	220.0	30.0
подколон	иник 90.0	90.0	170.0

Схема фундамента

вид сбоку



 Позиция
 t537
 Страница
 552

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/537
 Версия
 2025.000

Схема фундамента M = 1 :20 вид сверху

Расчет основания по СП 22.13330.2016

Расчет по деформациям

Наибольшая осадка достигается при РСУ № 1. Глубина сжимаемой толщи Hc = 3.15Среднее давление под подошвой р=289.2 кПа Эксцентриситеты равнодействующей $e_{x} = 0.35$ $e_y = 0.35$ Краевое давление вдоль оси у $p_v = 567.2$ кПа $p_x^- = 567.2$ кПа Краевое давление вдоль оси х _{рху}=916.9 кПа Давление в угловой точке Расчетн. сопротивление грунта по 5.6.7 \hat{R} =858.9 кПа Сопротивление грунта с учетом 5.6.24 R=1030.7 кПа s=0.6 cm < $s_u=10.0$ Осадка фундамента Наибольший крен достигается при РСУ № 1, Крен фундамента i=0.0037 $< i_u = 0.0050$ Наибольший отрыв подошвы фундамента от основания достигается при РСУ №1 и составляет 15% её площади

Схема линейно деформируемого полупространства.

Расчет по несущей способности

Наиболее опасным по устойчивости является РСУ № 2. Макс. глубина поверхности скольжения $z_m = 2.73$ м Коэф. надежн. по назначению сооруж. $\gamma_n = 1.15$ Опасное направление по оси Y, эксц. $e_y = 0.35$ м Приведенная ширина фундамента b' = 1.49 м Сила предельного сопротивления грунта $N_u = 7095$ кН N=1586 $< \gamma_c N_u/\gamma_n = 6170$ УСЛОВИЕ ВЫПОЛНЕНО

Позиция **t537** 553 Страница СТАТИКА тест всех модулей 28.10.2024 Проект Дата Разработчик **СТАТИКА/537** Версия 2025.000

Продавливание.

Расчет на продавливание по СП 63.13330.2018.

Белон в 25

ьетон	B Z 3	пэжет)	ыи)			
Плита	ось	РСУ	h0	Lx	Lу	η
			[cm]	[cm]	[cm]	
1	Y	2	26.1	173.1	173.05	1.47

Не обеспечена

прочность на действие поперечной силы в плите

Расчет арматуры

по СП 63.13330.2018 с использованием трехлинейной диаграммы состояния сжатого бетона.

Арматура плиты Нижняя арматура

Сталь .	A 500						
Ось	Коорд.	РСУ	Мизг	h ₀	A _s	d	n
прутка	[M]		[кН*м]	[CM]	[cm ²]	[MM]	
X	0.00	3	0.0	25.7	0.0	12	6
Y	0.00	3	0.0	26.9	0.0	12	6

Нижние прутки ориентированы по оси Ү.

Верхняя арматура

и пр	оверк	а пл	иты	на	действие	обратн	OFO	MOM	ента.
Плит	a	РСУ	M _M s	3 F	R _{bt} *W _{pl}	As	n	d	S
	Ось		[ĸH'	^к м]	[кН*м]	[CM ²]		[MM]	[MM]
1	Y	2	0 .	.16	48.11				
1	X	2	0.	.16	48.11				

Продольная арматура подколонника: сталь А500

Наиболее опасное РСУ №3 . Диаметр прутков 12мм. 10 прутков с шагом по оси X 212мм, по оси Y 848мм.

Трещиностойкость

Предельно допустимая ширина раскрытия трещин принимается по СП 63.13330.2018 из условия обеспечения сохранности арматуры астс1=0.4мм астс2=0.3мм

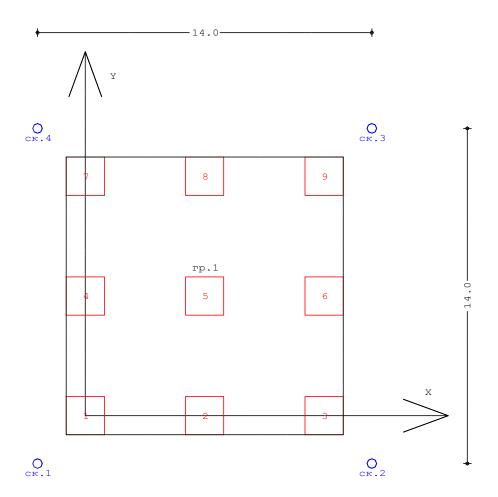
Мизг1 Ось Коорд. РСУ Мизг2 Mcrc acrc2 acrc1 [M] 2 1 [KH*M] [KH*M] [KH*M] [MM] 1 1 77.0 77.0 87.6 0.00 [MM] 1 1 //... 77.0 77.0 87.6 0.00 0.00 88.1 0.00 0.00 -0.45 0.45

Расчет выполнен модулем 537 программы СТАТИКА 2025 © 000 Техсофт

Поз. t538

Плита

Поле свайных фундаментов


Данные для расчета

 Позиция
 t538
 Страница
 554

 Проект
 CTATИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 CTATИКА/538
 Версия
 2025.000

План площадки М = 1 :158

 Позиция
 t538
 Страница
 555

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/538
 Версия
 2025.000

План слоя 1 M = 1 :158 игэ 1

Колонны: положение и нумерация

No	Nº	X	У	Nº	Nº	Х	У
кол.	грп.	[м]	[м]	кол.	грп.	[M]	[M]
1	1	0.0	0.0	2	1	5.0	0.0
3	1	10.0	0.0	4	1	0.0	5.0
5	1	5.0	5.0	6	1	10.0	5.0
7	1	0.0	10.0	8	1	5.0	10.0
9	1	10.0	10.0				

Грунт

Νº	Слой	Вид	грунта
1	игэ 1	Глина	

Нормативные значения характеристик по слоям

Nº	метка	γ	E	φ	С	w_p	WL
		[кН/м3]	[MΠa]	[град]	[кПа]	[응]	[응]
1	игэ 1	18.0	20.0	25.0	15.0	10.0	30.0

Скважины

Nº	координаты скважин и расположение слоев
1	x=-2.00м y=-2.00м z[м] 0.00 N°гр. 1
2	x=12.00м y=-2.00м z[м] 0.00 N*гр. 1
3	x=12.00м y=12.00м z[м] 0.00 №гр. 1

ООО Техсофт, Москва

 Позиция
 t538
 Страница
 556

 Проект
 CTATИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 CTATИКА/538
 Версия
 2025.000

4 x=-2.00м y=12.00м z[м] 0.00 N*гр. 1

Координата z отсчитывается от подошвы фундамента.

Уровень грунтовых вод WL=100.00м

Нагрузки

Nº	$N_{f ar o}$	N	Mx	МУ	Qx	QУ
наг	р. колонны	[KH]	[кНм]	[кНм]	[ĸH]	[ĸH]
1	Постоянная 1 2 3 4 5 6 7 8 9	$\gamma_{f}=1.10$ 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0	0.0
2	Кратковрем. 1 2 3 4 5 6 7 8 9	γ _f =1.30 10.0 10.0 10.0 10.0 10.0 10.0 10.0	-15.0 -15.0 0.0 3.8 7.5 15.0 22.5	0.0	-10.0 20.0 7.5 -5.0 20.0 10.0	-10.0 -10.0 -10.0 0.0 2.5 5.0 10.0 15.0 20.0
3	Длительная 1 2 3 4 5 6 7 8 9	γ _f =1.05 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0	30.0 30.0 30.0 0.0 0.0 -30.0 -30.0	0.0 30.0 -30.0 -7.5 15.0 -30.0	0.0 40.0 -40.0 -10.0 20.0	-40.0 -40.0 -40.0 0.0 0.0 0.0 40.0 40.0

Расчет

Материал ростверка

Согласно СП 24.13330.2021, СП 63.13330.2018, СП 20.13330.2016

Вид свай висячие забивные железобетонные сваи

Свая погружается молотом

Принимается шарнирное сопряжение сваи с ростверком

Глубина заложения ростверка от поверхности рельефа d_n 3.00 М d_0 от уровня планировки 3.00 M Бетон В 25 (тяжелый) Коэффициент условий работы γ_b = 0.900 A500 Продольная арматура Косвенная арматура A400 = 13.05 Сопротивление бетона $\gamma_b R_b$ МΠа γ_bR_{bt} 0.95 МΠа Rs = 435Сопротивление арматуры МΠа = 400 R_{sc} МΠа $R_{s,xy} = 350$ МΠа

Позиция	t538		Страниц	a 557
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/538	Версия	2025.000

Материал сваи	Бетон	в 25	(тяжелый)	
	Коэффициент условий работы	γ_b	= 0.900	_
	Арматура	A500		
	Сопротивление бетона	$\gamma_b R_b$	= 13.05	МΠа
	Сопротивление арматуры	Rs	= 435	МΠа
		R _{sc}	= 400	МΠа

План фундамента

Размеры сечения колонны	c _x			CM CM
Размеры ростверка	l _x l _y	=	160 160	CM CM
Толщина ростверка	h	=	40	СМ
Число свай	n	=	4	_
Расстояние от грани ростверка по оси х по оси у	a_x	=	30.0	свай СМ СМ
Ширина сечения сваи	d	=	30	СМ
Наименьшее расстояние между ос	сями с a _{min}			CM

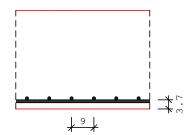
Арматура в ростверке по осям х и у

Ось	Арматура	ds	Шаг	Число	As	а _з	h ₀	μ
		[MM]	[CM]	стерж.	[см2]	[MM]	[CM]	[응]
x *	пижняя	12	9	18	20.36	25	36.9	0.34
y *	RRHЖNH	12	9	18	20.36	37	35.7	0.36

^{*} арматура подобрана с учетом ограничения ширины раскрытия трещин

t538 Позиция СТАТИКА тест всех модулей Проект

Разработчик

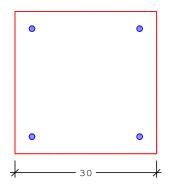

СТАТИКА/538

Страница 28.10.2024 Дата

Версия 2025.000

558

40 | 9 |



Арматура в свае

Разраб.

Число стержней Диаметр стержней Защитный слой бетона

n_s 12 ds MM 30 aз MM

Стержни: 4 ∅12 Защитный слой: аз = 30 мм

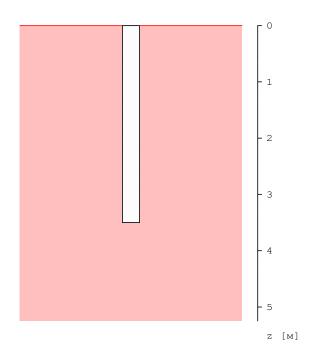
Вес ростверка и сваи не учитывается.

Проверка прочности грунта основания сваи при сжимающей нагрузке

Колонна 1

Удельный вес грунта выше уровня подошвы ростверка нормативное значение 0.0 кН/м3 γ_{0n} расчетное значение 0.0 кН/м3 γ 0

Толщина слоев


Слой	h	[M]		Вид	грунта
1			Глина	полут	гвердая

 Позиция
 t538
 Страница
 559

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/538
 Версия
 2025.000

Схема геологического разреза

Комбинация нагрузок

Номер нагрузки (Коэффициент) 1 (1.10) 3 (1.05)

Нагрузка на фундамент

N	H_{x}	Н _У	M_{\times}	My
[ĸH]	[ĸH]	[ĸĤ]	[кНм]	[кНм]
1310.0	-42.0	-42.0	-31.5	-31.5

Условие прочности

$$N_0 \gamma_n \gamma_{c,g} / F_d =$$

375.8 * 1.00 * 1.40 / 530.3 = **0.992** <= 1

Проверка допустимости давления на грунт боковой поверхностью сваи

Колонна 9

Комбинация нагрузок

Н	омер	наг	руз	ки	(Kos	Эффи	ициент)
1	(1.1	0)	2	(1.	30)	3	(1.05)

Нагрузка на фундамент

N	H _x	Ну	M _×	My
[ĸH]	[ĸH]	[ĸH]	[кНм]	[кНм]
1323.0		68.0	-7.5	

Условие допустимости

$$p / p_u = 17.0 / 59.9 = 0.283 \le 1$$

Проверка прочности материала сваи

Колонна 1

Комбинация нагрузок

Нο	мер)	наг	руз	ки	(Ko:	эффи	щи	ент)
1	(1.	1	0)	2	(1	.30)	3	(1	.05)

Нагрузка на фундамент

N	H_{x}	H_{V}	M_{x}	M _V
[ĸH]	[ĸH]	[ĸĤ]	[кНм]	[кНм]
1323.0	-16.0	-55.0	-12.0	-12.0

Сжимающая сила

$$N_0 / N_{0u} = 375.8 / 996.0 = 0.377 <= 1$$

Момент $M_{\rm x}$

$$M_x / M_{xu} =$$

$$9.0 / 23.7 = 0.377 <= 1$$

Позиция t538 560 Страница СТАТИКА тест всех модулей 28.10.2024 Проект Дата Разработчик **СТАТИКА/538** Версия 2025.000 Разраб. Момент $M_{
m V}$ M_v / M_{vu} 9.0 / 23.7 0.377 <= 1 Проверка допустимости перемещения и угла поворота головы сваи Колонна Номер нагрузки (Коэффициент) Комбинация нагрузок (1.00)2 (1.00) Hy M_{\times} M_y Нагрузка Ν H_{x} на фундамент [KH] [KH] [ĸĤ] [кНм] [кНм] 1210.0 60.0 Перемещение u_0 / u_{ij} 0.55 / 3.00 **0.183** <= 1 0.0027 / 0.0050 Угол поворота **0.533** <= 1 ψ_0 / ψ_u Проверка трещиностойкости сваи Колонна Комбинация нагрузок Номер нагрузки (Коэффициент) 1 (1.00) Нагрузка Ν H_{x} H_{V} M_{x} M_V [ĸĦ] [KH] [кНм] [кНм] на фундамент [KH] -30.0 1200.0 -40.0-40.0-30.0 N/N_{crc} $M_{x}/M_{x,crc}$ $M_{y}/M_{y,crc}$ Образование трещин Трещины 0.538 0.538 1.000 не образуются Проверка допустимости осадок свай в кусте Колонна 1 Комбинация нагрузок Номер нагрузки (Коэффициент) 1 (1.00) M_{y} Нагрузка Ν H_{x} H_{y} M_{\times} на фундамент [KH] [KH] [ĸĤ] [кНм] [кНм] 1200.0 -40.0 -40.0-30.0 -30.0 1.26 / 8.0 **0.157** <= 1 Условие допустимости $s / s_u =$ = Проверка прочности сечений ростверка, нормальных к осям х и у Колонна Комбинация нагрузок Номер нагрузки (Коэффициент) (1.10)(1.05) M_y Нагрузка Ν H_{x} H_{y} M_{\times} на фундамент [KH] [KH] [KH] [кНм] [кНм] 1310.0 -42.0 -42.0 -31.5-31.5Условие прочности Ось Μ M_u $M/M_{11} <=$ [кНм] [кНм] Х 211.0 307.3 0.687 <= 211.0 296.6 0.711 <= Проверка ширины раскрытия трещин в ростверке, нормальных к осям х и у Колонна Комбинация нагрузок Номер нагрузки (Коэффициент) (1.00)ООО Техсофт, Москва

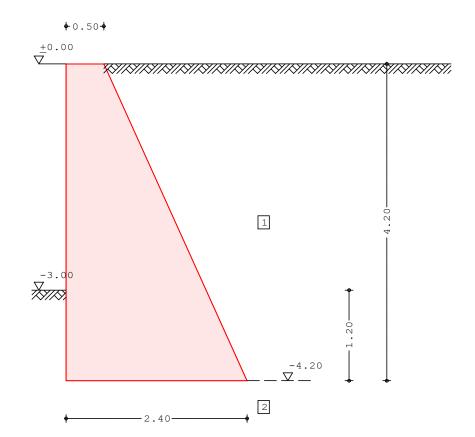
Позиция t538 Проект СТАТИКА тест в Разраб. Разработчик	сех модулей СТАТИКА/538	Страница 561 Дата 28.10.2024 Версия 2025.000
Нагрузка на фундамент	N H _x H _y [кН] [кН] 1200.0 -40.0	М _х М _у [кНм] [кНм] -30.0
Ширина раскрытия трещин	Ось М M1 Мсгс [кНм] [кНм] [кНм] х 193.8 193.8 123.6 у 193.8 193.8 122.2	а _{с1} а _{с2} [мм] [мм] 0.189 0.189 0.198 0.198
Проверка прочности	сечений ростверка, наклонных к ося	мхиу
	Колонна 1	
Комбинация нагрузок	Номер нагруз	ки (Коэффициент) (1.10) 3 (1.05)
Нагрузка на фундамент	N H _x H _y [кН] [кН] [кН] 1310.0 -42.0 -42.0	М _х М _у [кНм] [кНм] -31.5 -31.5
Условия прочности	$Q_x / Q_{bx} = 703 / 1395$ $Q_y / Q_{by} = 703 / 1349$	
Проверка прочности	ростверка на смятие колонной	
	Колонна 1	
Комбинация нагрузок	Номер нагруз 1 (1.10) 2	ки (Коэффициент) (1.30) 3 (1.05)
Нагрузка	N H _x H _y	M _x M _y
на фундамент	[кН] [кН] [кН] 1323.0 -16.0 -55.0	[KHM] [KHM] -12.0 -12.0
Условие прочности	$N / N_b = 1323 / 3758$	= 0.352 <= 1
Проверка прочности	ростверка на продавливание колонно	ой
	Колонна 1	
Комбинация нагрузок	Номер нагруз 1	ки (Коэффициент) (1.10) 3 (1.05)
Нагрузка	N H _x H _y	M _x M _y
на фундамент	[кH] [кН] [кН] 1310.0 -42.0 -42.0	[кНм] [кНм] -31.5 -31.5
Условие прочности	F / F_{ult} + M_x / $M_{x,ult}$ + M_y / $M_{y,u}$	1t=
	0.7173 + 0.0941 + 0.0941	= 0.905 <= 1
Проверка прочности	ростверка на продавливание угловой	і сваей
	Колонна 1	
Комбинация нагрузок	Номер нагруз	ки (Коэффициент) (1.10) 3 (1.05)
Нагрузка	N Н _х Н _у [кН]	M _x M _y
на фундамент	[KH] [KH] [KH] [1310.0 -42.0 -42.0	[кНм] [кНм] -31.5 -31.5
Условие прочности	F / F_{ult} + M_x / M_x , ult + M_y / M_y , u	1 t =
	0.3752 + 0.0938 + 0.0938	= 0.563 <= 1
	Работоспособность фундамента обесп	ечена

ООО Техсофт, Москва

 Позиция
 t538
 Страница
 562

 Проект
 СТАТИКА тест всех модулей
 СТАТИКА/538
 Версия
 2025.000

Расчет выполнен модулем 538 программы СТАТИКА 2025 © 000 Техсофт


Поз. t542

Массивная подпорная стенка. Пример 1 Пособия

Расчётная схема

M = 1 : 50

Размеры стенки и грунт

Геометрия	Высота стенки Толщина стенки вверху Толщина стенки внизу Наклон задней поверхности	h bв bн ε	= = = =	4.20 0.50 2.40 24.34	M M M
_	Удельный вес стенки	γ	=		кН/м3
Поверхность слева:	глубина заложения стенки	d	=	1.20	M
справа:	горизонтальна				
Характерист. слоев	слой выс. уд.вес ф	δ_a		$\delta_{ extsf{p}}$	С
	N [M] [KH/M3] [°]	[°]		[°]	кН/м2]

18.00

10.00 18.9/11.2 22.73

4.20

Угол трения подошвы $\delta_{\, { t s} \, { t f}} = \phi$

26.00

26.00

15.15

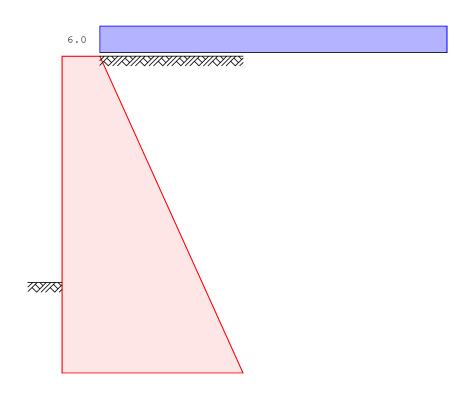
0.00

-16.67

0.00

8.00

 Позиция
 t542
 Страница
 563


 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/542
 Версия
 2025.000

Нагружение

Нагрузки

M = 1 : 50

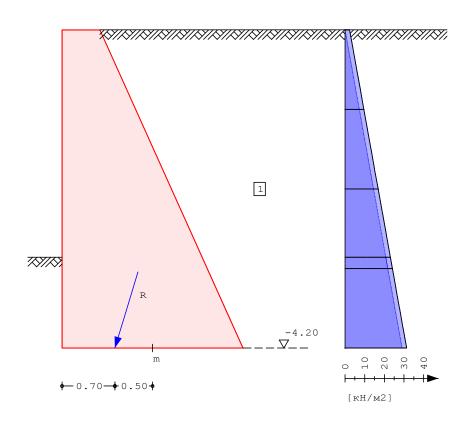
Вид нагрузки	место	а	s	р	P
	прилож.	[M]	[M]	[кН/м2]	[кН/м]
равномерн.	на пов.			6.00	

Уровень воды

расст. от верха стены справа wr = 12.00 м расст. от верха стены справа wl = 12.00 м

Давление грунта

активное давление грунта для расчета устойчивости с учетом сопротивления грунта с лицевой стороны. наклон поверхности сдвига θ = 57.50


 Позиция
 t542
 Страница
 564

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/542
 Версия
 2025.000

Давление грунта на стенку

M = 1 : 50

Давление грунта на стенку

Граница	Отметка	eagh	eaph	ph	ephr
слоя	[M]	[кН/м2]	[кН/м2]	[кН/м2]	[кН/м2]
1аверхн.	-0.00	-0.00	2.30	0.00	
нижн.	-1.05	7.26	2.30	0.00	
1bверхн.	-1.05	7.26	2.30	0.00	
нижн.	-2.10	14.51	2.30	0.00	
1сверхн.	-2.10	14.51	2.30	0.00	
_	-3.00	20.73	2.30	0.00	0.00
нижн.	-3.15	21.77	2.30	0.00	-2.70
1 дверхн.	-3.15	21.77	2.30	0.00	-2.70
нижн.	-4.20	29.02	2.30	0.00	-21.60

Результ. усилия на стенку

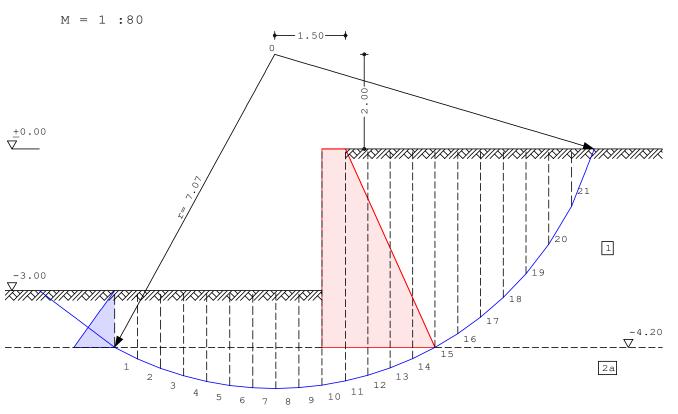
Г	раница	Отметка	Eagh	Eaph	Fwh	Eah
	слоя	[M]	[кН/м]	[кН/м]	[кН/м]	[кН/м]
1a	нижн.	-1.05	3.81	2.42	0.00	6.23
1b	нижн.	-2.10	15.24	4.84	0.00	20.07
1с	нижн.	-3.15	34.28	7.26	0.00	41.54
1 d	нижн.	-4.20	60.94	9.67	0.00	70.62

1d ниж:	н.	-4.20	60.	94	9.67	7	0	.00	•	70.6	52
	енный в составј		_	ения	G Eav		-		кl кl	,	
Сумма	вертика	альных	сил		V	=	189	.32	кl	 Н/м	-
	состан										
Сумма	горизон	нтальн	ых сил	ī	Н	=	5 7	.66	к	Н/м	
Сумма	моменто	ЭB			Mm	=	9 4	.54	кНі	м/м	
Угол н Допуст Эксцен	ействую аклона . эксце трисите енная п	равно ентрис ет рав	итет нодейс	d/3	R $oldsymbol{\delta}_{R}$ е доге b'		= =	16. 0. 0.	94 80 50	кН/	M M M
11211004		2216 2111 0	тто до ш		~				1 0		7.7

Подошва стенки

ООО Техсофт, Москва

Позиция	t542		Страница	565
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/542	Версия	2025.000


Момент опрокидывающих сил Μk = 105.63 kHm/mМомент удерживающих сил = 238.28 kHm/mMs Mk=105.6 < (0.90/1.10) Ms=195.0Условие выполнено Предельное сопротивл. грунта Nu = 271.58Fv=189.3 < (0.90/1.10) Nu=222.2Условие выполнено Наименьшая удерживающая сила Fsr = 104.26 kH/Mβ 0.00 реализуется при угле 12.96 кН/м Εr = Пассивное сопротивление Fsa=70.62<(0.90/1.10)Fsr=85.30 Условие выполнено

Устойчивость грунта на сдвиг по круглоцилиндрической поверхности. Количество исследованных окружностей= 228

Определяющая окружность координаты центра x = -1

 $m y = 2.00 \ M \
m paguyc = 7.07 \ M$

Μ

N	Слой 1	gam=18.0	1	Слой2а	gam=18.9	Слой2b	gam=11.2
	высота	g	:	высота	g	высота	g
	[M]	[кН/м2]		[M]	[кН/м2]	[M]	[кН/м2]
1	1.20	21.60		0.12	2.31	_	-
2	1.20	21.60		0.34	6.49	_	-
3	1.20	21.60		0.52	9.87	_	-
4	1.20	21.60		0.66	12.51	_	-
5	1.20	21.60		0.76	14.44	_	-
6	1.20	21.60		0.83	15.70	_	-
7	1.20	21.60		0.86	16.32	_	-
8	1.20	21.60		0.86	16.29	_	-
9	1.20	21.60		0.83	15.62	_	-
10	_	_		0.76	14.27	_	-
11	0.53	9.45		0.65	12.28	_	-
12	1.58	28.35		0.51	9.66	_	-
13	2.62	47.25		0.34	6.34	_	-
14	3.68	66.15		0.12	2.25	_	-
15	4.05	72.98		_	- 1	_	-
16	3.74	67.24		_	-	_	-
17	3.35	60.37		_	-	_	-
18	2.89	52.11		_	- 1	_	-
19	2.33	41.99				_	_

Позиция	t542		Страниц	a 566
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/542	Версия	2025.000

20	1.62	29.11	-	-	-	_	
21	0.61	10.91	-	_	-	_	

N	Бетон	gam=17.1
	высота	g
	[M]	[кН/м2]
1	_	_
2 3	_	_
3	_	_
4	_	_
5	_	_
6	_	_
7	_	_
8	_	_
9	_	_
10	4.20	71.82
11	3.67	62.84
12	2.62	44.89
13	1.58	26.93
14	0.52	8.98
15	_	_
16	_	_
17	_	_
18	-	_
19	-	_
20	_	_
21	_ _	_

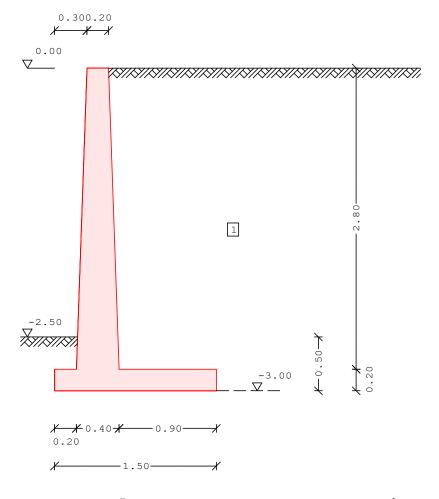
N	Сумм. д	Ширина С	Собств. Е	Нагруз.	G	theta
	[кН/м2]	[M]	[кН/м]	[кН/м]	[кН/м]	[°]
1	23.91	0.49	11.69	-	11.69	-26.53
2	28.09	0.49	13.74	-	13.74	-22.17
3	31.47	0.49	15.39	-	15.39	-17.95
4	34.11	0.49	16.68	-	16.68	-13.83
5	36.04	0.49	17.62	-	17.62	-9.78
6	37.30	0.49	18.24	-	18.24	-5.78
7	37.92	0.49	18.54	-	18.54	-1.80
8	37.89	0.49	18.52	-	18.52	2.16
9	37.22	0.49	18.19	-	18.19	6.14
10	86.09	0.50	43.05	-	43.05	10.19
11	84.58	0.48	40.17	-	40.17	14.23
12	82.90	0.48	39.38	-	39.38	18.25
13	80.52	0.48	38.25	-	38.25	22.35
14	77.37	0.48	36.75	1.80	38.55	26.59
15	72.98	0.48	35.27	2.90	38.16	31.02
16	67.24	0.48	32.49	2.90	35.39	35.72
17	60.37	0.48	29.17	2.90	32.07	40.72
18	52.11	0.48	25.18	2.90	28.08	46.13
19	41.99	0.48	20.29	2.90	23.19	52.14
20	29.11	0.48	14.07	2.90	16.96	59.16
21	10.91	0.48	5.27	2.90	8.17	68.27

N	G*sin(theta)	phi	с	Т
	[кН/м]	[°] [¹	кН/м2]	[кН/м]
1	-5.22	22.73	8.00	11.06
2	-5.18	22.73	8.00	11.47
3	-4.74	22.73	8.00	11.72
4	-3.99	22.73	8.00	11.87
5	-2.99	22.73	8.00	11.91
6	-1.84	22.73	8.00	11.87
7	-0.58	22.73	8.00	11.76
8	0.70	22.73	8.00	11.58
9	1.95	22.73	8.00	11.33
10	7.61	22.73	8.00	21.53
11	9.88	22.73	8.00	20.15
12	12.33	22.73	8.00	19.92
13	14.55	22.73	8.00	19.65

Позиция	t542		Страниц	a 567
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/542	Версия	2025.000

14	17.26	22.73	8.00	20.09
15	19.67	26.00	-	18.81
16	20.66	26.00	-	17.94
17	20.92	26.00	-	16.90
18	20.24	26.00	-	15.59
19	18.31	26.00	-	13.85
20	14.57	26.00	-	11.28
21	7.59	26.00	-	6.55
	161.68			306.83

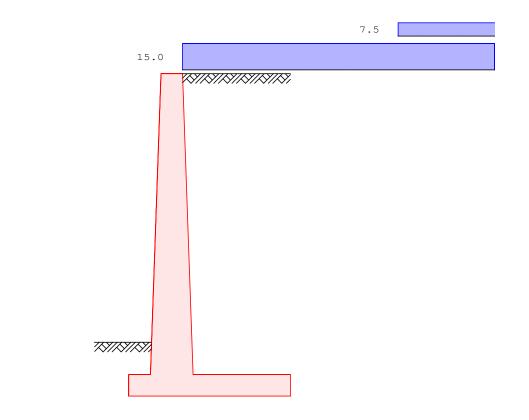
Момент от тангенциальных сил r*STi = 2169.65 кНм/м от собственн. веса и нагруз. r*SGi = 1143.27 кНм/м Мсдв=1143.3 < (0.90 / 1.10) Мсоп = 1775.17 **Условие выполнено**


Расчет выполнен модулем 542 программы СТАТИКА 2025 © ООО Техсофт

Поз. t543

Подпорная стенка на сваях

Расчётная схема


Размеры стенки

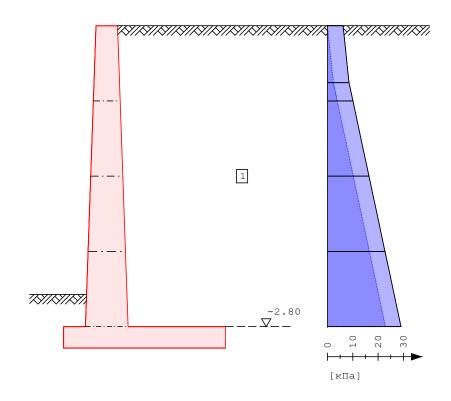
Высота стенки	h _s	=	3.00	M
Длина передней консоли	l _v	=	0.20	M
Длина задней консоли	lr	=	0.90	M

	ІКА тест і ботчик	всех модулей СТАТИКА/543			28.10 2025	568 0.2024 .000
, apas		Толщина ростверка Толщина стенки вверху Толщина стенки внизу Наклон передней грани Наклон задней грани	h _r d _o d _u α' α	= = = = = =	0.20 0.20 0.40 2.00	M M M o
Поверхность	слева: справа:	Удельный вес стенки глубина заложения стенки горизонтальная	γ h ₀	=	25.0	кН/м ³ м
Расчетные з грунт засып		толщ. уд.вес ф [м] [кн/м ³] [°] 3.00 22.00 25.45	δ _a [°] 16.97	-16.	δ _p [°]	с [кПа] 2.00

Нагружение

Mecto	a	s	р	P
прилож.	[M]	[M]	[кПа]	[кН/м]
на пов.			15.00	
на пов.	2.00	6.00	7.50	
	прилож. на пов.	прилож. [м] на пов.	прилож. [м] [м] на пов.	прилож. [м] [м] [кПа] на пов. 15.00

Давление грунта


Активное давление грунта для расчета устойчивости без учета сопротивления грунта с лицевой стороны. Наклон 1-й поверхн. сдвига θ = 71.57 наклон 2-й поверхн. сдвига θ = 55.16 °

Давление грунта на 1-ю поверхность

Граница	Отметка	eagh	e _{aph}	Рh	e _{phr}
слоя	[м]	[кПа]	[кПа]	[кПа]	[кПа]
1 верхн. *	-0.00	0.00	4.71	0.00	
*	-0.39	1.73	5.21	0.00	
нжин.	-3.00	23.42	8.54	0.00	
* = MM	нимальное	давление	λ_{agh}	= 0.20	

Грани	ца Отметка	E _{agh}	Eaph	F _{wh}	E _{ah}
сло	M] R	[кН/́м]	[кН/м]	[кН/м]	[кН/м]
1 ниж:	н3.0	33.12	19.88	0.00	53.00

Позиция Проект	t543 СТАТИКА тест	всех модулей		Страница 569 Дата 28.10.2024			
Разраб.	Разработчик	СТАТИКА/543	СТАТИКА/543 Версия				
		Собственный вес стенки	G	= 28.34 кН/м			
		Вес грунта справа от стенки	G_{br}	= 25.74 kH/M			
		Вес грунта слева от стенки	G_{bl}	= 1.37 kH/M			
		Верт. составл. акт. давления	Eav	= 50.99 кН/м			
		Сумма вертикальных сил	V	= 106.44 кН/м			
		Гориз. состав. акт. давления	Eah	= 53.00 кН/м			
		Сумма горизонтальных сил	Н	= 53.00 кН/м			
		Сумма моментов	М	= 44.56 кНм/м			
Расче	ет прочности	стенки Давление грунта на стенку					

Давление на стенку

Гра	ница		отметка	e _{agh}	e _{aph}	p_h	e _{ah}
С	поя		[м]	[кПа]	[кПа]	[кПа]	[кПа]
1a	верх	*	-0.00	0.00	6.16	0.00	6.16
		*	-0.53	2.33	6.18	0.00	8.51
	низ		-0.70	3.87	6.19	0.00	10.06
1b	верх		-0.70	3.87	6.18	0.00	10.05
	низ		-1.40	10.22	6.18	0.00	16.40
1c	верх		-1.40	10.22	6.18	0.00	16.40
	низ		-2.10	16.56	6.18	0.00	22.75
1d	верх		-2.10	16.56	6.18	0.00	22.75
	вин		-2.80	22.91	6.18	0.00	29.09

Усилия в сечении

 Позиция
 t543
 Страница
 570

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/543
 Версия
 2025.000

Сечение	объект	M	0
[M]	OODCRI	[кНм/м]	_ [кН/м]
			<u> </u>
-0.70	стенка	1.74	5.47
-1.40	стенка	8.50	14.72
-2.10	стенка	23.25	28.43
-2.80	стенка	49.08	46.57
0.60	плита	-31.75	

Расчет арматуры

стенки по СП 63.13330.2018

Расстояние до оси арматуры $a_{\rm C}$ = 4.0 см

Бетон В 25 (тяжелый) γ_b = 0.900

Арматура: продольн./попер. A500/A400

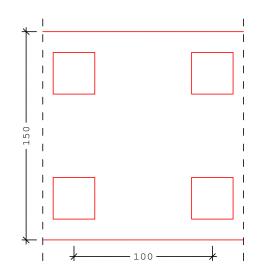
Продольная арматура

Сечение	M	N	h0	As	As'
[M]	[кНм/м]	[кН/м]	[CM]	$[cm^{2}/m]$	$[cm^{2}/m]$
-0.70 c	1.74	4.12	24.9	0.14	0.00
-1.40 c	8.50	9.23	29.8	0.64	0.00
-2.10 c	23.25	15.34	34.7	1.57	0.00
-2.80 c	49.08	22.47	39.6	2.95	0.00

Максимальная арматура стенки:

справа d=12мм с шагом 330мм

слева d=12мм с шагом 1000мм

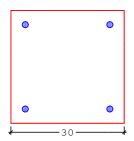

Арматура плиты сверху d=12мм с шагом 250мм

Поперечная арматура

Сечение	Q	N	Qb	С	
[M]	[кН/м]	[кН/м]	[кН/м]	[CM]	$[cm^{2}/m]$
-0.70	0.51	4.30	99.62	63.33	0.00
-1.40	4.85	9.45	122.72	78.11	0.00
-2.10	11.52	15.60	145.83	92.90	0.00
-2.80	20.90	22.77	168.92	107.72	0.00

Фундамент

Свайная лента


Ширина ростверка Толщина ростверка	b h _r		150 20	CM CM
Число рядов свай	n	=	2	-
Рядовое размещение свай Шаг свай в ряду	s	=	100	СМ
Расстояние от грани ростверка	до a	осей =		СМ

Вид свай забивные сваи

Позиция	t543		Страниц	ιa 571
Проект	СТАТИКА тест всех модулей			28.10.2024
Разраб.	Разработчик	СТАТИКА/543	Версия	2025.000

Свая погружается молотом

d 30 Ширина сечения сваи СМ Длина сваи 1 7.00 M Число стержней 4 Арматура в свае ns Диаметр стержней = 16 ds MM Защитный слой бетона 30 aз MM

Стержни: $4\, \phi 16$ Защитный слой: as = 30 мм

Грунт

Слой	Название слоя	h [м]	Вид грунта
1	bbb	3.00	Суглинок просадочный
2	CCC	10.00	Песок крупный средней плотности

Удельный	вес
грунта	

Слой	W	е	Sr	γs	γ	γ _{sat}
	[응]	[-]	[-]	[кН/м3]	[кН/м3]	[кН/м3]
1	5.0	0.37	0.36	26.0	20.0	21.7
2	4.0	0.56	0.19	27.0	18.0	

 $\gamma_{\, { t sat}}$ - удельный вес водонасыщенного грунта

Консистенция глинистого грунта

Слой	qW	$W_{ m L}$	Ιp	I _L	$I_{ t Lsat}$
	[응]	[응]	[응]	[-]	[-]
1	9.0	19.0	10.0	-0.40	0.36

 ${
m I}_{
m Lsat}$ - показатель текучести водонасыщенного грунта

Примечание

Сопротивление просадочного грунта определяется при показателе текучести $\mathbf{I}_{\texttt{Lsat}}$

Примечание

При определении сопротивления просадочного грунта значение ${\rm I}_{{\rm Lsat}}$ принимается не менее 0.4

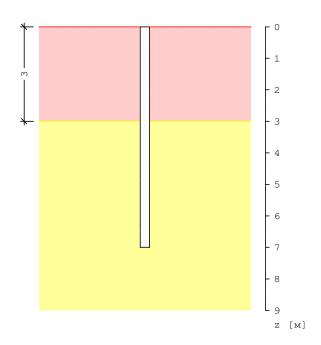
Коэфф. надежности

Слой	γα(ε)	γα(φ)	γα(γ)
1	1.50	1.15	1.10
2	1.50	1.10	1.10

Характеристики грунта

Слой		φ _{II} [град]	γ _{II} [кН/м3]	с _І [кПа]	ϕ_{I}	γ _I [кН/м3]
1	7.0			4.7		19.7
2	7 0	27 0	18 0	4 7	24 5	16 4

Примечание

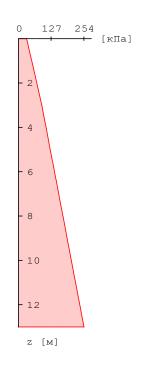

Значения с и ϕ для просадочного грунта задаются для состояния грунта при полном водонасыщении

 Позиция Проект
 t543
 Страница
 572

 Проект Разраб.
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Версия
 СТАТИКА/543
 Версия
 2025.000

Схема геологического разреза



Удельный вес $\gamma_{\, { ext{I}}}$

Напряжение от веса $\sigma_{ exttt{zg}}$

ООО Техсофт, Москва

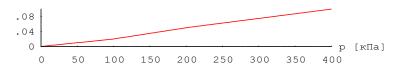
Напряжение от веса грунта

Слой	z ₁	z ₂	σ_{zq1}	σ_{zq2}
	[м]	[M]	σ _{zg1} [κΠa]	[кПа]
1	0.00	3.00	31.8	91.1
2	3.00	13.00	91.1	254.7

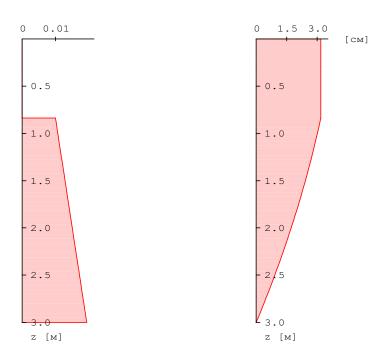
Нагрузка на уровне подошвы

Нагрузка на сваю

N	Н	M
[кН/м]	[кН/м]	[кНм/м]
106.44	53.00	-44.56


Вес сваи Коэффициент	надежности	G _C = γ _f		15.75	кН -
		N _{max} =	= 1	02.73	кН

Позиция t543 Проект СТАТИКА тест всех модулей Разраб. Разработчик		СТАТИКА/543		Страниц Дата Версия	28.10.202	24
			N _{min} H			кН
	Коэффициент	нормативной нагру	зки	=	0.70	-
Расчет	Согласно СП	24.13330.2021, СП	63.13	330.2	018	
Материал ростверка	Бетон Коэффициент Арматура	условий работы	B 25 γ _b A500	(тяже =	лый) 0.900	_
Материал сваи	Бетон Коэффициент Арматура	условий работы	B 25 γ _b A500	(тяже =	лый) 0.900	_


Определение отрицательной силы трения просадочного грунта

С	лой	Относит	ельная	просадоч	ность	ϵ sl	(Давл	ение	p)
	1	0.020	(100.0)	0.050	(200.0) 0	.100	(400.	.0)

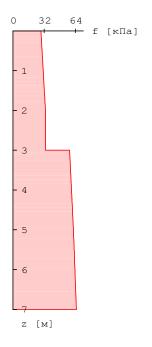
График зависимости ϵ_{sl} = f(p)

Относительная просадочность $\epsilon_{ ext{sl}}$ Просадка $ext{s}_{ ext{sl}}$

Тип грунтовых условий по просадочности

Отрицательная сила трения принимается равной нулю

Проверка прочности грунта основания сваи при сжимающей нагрузке


Сопротивление грунта под концом сваи

 $^{-}$ R = 7.70 МПа при глубине заложения h = 10.00 м

I тип

Коэффициент условий работы 1.00 $\gamma_{R,R}$

Сопротивление грунта на боковой поверхности сваи f

Сопротивление на боковой поверхности

z ₁	z ₂	γ _{R,f}	f ₁	f ₂
[M]	[м]	[-]	[кПа]	[кПа]
0.00	3.00	1.00	28.7	33.3
3.00	7.00	1.00	58.0	65.0

Примечание

Значение f увеличивается на 15% для супесей суглинков при е < 0.5 и для глин при е < 0.6

Коэффициент условий работы сваи при сжатии

1.00 $\gamma_{\rm C}$

Несущая способность сваи

$$F_d = F_{dR} + F_{df} = 693 + 411 = 1104$$
 кН

Условие прочности

 $N_0 \gamma_n \gamma_{c,g} / F_d =$

120.1 * 1.00 * 1.40 / 1104 = **0.152** <= 1

Проверка допустимости давления на грунт боковой поверхностью сваи

Коэффициент постели

OT Z	до z	K	Cz		
[M]	[M]	[кН/м4]	[ĸI	Н/м3]	
0.00	3.00	4400	0 -	- 13200	
3.00	7.00	9733	29200 -	- 68133	

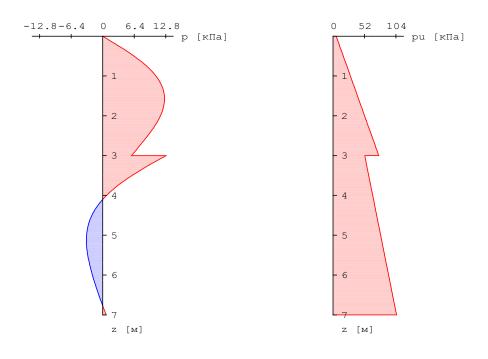
Примечание

Коэффициент постели c_z = Kz

Условная ширина сваи $b_p = 1.5d + 50 =$ 95.0 CM30.00 Модуль упругости ГΠа 20.25 Жесткость сваи EIМНм2

Коэффициент деформации

0.729 1/м α_{ϵ} при К 4400 кН/м4 $\text{l}\alpha_\epsilon$ 5.11


Давление р

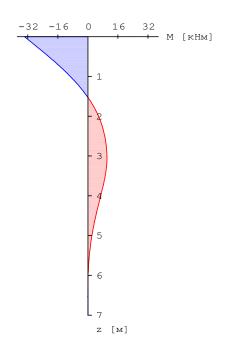
Предельное давление ри

 Позиция
 t543
 Страница
 575

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/543
 Версия
 2025.000

Коэффициенты в условии допустимости давления (Б.8) $\eta_1 = 1.0$ $\eta_2 = 0.400$ $\xi = 0.6$


 η_2 определяется по формуле (Б.9) приложения Б при n = 2.50 -

Условие допустимости

р / р = 11.7 / 32.7 = **0.357** <= 1 при z = 0.85 /
$$\alpha_{\epsilon}$$
 = 1.17 м

Проверка прочности материала сваи

Изгибающий момент

Сжимающая сила

$$N_0$$
 / N_{0u} = 3.7 / 4.6 = 0.797 <= 1
 M / M_u = 33.8 / 42.4 = 0.797 <= 1

Изгибающий момент

 Позиция
 t543
 Страница
 576

 Проект
 CTATИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 CTATИКА/543
 Версия
 2025.000

Определение длины анкеровки арматуры в верхнем сечении сваи

Требуемая площадь арматуры

 $A_s = 6.30$

см2

Длина анкеровки

 $l_{an} = 577$

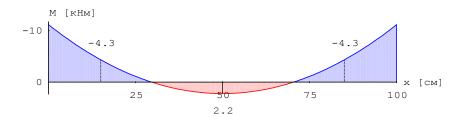
MM

Примечание

Значение l_{an} определено для растянутых стержней

Проверка трещиностойкости сваи

Расчет по образованию трещин


N	M	Ncrc	$M_{\tt crc}$	Трещины
[ĸH]	[кНм]	[ĸH]	[кНм]	
2.6	-23.7	1.5	-13.7	образуются

Условие трещиностойкости $a_{crc}/a_{crc,u}=0.181/0.200=0.907 <= 1$

Расчет ростверка как многопролетной балки с учетом ширины опор

Изгибающий момент

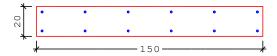
	q	M_{\odot}	M_{Π}
	[кН/м]	[кНм]	[кНм]
Ī	106.4	-4.3	2.2

Требуемая площадь арматуры

верхней нижней $A_{SB} = 0.61 \text{ cm2}$ $A_{SH} = 0.31 \text{ cm2}$

Подобранная арматура

Арматура	ns	ds	a _s	As
		[MM]	[MM]	[см2]
верхняя	6	12	30	6.79
РЕНТИВ	6	12	30	6.79


Примечание

Учтено ограничение расстояния между осями стержней

Процент содержания арматуры верхней

нижней

 $\mu_{SB} = 0.28$ % $\mu_{SH} = 0.28$ %

Проверка прочности ростверка

$$M_{\circ}$$
 / M_{u-} = 4.3 / 48.6 = 0.089 <= 1

$$M_n / M_{u+} = 2.2 / 48.6 = 0.045 <= 1$$

Проверка трещиностойкости ростверка

 Позиция
 t543
 Страница
 577

 Проект
 CTATИКА тест всех модулей
 дата
 28.10.2024

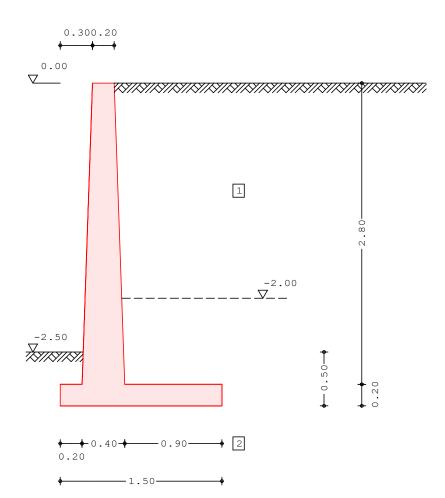
 Разраб.
 Разработчик
 CTATИКА/543
 Версия
 2025.000

Ширина раскрытия трещин

M	M _{crc}	a _{crc} / a _{crc,u}
[кНм]	[кНм]	·
-3.0	-27.4	Трещины не образуютс
1.5	27.4	Трещины не образуютс

Работоспособность фундамента обеспечена

Расчет выполнен модулем 543 программы СТАТИКА 2025 © 000 Техсофт


Поз. t544

Подпорная стенка на сваях

Расчётная схема

Размеры стенки

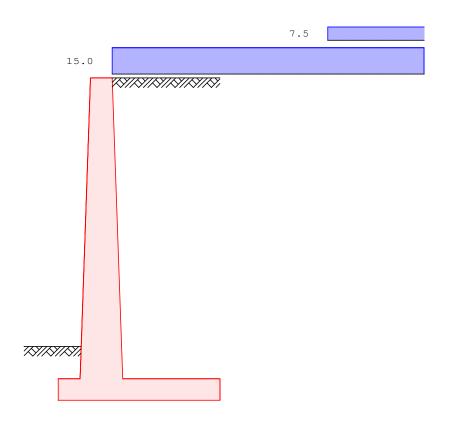
M = 1 : 35

Высота стенки	hs	=	3.00	М
Длина передней консоли	l _v	=	0.20	M
Длина задней консоли	lr	=	0.90	M
Толщина ростверка	hr	=	0.20	M
Толщина стенки вверху	do	=	0.20	M
Толщина стенки внизу	d_{ij}	=	0.40	M
Наклон передней грани	$\alpha^{\tilde{i}}$	=	2.00	0
Наклон задней грани	α	=	2.00	0
Удельный вес стенки	γ	=	25.0	кН/м ³
глубина заложения стенки	h ₀	=	0.50	М

Поверхность слева: глубина заложе справа: горизонтальная

 Позиция
 1544
 Страница
 578

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024


 Разраб.
 Разработчик
 СТАТИКА/544
 Версия
 2025.000

Расчетные значения характерист. слоев

слой №	толщ. [м]	уд.вес [кН/м ³]	φ [°]	δ _a	δ _p	с [кПа]
1	2.00	19.80	34.55	23.03	-23.03	1.33
2	2.00	20.90	33.91	22.61	-22.61	1.33

Нагружение

M = 1 : 35

Вид нагрузки	место	а	s	р	P
	прилож.	[M]	[M]	[кПа]	[кН/м]
равномерн.	на пов.			15.00	
блоковая	на пов.	2.00	6.00	7.50	

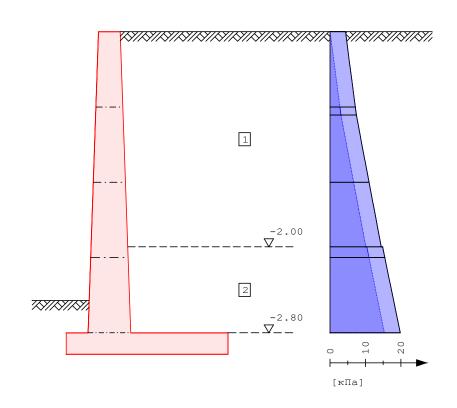
 Давление грунта
 Активное давление грунта для расчета устойчивости

 Коэффициент безопасности
 etap
 =
 1.00

наклон 1-й поверхн. сдвига θ ' = 71.57 ° наклон 2-й поверхн. сдвига θ = 60.07 °

Давление грунта на 1-ю поверхность

Граница	Отметка	e _{agh}	e _{aph}	р _h	e _{phr}
слоя	[M]	[κΠá]	[кПа]	[кПа]	[кПа]
1 верхн. *	-0.00	0.00	3.96	0.00	
*	-0.62	2.45	3.98	0.00	
нжин.	-2.00	9.69	4.01	0.00	
2 верхн.	-2.00	9.95	4.63	0.00	
	-2.50	12.81	5.57	0.00	0.00
нжин.	-3.00	15.66	6.52	0.00	-18.49
			•		


* = Минимальное давление λ_{agh} = 0.20

Ι	Граница	Отметка	E _{agh}	E _{aph}	F _{wh}	Eah
	слоя	[M]	[кН/м]	[кН/м]	[кН/м]	[кН/м]
1	нижн.	-2.00	9.14	7.97	0.00	17.11
2	. нжин	-3.00	21.95	13.55	0.00	35.50

Позиция Проект Разраб.	t544 СТАТИКА тест Разработчик		Страница 579 Дата 28.10.2024 Версия 2025.000		
		Собственный вес стенки Вес грунта справа от стенки Вес грунта слева от стенки Верт. составл. акт. давления Верт. составл. пас. давления		= 28.34 KH/M = 23.79 KH/M = 1.30 KH/M = 46.52 KH/M = -2.56 KH/M	
		Сумма вертикальных сил	V	= 97.40 кН/м	
		Гориз. состав. акт. давления Гориз. состав. пас. давления		= 35.50 kH/m = -6.14 kH/m	
		Сумма горизонтальных сил	Н	= 29.35 кН/м	
		Сумма моментов	M	= -24.53 kHm/m	
Расче	т прочности	стенки			

Давление грунта на стенку

M = 1 : 35

Давление на стенку

Гра	ница		отметка	eagh	e _{aph}	Рh	e _{ah}
С	лоя		[м]	[кПа]	[кПа]	[кПа]	[кПа]
1a	верх	*	-0.00	0.00	4.33	0.00	4.33
	низ	*	-0.70	2.77	4.35	0.00	7.12
1b	верх	*	-0.70	2.77	4.34	0.00	7.12
		*	-0.78	3.07	4.34	0.00	7.42
	низ		-1.40	6.65	4.34	0.00	11.00
1c	верх		-1.40	6.65	4.34	0.00	11.00
	низ		-2.00	10.09	4.34	0.00	14.44
2 a	верх		-2.00	10.37	4.46	0.00	14.83
	низ		-2.10	10.99	4.46	0.00	15.45
2b	верх		-2.10	10.99	4.46	0.00	15.45
	низ		-2.80	15.34	4.46	0.00	19.79

 Позиция
 t544
 Страница
 580

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/544
 Версия
 2025.000

Усилия в сечении

Сечение	объект	M	0
[M]	0020111	[кНм/м]	[кH/м]
-0.70	стенка	1.27	4.01
-1.40	стенка	6.08	10.30
-2.10	стенка	16.25	19.45
-2.80	стенка	33.90	31.78
0.60	плита	-19.91	

Расчет арматуры

в плоскости чертежа по СП 63.13330.2018

Расстояние до оси арматуры $a_{\rm C}$ = 4.0 см

Бетон В 25 (тяжелый) $\gamma_b = 0.900$

Арматура: продольн./попер. А500/А400

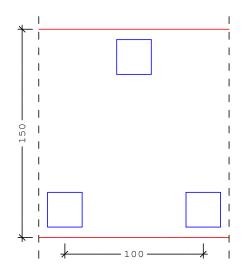
Продольная арматура

Сечение	M	N	h0	As
[M]	[кНм/м]	[кН/м]	[CM]	$[cm^{2}/m]$
-0.70 c	1.27	4.07	24.9	0.08
-1.40 c	6.08	9.07	29.8	0.43
-2.10 c	16.25	15.03	34.7	1.04
-2.80 c	33.90	21.95	39.6	1.95

Максимальная арматура стенки:

справа d=12мм с шагом 500мм

слева d=12мм с шагом 1000мм


Арматура плиты сверху d=12мм с шагом 330мм

Поперечная арматура

	Сечение	Q	N	Qb	С
	[M]	[кН/м]	[кН/м]	[кН/м]	[CM]
ľ	0.36	4.25	99.62	63.33	0.00
	3.57	9.29	122.72	78.10	0.00
	8.15	15.28	145.82	92.89	0.00
	14.42	22.25	168.92	107.71	0.00

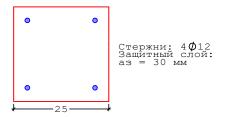
Фундамент

Свайная лента

Ширина ростверка b = 150 см Толщина ростверка h_r = 20 см $^{\rm L}$ Шахматное размещение свай $^{\rm L}$ шаг свай в ряду s = 100 см $^{\rm L}$ Расстояние от грани ростверка до осей свай

a = 20.0

забивные сваи

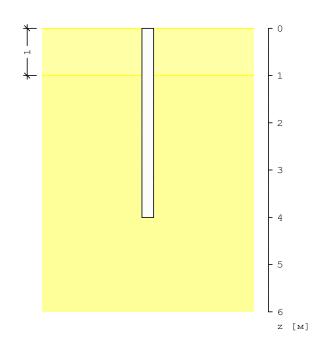

СМ

Вид свай

Позиц	ия t544		Страниц	ца 581
Проек	СТАТИКА тест всех модулей		Дата	28.10.2024
Разра	б. Разработчик	СТАТИКА/544	Версия	2025.000

Свая погружается молотом

	Ширина сечения сваи	d	=	25	СМ
	Длина сваи	1	=	4.00	М
Арматура в свае	Число стержней Диаметр стержней Защитный слой бетона	n _s d _s a _s		4 12 30	– ММ ММ


Удельный вес грунта

OT Z	до z	M	е	Sr	γs	γ [кН/мЗ]
[M]	[M]	[응]	[-]	[-]	[кН/м3]	[кн/м3]
0.00	1.00	10.0	0.51	0.51	26.0	19.0
1.00		16.0	0.68	0.62	26.0	18.0

Характеристики грунта

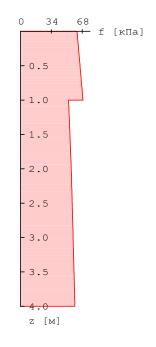
OT Z	до z	CII	ϕ_{II}	γıı	CI	$\phi_{\mathtt{I}}$	γı
[м]	[M]	[кПа]	[град]	[кН/м3]	[кПа]	[град]	[кН/м3]
0.00	1.00	2.0	39.0	19.0	1.3	33.9	17.3
1.00		2.0	38.0	18.0	1.3	34.5	16.4

Схема геологического разреза

Нагрузка на уровне подошвы

N	Н	М
[кН/м]	[кН/м]	[кНм/м]
97.40	29.35	-24.53

Вес сваи $G_{\text{C}}=6.25$ кН Коэффициент надежности $\gamma_{\text{f}}=1.10$ -


Позиция Проект Разраб.	t544 СТАТИКА тест в Разработчик	зсех модулей	СТАТИКА/544		Н	582 3.10.2024 925.000
Нагру	зка на сваю			N _{max} N _{min} H	= 71. = 26. = 14.	40 кН
		Коэффициент	нормативной нагру	зки	= 0.	70 –
Расче	<u>T</u>	Согласно СП СП 20.13330	24.13330.2021, CI .2016	63.13	330.201	8,
Матер	иал ростверка	Бетон Коэффициент Арматура	условий работы	B 25 γ _b A500	•	й) 900 -
Матер	иал сваи	Бетон Коэффициент Арматура	условий работы	B 25 γ _b A500	(тяжелы = 0.	й) 900 -

Проверка прочности грунта основания сваи при сжимающей нагрузке

Сопротивление грунта под концом сваи

 $_{\rm R}$ = 7.30 МПа при глубине заложения $_{\rm R}$ = 7.00 м Коэффициент условий работы $_{\rm R,R}$ = 1.00 -

Сопротивление грунта на боковой поверхности сваи f

Сопротивление на боковой поверхности

z 1	z ₂	γ _{R,f}	f ₁	f ₂
[M]	[M]	[-]	[кПа]	[кПа]
0.00	1.00	1.00	62.4	68.9
1.00	4.00	1.00	53.0	60.0

Коэффициент условий работы сваи при сжатии

 $\gamma_{\rm C} = 1.00$

Несущая способность сваи

 $F_d = F_{dR} + F_{df} = 456.2 + 236.1 = 692.4$

кН

Условие прочности $N_0 \gamma_n \gamma_{c,q} / F_d =$

77.9 * 1.00 * 1.40 / 692.4 = **0.157** <= 1

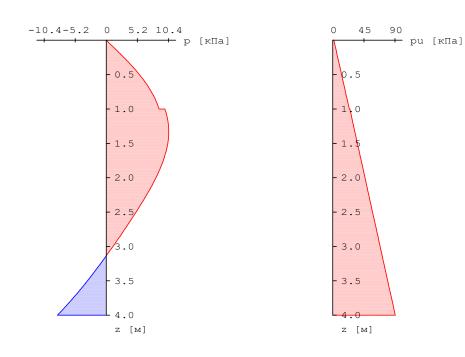
Позиция t544 583 Страница СТАТИКА тест всех модулей 28.10.2024 Проект Дата Разработчик **СТАТИКА/544** Версия 2025.000

Проверка допустимости давления на грунт боковой поверхностью сваи

Коэффициент	OT Z	до z	K	Cz
постели	[M]	[M]	[кН/м4]	[кН/м3]
	0.00	1.00	6000	0 - 6000
	1.00	4.00	6652	6652 - 2660

Примечание Коэффициент постели c_z = Kz

Примечание


Условная ширина сваи $b_p = 1.5d + 50 = 87.5$ СМ Модуль упругости = 30.00ГΠа Жесткость сваи ΕI 9.77 МНм2

Коэффициент деформации α_{ϵ} 0.890 1/м при К = 6218 $\kappa H/M4$ 3.56

Значение К определено по (Д.5) СП 50-102-2003 при $1_{\rm K} = 2.38 \, {\rm M}$

> Давление р Предельное давление ри

 $1\alpha_{f \epsilon}$

Коэффициенты в условии допустимости давления (Б.8) $\eta_1 = 1.0 \qquad \eta_2 = 0.400 \qquad \xi = 0.6$

 η_2 определяется по формуле (Б.9) приложения Б при

8.7 / 22.9 = Условие допустимости $p / p_u =$ **0.378** <= 1 при z = 0.85 / α_{ϵ} = 0.96

Проверка прочности материала сваи

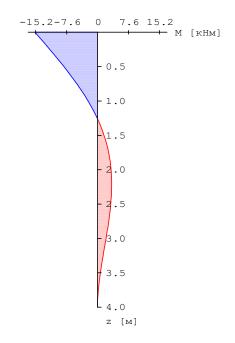
t544 Позиция

Проект

Разраб.

СТАТИКА тест всех модулей

Разработчик


СТАТИКА/544

Страница 28.10.2024 Дата

Версия 2025.000

584

Изгибающий момент

Сжимающая сила

$$N_0 / N_{0u} = 26.4 / 39.7 = 0.665 <= 1$$

Изгибающий момент

$$M / M_u = 15.4 / 23.1 = 0.665 <= 1$$

Определение длины анкеровки арматуры в верхнем сечении сваи

Требуемая площадь арматуры

MM

2.85

см2

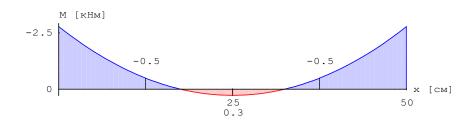
Длина анкеровки

lan = 348

Примечание Значение l_{an} определено для растянутых стержней

Проверка трещиностойкости сваи

Расчет по образованию трещин


N	М	N _{crc}	M _{crc}	Трещины
[KH]	[кНм]	[ĸH]	[кНм]	
18.5	-10.8	14.4	-8.4	образуются

Условие трещиностойкости $a_{crc}/a_{crc,u} = 0.104/0.200 =$ **0.521** <= 1

Расчет ростверка как многопролетной балки с учетом ширины опор

Изгибающий момент

q	M _O	Мп
[кН/м]	[кНм]	[кНм]
97.4	-0.5	0.3

Требуемая площадь арматуры верхней нижней

0.07 A_{sв} см2 = 0.04 см2 А_{зн}

Позиция	t544		Страниц	a 585
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/544	Версия	2025.000

Подобранная	
арматура	

Арматура	ns	ds	a _s	As
		[MM]	[MM]	[см2]
верхняя	6	12	42	6.79
нижняя	6	12	30	6.79

Примечание

Учтено ограничение расстояния между осями стержней

Проверка прочности ростверка

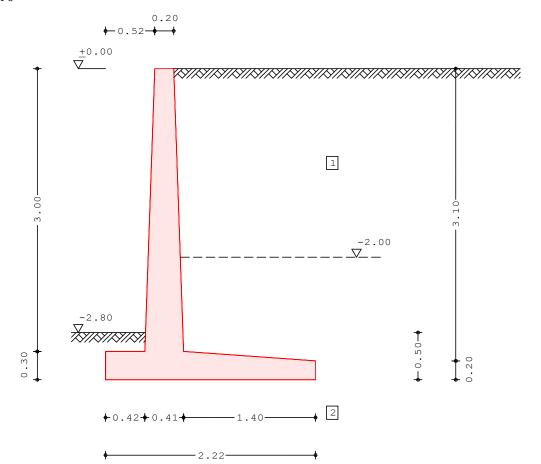
$$M_o$$
 / M_{u-} = 0.5 / 45.1 = 0.011 <= 1
 M_n / M_{u+} = 0.3 / 52.3 = 0.005 <= 1

Проверка трещиностойкости ростверка

Ширина раскрытия трещин

M	M _{Crc}	a _{crc} / a _{crc,u}
[кНм]	[кНм]	·
-0.3	-27.0	Трещины не образуются
0.2	27.3	Трещины не образуются

Работоспособность фундамента обеспечена


Расчет выполнен модулем 544 программы СТАТИКА 2025 © ООО Техсофт

<u>Поз. t545</u> <u>Подпорная стенка</u>

Расчётная схема

Размеры стенки и грунт

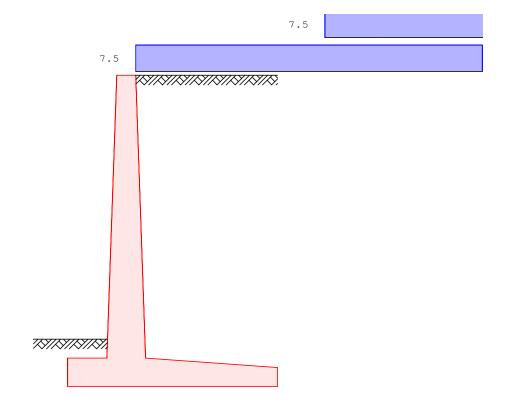
M = 1 : 40

Геометрия Высота стенки h 3.00 M Длина передней консоли lv 0.42 0.30 Толщина передней консоли hv Длина задней консоли lr 1.40 0.20 Толщина задней консоли hr hra Толщина консоли у стенки 0.30 Толщина стенки вверху do 0.20 Толщина стенки внизу du 0.41 Наклон передней поверхности alpha' = 2.00 Наклон задней поверхности alpha = -2.00 Удельный вес стенки gamma = 24.53 кН/м3 Поверхность слева: глубина заложения стенки справа: горизонтальна h0 0.50

Характерист. слоев

			1	-1-1	-1-1	_
слои	выс.	уд.вес	pnı	delta_a		C
N	[M]	[кН/м3]	[°]	[°]	[°]	[кН/м2]
1	2.00	18.70	14.78	9.86	-11.33	32.00
2	6.00	20.9/12.7	33.91	22.61	-26.00	1.33

Угол трения подошвы deltasf= phi


Нагружение

 Позиция
 t545
 Страница
 587

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/545
 Версия
 2025.000

M = 1 : 40

Вид нагрузки	место	a	S	р	P
	прилож.	[M]	[M]	[кН/м2]	[кН/м]
равномерн.	на пов.			7.50	
блоковая	на пов.	2.00	6.00	7.50	

Уровень воды

расст. от верха стены справа wr = 6.00 м расст. от верха стены слева wl = 6.00 м

Давление грунта

активное давление грунта для расчета устойчивости без учета сопротивления грунта с лицевой стороны. Проверка устойчивости стенки

наклон 1-й поверхн. сдвига theta' = 65.56 наклон 2-й поверхн. сдвига theta = 63.38

Давление грунта на 1-ю поверхность

Границ	a	Отметка	eagh	eaph	ph	ephr
слоя		[M]	[кН/м2]	[кН/м2]	[кН/м2]	[кН/м2]
1 верхн	. *	-0.00	0.00	4.04	0.00	
нжин	. *	-2.00	7.48	4.21	0.00	
2 верхн	•	-2.00	9.64	5.06	0.00	
нжин		-3.30	17.29	6.26	0.00	
-1-					0 00	

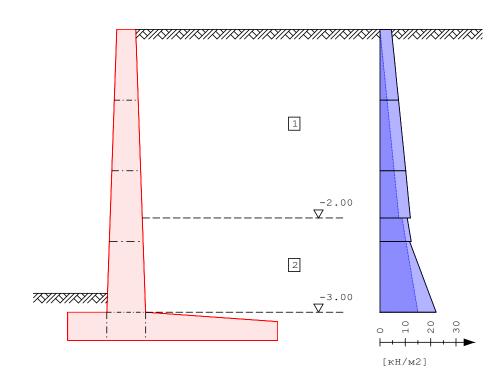
 \star = Минимальное давление λ_{agh} = 0.20

Результ. усилия на 1-ю поверхность

The	аница	Отметка	Eagh	Eaph	Fwh	Eah
	слоя	[м]	[кН/м]	[кН/м]	[кН/м]	[кН/м]
1 ве	ерхн.	-0.00	-0.03	0.00	0.00	-0.03
1 r	. нжи	-2.00	7.45	8.25	0.00	15.70
2 н	. нжи	-3.30	24.96	15.61	0.00	40.56

Собственный вес стенки Вес грунта справа от стенки Вес грунта слева от стенки Верт. составл. акт. давления	G Gbr Gbl Eav	= 37.05 KH/M = 38.93 KH/M = 1.75 KH/M = 53.17 KH/M
Сумма вертикальных сил	V	= 130.90 kH/M
Гориз. состав. акт. давления	Eah	= 40.56 кН/м
Сумма горизонтальных сил	Н	= 40.56 кН/м

ООО Техсофт, Москва


Позиция	t545			Страница 588
Проект	СТАТИКА тест всех модуле	эй		Дата 28.10.2024
Разраб.	Разработчик	СТАТИКА/545		Версия 2025.000
			3.6	

Разрао. Разработчик	СТАТИКА/545		Del	DCMS 2025	.000
	Сумма моментов	Mm	=	28.08	кНм/м
Подошва стенки	Равнодействующая Угол наклона равнодейств.		. =	137.04	, 0
	Допуст. эксцентриситет d/3			0.74	М
	Эксцентриситет равнодейств.	е		0.21	M
	Приведенная ширина подошвы	b '	=	1.79	M
	Момент удерживающих сил	Mk Ms		48.44 165.65	•
	Mk=48.44 < (0.50/1.00) Ms=82.8	33 У с	лоі	вие выпо	олнено
	Предельное сопротивл. грунта	Nu	=	805.03	кН/м
	Fv=130.9 < (0.50/1.00) Nu=402	. 5 У с	лог	вие выпо	олнено
	Наименьшая удерживающая сила	Fsr	=	81.15	кН/м
	реализуется при угле	beta	=	0.00	0
	Пассивное сопротивление	Εr	=	2.61	кН/м
	$Fsa=40.56 \sim (0.50/1.00) Fsr=40.5$	57 y c	лог	вие выпо	олнено

Расчет прочности

железобетонной стенки Давление грунта на стенку

M = 1 : 40

Давление на стенку

Гра	ница		отметка	eagh	eaph	ph	eah
C.	лоя		[M]	[кН/м2]	[кН/м2]	[кН/м2]	[кН/м2]
1a	верх	*	-0.00	0.00	4.51	0.00	4.51
	низ	*	-0.75	2.80	4.54	0.00	7.34
1b	верх	*	-0.75	2.80	4.53	0.00	7.34
	низ	*	-1.50	5.61	4.53	0.00	10.14
1c	верх	*	-1.50	5.61	4.53	0.00	10.14
	вин	*	-2.00	7.48	4.53	0.00	12.01
2 a	верх		-2.00	8.72	2.04	0.00	10.76
	вин		-2.25	10.26	2.07	0.00	12.33
2b	верх		-2.25	10.25	1.42	0.00	11.67
	низ		-3.00	14.97	7.17	0.00	22.15

Позиция	t545		Страниц	a 589
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/545	Версия	2025.000

Усилия в сечении

Сечение	M	Q	N
[M]	[кНм/м]	[кН/м]	[кН/м]
-0.75	1.52	-4.45	-4.32
-1.50	7.14	-11.00	-9.67
-2.25	18.41	-19.43	-16.05
-3.00	37.13	-32.11	-23.54
Зад. конс.	-27.34	31.70	11.55
Пер. конс.	6.67	31.22	-11.16

Расчет арматуры

по СП 63.13330.2018 с использованием трехлинейной диаграммы состояния сжатого бетона и расстояния до оси арматуры в стенке ac=4.0 см, подошве an=4.0 см

Бетон В 25 (тяжелый)

Арматурная сталь: продольн./попер. A500/A400

Продольная арматура

Сечение	M	N	h0	As	As'
[м]	[кНм/м]	[кН/м]	[cm]	[cm	12/м]
-0.75	1.52	-4.32	21.2	0.11	0.00
-1.50	7.14	-9.67	26.5	0.50	0.00
-2.25	18.41	-16.05	31.7	1.14	0.00
-3.00	37.13	-23.54	37.0	2.05	0.00
зад.конс.	-27.34	11.55	26.0	0.00	2.62
пер.конс.	6.67	-11.16	26.0	0.45	0.00

Прим.: арматура стенки: As - справа, As' - слева плиты: As - снизу, As' - сверху

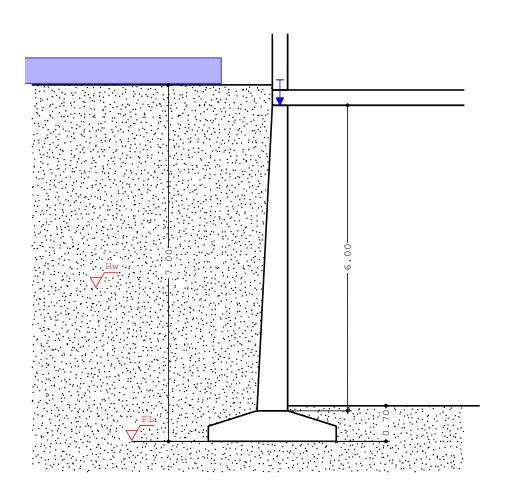
Поперечная арматура

Сечение	Q	N	Qb	С	Asw/sw
[м]	[кН/м]	[кН/м]	[кН/м]	[CM]	[cm2/м]
-0.75	0.57	-4.51	101.34	64.42	0.00
-1.50	4.21	-9.90	126.09	80.25	0.00
-2.25	9.22	-16.05	149.86	95.46	0.00
-3.00	15.38	-23.87	175.59	111.97	0.00
зад.конс.	14.33	11.55	122.85	76.42	0.00
пер.конс.	0.14	-11.16	232.44	41.34	0.00

Расчет выполнен модулем 545 программы СТАТИКА 2025 © 000 ${\tt Texcopt}$

Комментарий

Расчётная схема


 Позиция
 t546
 Страница
 590

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/546
 Версия
 2025.000

Расчетная схема стенки и нагрузки

M = 1 : 74

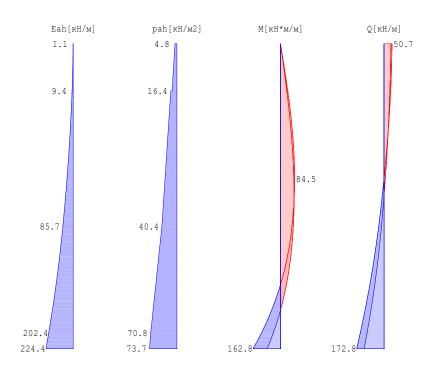
Высота стенки	h	=	6.00	М
Толщина стенки вверху	d _B	=	30.00	CM
Толщина стенки внизу	d _H	=	60.00	СМ
Ширина подошвы фундамента	b	=	2.50	M
Высота фундамента	hφ	=	60.00	CM
Высота поверхности грунта	-			
от подошвы фундамента (FL)	ha	=	7.00	M
Высота пола подвала от FL	h ₁	=	0.70	M
Уровень грунтовых вод от FL	h _w	=	3.00	M
Сейсмичность района - 7 балл	OB.			
Коэффициент условий работы	$\gamma_{\scriptscriptstyle \text{C}}$	=	0.90	
Коэфф. надёжности по ответс.	γ_n	=	1.20	

Грунт

Карактеристики грунта

ларактери	CTMRM IT	рунта				
тип	γ	M	φ	С	E	Еe
	[кН/м ³]	[%]	[град]	[кПа]	[МПа]	[МПа]
засыпка	20.0	20.0	30.0	2.00		
основание	20.0	40.0	33.0	4.00	40.0	200.0

Угол трения грунта о стенку δ = 0.00 град Коэффициенты надежности $\gamma_{\text{g (\phi)}}$ = 1.00 $\gamma_{\text{g (c)}}$ = 1.00


Позиция Проект Разраб.	t546 СТАТИКА тест Разработчик	всех модулей СТАТИКА/546	Страница Дата 28.1 0 Версия 2025		591 0.2024 5.000	
Нагру	ж ение	Длительн. нагрузка на стенку коэффициент надежности Кратковр. нагрузка на стенку коэффициент надежности	N ₁ Y _N 1 N _t Y _N t	= = = =	10.00 1.10 10.00 1.20	кН/м
		Длительн. нагрузка на грунт коэффициент надежности Кратковр. нагрузка на грунт коэффициент надежности	P ₁ Y _P 1 Pt	= = = =	10.00 1.00 10.00 1.20	
		коэффициент надежности расстояние от стенки протяженность	γ _{pt} a _t s _t	=	1.00	M M

Давление грунта

M = 1 : 102

Давление на стенку и усилия в сечениях

st

	CI	имметрич	0,	одностороннее			
Z	E _{ah}	θ	Pah	Eah	θ	Pah	
[M]	[кН/м]	[град]	[кПа]	[кН/м]	[град]	[кПа]	
0.00	1.1	58.24	4.84	0.0	58.24	0.0	
0.93	9.4	59.25	12.89	0.0	59.25	0.0	
2.66	44.7	59.47	27.88	7.0	56.77	4.3	
3.60	74.6	59.50	35.98	11.1	57.71	4.4	
5.70	182.0	59.58	66.37	20.4	58.64	4.5	
6.00	202.9	59.58	70.77	21.5	59.97	2.9	
6.60	248.0	59.59	79.43	22.3	62.33	0.0	

Реакции в верхней опоре от давления грунта: симметричного $R_1 = 47.53$ кН/м R_2 одностороннего 3.12 кН/м

Усилия в сечении

Z	N_{min}	N_{max}	Q_{min}	Q_{max}	M_{min}	M_{max}
[M]	[кН/м]	[кН/м]	[кН/м]	[кН/м]	[ĸH]	[ĸH]
0.00	16.4	32.8	-50.7	-43.7	0.0	0.0
0.93	20.9	38.1	-42.4	-37.0	-43.9	-38.0
2.66	33.4	52.9	-8.1	-0.0	-84.5	-80.2
3.60	42.1	63.2	16.3	34.1	-76.8	-69.1
5.70	66.4	92.3	108.0	150.8	42.9	113.5
6.00	70.5	97.2	126.3	172.8	78.6	162.8

Позиция	t546		Страниц	a 592
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/546	Версия	2025.000

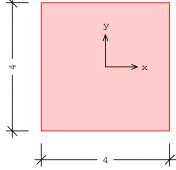
табраб. Табработ тип	OTATINA/040				
Расчет арматуры	по СП 63.13330.2018. Бетон В арматурная сталь А500	25	(тяжел)	ый)	
	толщина защитного слоя	аз	=	40.00	MM
Внутр. поверхность	расчет по прочности, сечение	Z	=	2.66	М
	- изгибающий момент			84.48	кН
	продольная сила		=	33.42	кН/м
	расчетная арматура	As			cm^2/m
	6 арматурных стержней 🛭 10м	м на	метр	длины	стенки
	расчет по образованию трещин	Z	=	2.86	M
	продольная сила	N_{II}	=	38.11	кН/м
	изгибающий момент	M_{II}	=	82.97	кН
	момент образования трещин			88.21	кН
Наруж. поверхность	расчет по прочности, момент	Мт	=	162.82	кН
	расчет по прочности, момент продольная сила	ΝŢ	=	70.45	кН/м
	расчетная арматура	As	=	6.04	cm^2/m
	8 арматурных стержней 🛭 10м	м на	метр	длины	стенки
	расчет по образованию трещин	M_{II}	=	105.22	кН
	продольная сила	N_{II}	=	77.50	кН/м
	момент образования трещин	Mcro	=	172.81	кН
<u>Устойчивость</u>	1. На сдвиг по контакту подо				
	сила давления грунта	Εa	=	270.29	кН/м
	сдвигающая сила	F_{sa}	=	219.63 170.38	кН/м
	сумма вертикальных сил	F_{v}	=	170.38	кН/м
	пассивное сопротивл. грунта	Εp	=	270.29	кН/м
	удерживающая сила	Fsr	=	332.92	кН/м
	$F_{sa} = 219.6 < (\gamma_c/\gamma_n) * F_{sr} = 249.$	7	услов	ие вып	олнено
	2. Устойчивость основания по	д под	цошвой	фунда	мента:
	расчетная вертикальная сила	F_{v}	=	206.22	кН/м
	эксцентриситет приложения	е.	=	79.0	CM
	приведенная ширина фундамен.	b ·	=	92.1	CM
	предельное сопрот. основания	Fu	=	375.63	кН/м
	$F_{v} = 206.2 < (\gamma_{c}/\gamma_{n}) * N_{u} = 281.$				

Расчет выполнен модулем 546 программы СТАТИКА 2025 © ООО Техсофт

<u>Поз. t550</u>

Расчет оснований

Фундамента Размеры фундамента



4.00

М

Μ

 l_x

Глубина заложения фундамента от уровня планировки d = 3.00 м от поверхности рельефа d_n = 3.00 м

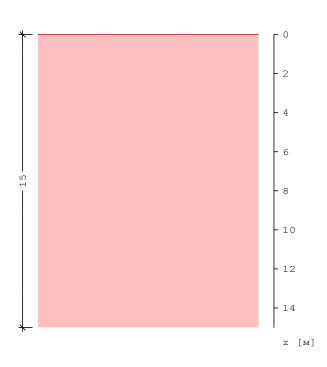
 Позиция
 t550
 Страница
 593

 Проект
 CTATИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 CTATИКА/550
 Версия
 2025.000

Конструктивная схема сооружения является гибкой

Грунт


Удельный вес грунта выше уровня подошвы фундамента нормативное значение $\gamma_0 = 20.0 \, \mathrm{kH/m3}$

Слой	Название	h	Вид грунта	γs	γ	M	Ι _L
		[M]		[кН/мЗ]	[кН/м3]	[응]	[-]
1	грунт 1	15.00	Глина	26.0	18.0	3.0	0.25

Характеристики грунта

Слой	c _{II}	ϕ_{II}	E	Ee	ν
	[кПа]	[град]	[M∏a]	[МПа]	[-]
1	15.0	25.0	20.0	100.0	0.30

Схема геологического разреза

Нагрузка

N = 2000 κH $M_{x} = 200.0$ $\kappa H M$ $M_{y} = 200.0$ $\kappa H M$

Расчет

согласно СП 22.13330.2016

Данные для определения расчетного сопротивления грунта основания R по формуле (5.7)

γ _{c1}	γ _{c2}	k	Μγ	Ma	$_{\rm M_{\rm C}}$	k _z
1.25	1.00	1.10	0.780	4.110	6.670	1.00

b	d_1	$d_{\mathbf{b}}$	γ_{II}	γ ' $_{ t I}$ $_{ t I}$	ϕ_{II}	CII
[M]	[м]	[M]	[кН/м3]	[кН/м3]	[град]	[кПа]
4.00	3.00	0.00	18.0	20.0	25.0	15.0

Примечание

Учтено, что ϕ_{II} и с $_{\text{II}}$ приняты по таблицам прилож.Б

Значение по формуле (5.7) R

R = 457.7 кПа

Значение R увеличивается на 2% согласно 5.6.24 При p = R s = 5.37 см $< 0.7 s_u = 5.60$ см При p = 1.02R s = 5.50 см $< 0.8 s_u = 6.40$ см

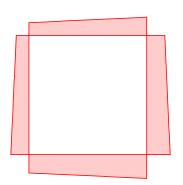
Расчетное сопротивление

R = 466.6

кПа

 Позиция
 t550

 Проект
 СТАТИКА тест всех модулей


 Разраб.
 Разработчик

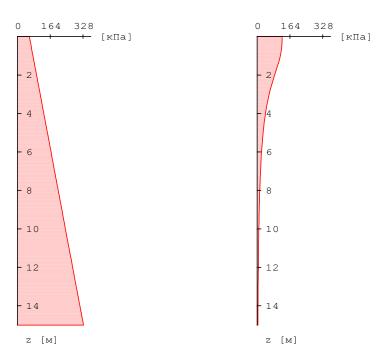
 СТАТИКА/550
 Версия

 2025.000

Проверка допустимости давления на грунт

Давление на грунт

Наименьшее Наибольшее Наибольшее Наибольшее	давл	ение ение	е по е по			p_{max} , p_{max} ,	_x =	87.5 143.8 143.8 162.5	кПа
				p_{mi}	n /			0.538	
Среднее да	влени	е на	a rpy	/HT		р	=	125.0	кПа
р	/ R	=	125	. 0	/	466.6	=	0.268	<= 1
p _{max,x} /	1.2R	=	143	. 8	/	559.9	=	0.257	<= 1
p _{max,y} /	1.2R	=	143	. 8	/	559.9	=	0.257	<= 1
p _{max} /	1.5R	=	162.	. 5	/	699.9	=	0.232	<= 1


Расчет осадки основания

Напряжения в грунте

Z	σ_{zg}	$\sigma_{z\gamma}$	σ_{zp}	σ_{zp}/σ_{zg}
[M]	[кПа]	[кПа]	[кПа]	
0.00	60.0	60.0	125.0	2.083
1.00	78.0	55.8	116.2	1.490
2.00	96.0	42.1	87.6	0.913
3.00	114.0	29.1	60.5	0.531
4.00	132.0	20.2	42.0	0.318
5.00	150.0	14.5	30.1	0.201
6.00	168.0	10.7	22.4	0.133
7.00	186.0	8.2	17.2	0.092
8.00	204.0	6.5	13.5	0.066
9.00	222.0	5.2	10.9	0.049
10.00	240.0	4.3	9.0	0.037
11.00	258.0	3.6	7.5	0.029
12.00	276.0	3.0	6.3	0.023
13.00	294.0	2.6	5.4	0.018
14.00	312.0	2.3	4.7	0.015
15.00	330.0	2.0	4.1	0.012

Напряжения в грунте $\sigma_{\text{z}\,\text{q}}$

 σ_{zp}

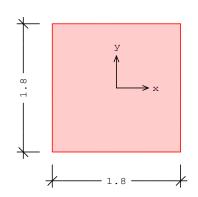
Глубина сжимаемой толщи $H_{\rm c}=3.11$ м Напряжение при $z=H_{\rm c}$ $\sigma_{\rm zp}$ $\sigma_{\rm zp}=58.0$ кПа $\sigma_{\rm zp}$ / $\sigma_{\rm zg}=0.500$ - Осадка основания $\sigma_{\rm zp}=0.75$ см $\sigma_{\rm zp}=0.75$ $\sigma_{\rm zp}=0.75$ см

Расчет крена фундамента по формуле (5.24)

Коэффициент в формуле (5.24) $D.10^3 =$ 45.5 1/MΠa Коэффициенты по табл. 5.9 0.500 $k_{e,x} =$ k_{e,y} 0.500 $\mathtt{i}_{\mathtt{x}}$ Крен в плоскости оси х 0.00057 iy оси у 0.00057 $i_x / i_u = 0.00057 / 0.001 =$ **0.569** <= 1 $i_v / i_u = 0.00057 / 0.001 =$ **0.569** <= 1

Расчет выполнен модулем 550 программы СТАТИКА 2025 © 000 Техсофт

t551 Позиция 596 Страница 28.10.2024 СТАТИКА тест всех модулей Проект Дата Разработчик **СТАТИКА/551** Версия 2025.000


Поз. t551

Расчет оснований (MSZ EN 1997)

Фундамент

Размеры фундамента

 l_x 1.80 M ly 1.80

Глубина заложения фундамента от уровня планировки

от поверхности рельефа

d 3.00 d_n

M 3.00

Грунт

Удельный вес грунта выше уровня подошвы фундамента = 18.0 kH/m3γο

Слой	h	γs	е	γ	С	φ	E
	[M]	[кН/м3]	[-]	[кН/м3]	[кПа]	[град]	[МПа]
1	10.00	26.0	0.50	18.0	15.0	30.0	30.0

Воздействия

Nº	Тип воздействия	Описание		
1	Постоянное	Постоянное воздействие		
	постоянное -			

Коэффициент упр. надежностью K_{FI} =

При комбинировании применяется формула (6.10)

Коэффициенты

$N_{\bar{0}}$	γ _{sup}	γinf	Ψ_0	Ψ_1	Ψ_2	Группа	Знак
1	1.35	1.00					

Нагрузки

$N_{\bar{0}}$	V	M_{x}	M _V
	[ĸH]	[кНм]	[кНм]
1	3000 0		

Расчет

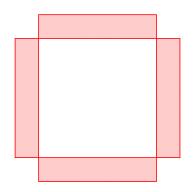
согласно MSZ EN 1997-1

Проверка прочности грунта основания

Применяется проектный принцип 3

Выбранная комбинация Номер воздействия (Коэффициент) 1 (1.35)

Расчетная нагрузка


V _d	M_{xd}	M_{yd}
[ĸH]	[кНм]	[кҤм]
4050 0		

 Позиция
 t551
 Страница
 597

 Проект
 CTATИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/551
 Версия
 2025.000

Давление на грунт при линейном распределении давления

Наименьшее давление $p_{\text{min}} = 1250.0 \quad \text{кПа} \\ \text{Наибольшее давление} \qquad p_{\text{max}} = 1250.0 \quad \text{кПа} \\ p_{\text{min}} \ / \ p_{\text{max}} = 1.000 \quad -$

Определение несущей способности грунта согласно ${\tt EN}$ 1997-1, Приложение ${\tt D}$

Эксцентриситеты

 $e_{L} = 0.000 M$ $e_{B} = 0.000 M$

Данные для формулы (D.2)

L'	В'	C	q	γ	tgφ
[M]	[м]	[кПа]	[кПа]	[кН/м3]	[-]
1.80	1.80	12.0	54.0	18.0	0.462

Коэффициенты

sc	sa	Sγ	N _C	Na	N_{γ}
1.464	1.419	0.874	20.42	10.43	8.71

Предельное давление

 $R_d/A' = 1281$ кПа

Условие прочности (6.1)

$$V_d$$
 / R_d = 4050.0 / 4152.0 = **0.975** <= 1

Проверка допустимости осадки основания

Принимается линейное распределение давления р(х, у)

Выбранная комбинация

Номер воздействия (Коэффициент) 1 (1.00)

Расчетная нагрузка

V _d	M_{xd}	Myd
[ĸH]	[кНм]	[кҤ́м]
3000.0		

Напряжения в грунте

Z	σ_{zg}	σ_{zp}	σ_{zp}/σ_{zg}
[м]	[кПа]	[кПа]	
0.00	54.0	925.9	17.147
1.00	72.0	599.9	8.332
2.00	90.0	267.8	2.976
3.00	108.0	138.6	1.283
4.00	126.0	82.7	0.656
5.00	144.0	54.4	0.378
6.00	162.0	38.4	0.237
7.00	180.0	28.5	0.158
8.00	198.0	21.9	0.111
9.00	216.0	17.4	0.081
10.00	234.0	14.1	0.060

 σ_{zg} - напряжение от веса грунта

 σ_{zp} - напряжение от нагрузки

 Позиция
 t551
 Страница
 598

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/551
 Версия
 2025.000

 $\sigma_{z\,q}$

Напряжения в грунте

0 462 924 [кПа] -1 -2 -8 -4 -5 -6 -7 -8 -9

L ₁₀ z [м]

 σ_{zp}

Глубина сжимаемой толщи $H_{\rm C}=6.40$ м Напряжение при $z=H_{\rm C}$ $\sigma_{zp}=33.8$ кПа $\sigma_{zp}/\sigma_{zg}=0.200$ - Осадка основания $\sigma_{zp}=4.40$ см Условие допустимости $\sigma_{zp}=4.40$

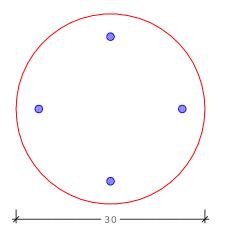
z [M]

Расчет выполнен модулем 551 программы СТАТИКА 2025 © 000 Техсофт

Поз. t552 Свая РИТ Свая Вид сваи свая РИТ 30 Диаметр скважины d CM5.00 Длина сваи 1 Число стержней 4 Арматура n_s ds Диаметр стержней 12 MM Защитный слой бетона аз 30 MM

Позиция **t552**

Проект


СТАТИКА тест всех модулей

Разраб. Разработчик СТАТИКА/552

Страница Дата

ица 599 28.10.2024

ТИКА/552 Версия **2025.000**

Стержни: 4 ϕ 12 Защитный слой: аз = 30 мм

Принимается шарнирное сопряжение сваи с ростверком

Глубина заложения ростверка

от поверхности рельефа от уровня планировки $d_n = 3.00$ $d_0 = 3.00$

M

M

Грунт

Слой	h [м]	Вид грунта	
1	8.00	Суглинок тугопластичный	

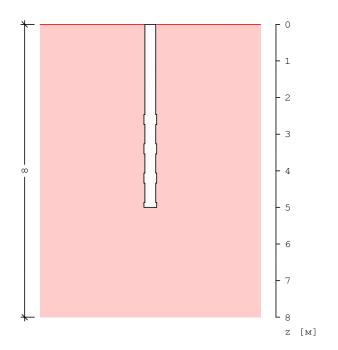
Удельный вес грунта

Слой	M	е	Sr	γs	γ
	[응]	[-]	[-]	[кН/м3]	[кН/м3]
1	10.0	0.59	0.44	26.0	18.0

Консистенция глинистого грунта

Слой	$_{\mathrm{q}}$ \mathbb{W}	$W_{ m L}$	Ι _p	I_{L}
	[응]	[응]	[응]	[-]
1	5.0	15.0	10.0	0.50

Коэфф. надежности


γα(c)	γα (ω)	γα (γ)
1.50	ĭ.i5	1.10

Характеристики

Слой	CII	ϕ_{II}	γιι	CI	$\phi_{\mathtt{I}}$	γΙ
	[кПа]	[град]	[кН/м3]	[кПа]	[град]	[кН/м3]
1	5.0	35.0	18.0	3.3	30.4	16.4

Схема геологического разреза

Нагрузки

Nº	Вид нагрузки	γf	Группа	Знак
1	Постоянная	1.10		

N ₀	N	Н1	H ₂	M ₁	М2
	[KH]	[ĸH]	[ĸH]	[кНм]	[кНм]
1	200.0				

Вес сваи без учета уширений G 8.8 кН Коэффициент надежности 1.10 γf

Расчет

Согласно СП 24.13330.2021, СП 63.13330.2018, СП 20.13330.2016, TP 50-180-06

Бетон	B 25	(TS	яжелыи)	
Коэффициент условий работы	γb	=	0.612	_
Арматура	A500			
Сопротивление бетона	$\gamma_b R_b$	=	8.87	МΠа
Сопротивление арматуры	R _s	=	435	МΠа
	R _{sc}	=	400	МΠа

Разрядно-импульсная обработка

Nº	Z	D/d	D	OT Z	до z
	[м]		[CM]	[M]	[м]
1	2.60	1.1	34.5	2.46	2.74
2	3.40	1.1	34.5	3.26	3.54
3	4.20	1.1	34.5	4.06	4.34
4	5.00	1.1	34.5	4.86	5.00

Шаг обработки 0.80

Отношение длины уширения к его диаметру 0.80 l_y/D

Проверка прочности грунта основания сваи при сжимающей нагрузке

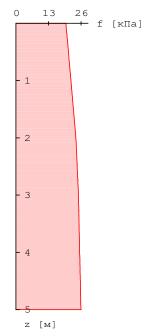
Комбинация нагрузок

N [ĸH]	Нагрузка (Коэфф	ициент)
220.0	1	(1.10)

Сопротивление грунта под концом сваи

1.43 МПа R = при глубине заложения h 8.00

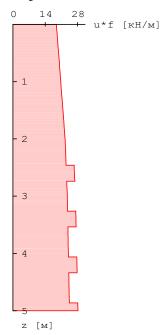
 Позиция
 t552
 Страница
 601


 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/552
 Версия
 2025.000

Площадь опирания на грунт

A = 934.8 cm2


Сопротивление грунта на боковой поверхности сваи f

Сопротивление на боковой поверхности

Слой	z ₁	Z ₂	f ₁	f ₂
	[м]	[M]	[ĸlla]	[Klla]
1	0.00	5.00	20.0	26.0

Погонное сопротивление uf

Несущая способность
$$F_d$$
 = F_{dR} + F_{df} = 1.3RA + 1.3 $\Sigma u_i f_i h_i$ =
$$= 174.2 + 150.9 = 325.1 \qquad \text{кH}$$
 Условие прочности $N_0 \gamma_n \gamma_{c,g} / F_d$ =
$$= 229.7 * 1.00 * 1.40 / 325.1 = \textbf{0.989} <= 1$$

 Позиция
 t552
 Страница
 602

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/552
 Версия
 2025.000

Проверка прочности сваи как стержня, защемленного в грунте

Комбинация нагрузок

N [KH]	Нагрузка(Коэффициен	IT)
220.0	1 (1.1	0)

0.796 1/м Коэффициент деформации α_{ϵ} = 4000 kH/M4при К $l_1 = 2 / \alpha_{\epsilon}$ $l_0 = 0.71_1$ Длина стержня 2.51 M Расчетная длина 1.76 M Жесткость $D = k_b E_b I_b + 0.7 E_s I_s$ 2.40 МНм2 k_b 0.167

 $k_{b} = 0.167 - E_{b} = 30.0$ FIIa $I_{b} = \pi d^{4}/64 = 39761$ CM4 $I_{s} = A_{s}r^{2}/2 = 294$ CM4 $\pi p \mu$ r = 11.40 CM

Критическая сила $N_{\text{cr}} = \pi^2 \, \text{D/l}_0^{\ 2} = 7647$ кН Коэффициент $\eta = 1/(1-N_0/N_{\text{cr}}) = 1.031$ -

Эксцентриситет $e_0 = 1.0$ см Расчетный момент $M = \eta N_0 e_0 = 2.4$ кНм

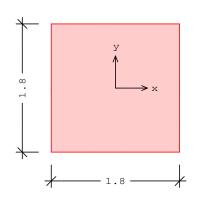
Условия прочности $N_0 / N_{0u} = 229.7 / 716.4$

 $M / M_u = 2.4 / 7.4 = 0.321 <= 1$

Работоспособность сваи обеспечена

Расчет выполнен модулем 552 программы СТАТИКА 2025 © 000 Техсофт

Поз. t553


Расчет оснований (ТКП EN 1997)

Фундамент

Размеры фундамента

 $1_x = 1.80$ M $1_y = 1.80$ M

0.321 <= 1

Глубина заложения фундамента от уровня планировки d = 3.00 м от поверхности рельефа d_n = 3.00 м

Позицияt553Страница603ПроектСТАТИКА тест всех модулейДата28.10.2024Разраб.РазработчикСТАТИКА/553Версия2025.000

Грунт

Удельный вес грунта выше уровня подошвы фундамента $\gamma_{\,0} \quad = \quad 18.0 \quad \text{кH/м3}$

Слой	h	γs	е	γ	С	φ	E
	[м]	[кН/м3]	[-]	[кН/м3]	[кПа]	[град]	[МПа]
1	10.00	26.0	0.50	18.0	15.0	30.0	30.0

Воздействия

№ Тип воздействия Описание 1 Постоянное Постоянное воздействие постоянное -

Коэффициент упр. надежностью $K_{FI} = 1.0$

При комбинировании применяются формулы (6.10a,b)

Коэффициенты

№ γ_{sup} γ_{inf} ψ₀ ψ₁ ψ₂ Группа Знак 1 1.35 1.00

Нагрузки

 Νº
 V
 M_x
 M_y

 [κΗ]
 [κΗμ]
 [κΗμ]

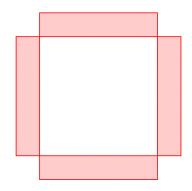
 1
 3000.0

Расчет

согласно ТКП EN 1997-1

Проверка прочности грунта основания

Применяется проектный принцип 3


Выбранная комбинация Номер воздействия (Коэффициент)

1 (1.35)

Расчетная нагрузка

V _d	М _{х d}	M _{yd}
[ĸH]	[кнм]	[кНм]
4050 0	<u> </u>	

Давление на грунт при линейном распределении давления

Наименьшее давление Наибольшее давление

 $p_{\text{min}} = 1250.0$ кПа $p_{\text{max}} = 1250.0$ кПа $p_{\text{min}} / p_{\text{max}} = 1.000$ -

Определение несущей способности грунта согласно EN 1997-1, Приложение D

Эксцентриситеты

 $e_{L} = 0.000$

M

М

 $e_B = 0.000$

Расчетная нагрузка

V _d	M_{xd}	Myd
[KH]	[кНм]	[кНм]
3000.0		

Напряжения в грунте

Z	σ_{zg}	σ_{zp}	σ_{zp}/σ_{zg}
[м]	[кПа]	[кПа]	
0.00	54.0	925.9	17.147
1.00	72.0	599.9	8.332
2.00	90.0	267.8	2.976
3.00	108.0	138.6	1.283
4.00	126.0	82.7	0.656
5.00	144.0	54.4	0.378
6.00	162.0	38.4	0.237
7.00	180.0	28.5	0.158
8.00	198.0	21.9	0.111
9.00	216.0	17.4	0.081
10.00	234.0	14.1	0.060

 σ_{zg} - напряжение от веса грунта σ_{zp} - напряжение от нагрузки

Напряжения в грунте

 σ_{zg}

0

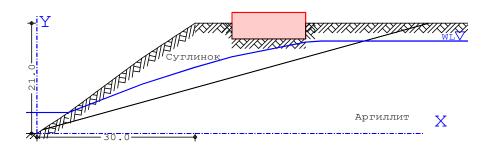
1 (κΠα)
1 - 1 (κΠα)
2 - 2 (κΠα)
5 - 6 (κΠα)
8 - 9 (κΠα)
2 (κΠα)
2 (κΠα)

Глубина сжимаемой толщи

 $H_C = 6.40$

 σ_{zp}

М


Позиция	t553		Страниц	a 605
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/553	Версия	2025.000

Расчет выполнен модулем 553 программы СТАТИКА 2025 © 000 Техсофт

Поз. t560

Устойчивость откоса

 $\frac{\text{Расчётная схема}}{\text{M} = 1 : 717}$

Поверхность откоса

	Координаты точек										
ко	орд.	1	2	3	4	5	6	7			
Х	[M]	0.00	1.00	6.00	20.00	30.00	37.00	37.00			
У	[M]	0.00	0.67	4.00	14.40	21.00	21.00	18.00			
ко	орд.	8	9	10	11	12	13	14			
Х	[M]	51.00	51.00	74.32							
У	[M]	18.00	21.00	21.00							

Грунт

$N_{\bar{0}}$	Описание	h	γ	γ_{w}	φ	С
		[M]	[кН/м ³]	[кН/м ³]][грд]	[кН/м²]
	Суглинок		19.60	10.00	10.00	15.60
1	Аргиллит	40.00	20.00	10.00	45.00	50.00

Граница грунта "Суглинок" наклонена под углом 15.50° к горизонту и начинается в точке N2 поверхности.

Грунтовые воды

	Ко	ординать	и точе	ек крин	вой дег	трессии	1	
кос	рд.	1	2	3	4	5	6	7
×w	[м]	0.00	6.00	20.00	30.00	37.00	51.00	54.00
Уw	[M]	4.00	4.00	9.40	12.60	14.60	17.40	17.60

Нагрузки

Nº	Ү-коорд.	Z-коорд.	протяжён.	величина
	[M]	[м]	[M]	[кН/м]
1	37.00	18.00	14.00	100.00

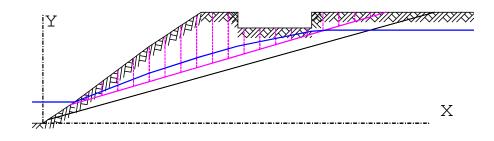
Коэффициент безопасности

 $\eta = 1.00$

Результаты расчёта

устойчивости откоса.

Обрушение откоса по плоской поверхности скольжения выходящей на склон в в точке с координатми


x = 5.20 M y = 3.47 M и углом наклона к горизонту $\alpha = 15.50\,^{\circ}$

 Позиция
 t560
 Страница
 606

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/560
 Версия
 2025.000

Схема обрушения откоса по плоской поверхности скольжения M=1:717

Nº	X	Y	G	N_{G}	Np	N _w	Nr
	[M]	[M]	[кН/м ²]	[кН/м]	[кН/м]	[кН/м]	[кН/м]
1	6.70	3.91	25.57	6.83	0.00	3.09	53.05
2	9.70	4.78	96.80	25.87	0.00	7.44	65.16
3	12.69	5.66	168.04	44.91	0.00	10.67	77.26
4	15.69	6.54	239.27	63.94	0.00	13.89	89.36
5	18.69	7.41	310.50	82.98	0.00	16.94	101.47
6	21.68	8.29	376.73	100.68	0.00	15.82	112.72
7	24.68	9.16	439.04	117.33	0.00	16.61	123.31
8	27.68	10.04	501.35	133.98	0.00	17.40	133.90
9	30.67	10.92	538.26	143.84	0.00	16.57	140.17
10	33.67	11.79	487.35	130.24	0.00	15.87	131.52
11	36.67	12.67	436.45	116.64	31.12	13.86	142.66
12	39.66	13.55	215.90	57.70	80.09	9.50	136.31
13	42.66	14.43	172.38	46.07	80.09	7.83	128.92
14	45.66	15.30	128.87	34.44	80.09	6.17	121.53
15	48.65	16.18	85.36	22.81	80.09	4.51	114.13
16	51.65	17.05	220.54	58.94	22.67	1.22	100.60
17	54.65	17.93	180.22	48.16	0.00	0.00	79.33
18	57.64	18.81	128.73	34.40	0.00	0.00	70.58
19	60.64	19.68	77.24	20.64	0.00	0.00	61.83
20	63.64	20.56	25.75	6.88	0.00	0.00	53.08
Σ				1297.27	374.13	177.402	2036.88

Сдвигающая сила $N_e = N_G + N_p + N_w = 1848.80 \kappa H/M$ Проверка устойчивости $N_r / N_e = 1.10 > \eta$ УСЛОВИЕ УСТОЙЧИВОСТИ ВЫПОЛНЕНО.

Расчет выполнен модулем 560 программы СТАТИКА 2025 © 000 Техсофт

Поз. t570 Шпунтовая стенка


 Позиция
 t570
 Страница
 607

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/570
 Версия
 2025.000

Расчётная схема

M = 1 : 120

Поверхность

Рельеф местности горизонтальный.

Верх стенки находится на отметке

340.00 N

M

Котлован

Отметка дна котлована

334.00

Анкеры

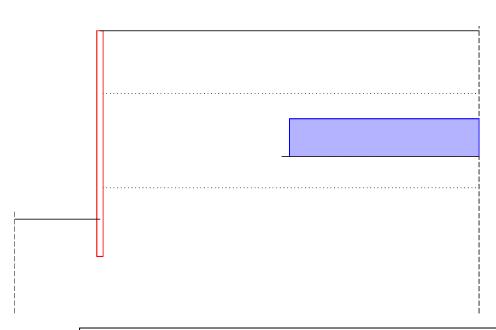
N	Отметка	Наклон
	[M]	[°]
1	338.00	10.0

Отметки уровня грунтовых вод

Справа от стенки Слева от стенки Kwr = 328.00Kwl = 328.00

Характеристики грунта в слоях расчетные значения

N	Выше	Gamma	Phi	Del	ta	С
	отметки			akT.	пасс.	
	[м]	[kN/m3]	[°]	[°]	[°]	[кН/м2]
1	338.00	22.0	29.1	19.4		1
2	335.00	22.0	31.8	21.2		5
3 a	328.00	16.4/19.8	34.5	23.0	-23.0	1
3b	310.00	10.5/12.7	34.5	23.0	-23.0	1


../.. = слева/справа от стенки

Угол пассивного трения о стенку справа для гладкой стенки DpC = +1/3 * Phi

Позиция 1570 Страница 608 Проект СТАТИКА тест всех модулей Дата 28.10.2024 Разраб. Разработчик СТАТИКА/570 Версия 2025.000

 $\frac{\text{Нагружение}}{M = 1 : 120}$

Тип нагрузки	Ν.	OTM.	a	S	p/eh1	P/eh2
		[M]	[м]	[M]	[кH/м2],	[кН/м]
Распределен.	1		0.00	6.00	10.0	
От фундамента	1	336.00	6.00	10.00	100.0	

Давление грунта

По методу Кульмана, с одной плоскостью сползания.

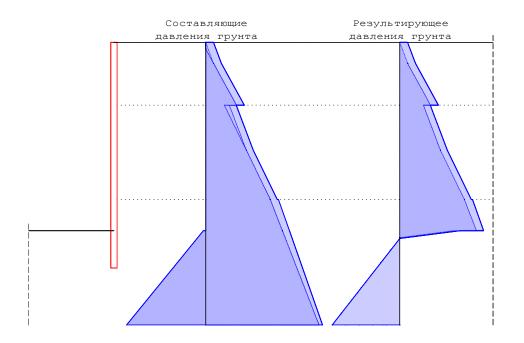
Коэффициент безопасности для сопротивления грунта: слева от стенки etap = 1.50 справа от стенки etapC = 1.50

Сила давления

Отметка	Eagh	Eaph	Thetaa	1	Epgh	Thetap
[м]	[кН/м]	[кН/м]	[°]		[кН/м]	[°]
340.00	-0.0	0.0				
339.00	1.9	2.9	56.6			
338.00	10.1	5.8	56.2			
336.50	26.9	9.7	57.5			
335.00	56.6	13.5	57.7			
334.00					-0.0	-16.7
331.50	168.3	21.5	58.4			
331.00					-454.5	-15.0
328.00	335.7	24.1	60.0		-1765.9	-14.9
319.00	955.5	199.1	56.2		-9464.3	-14.9
310.00	1811.4	397.1	58.4		-22120.3	-14.9

Эпюра давлений

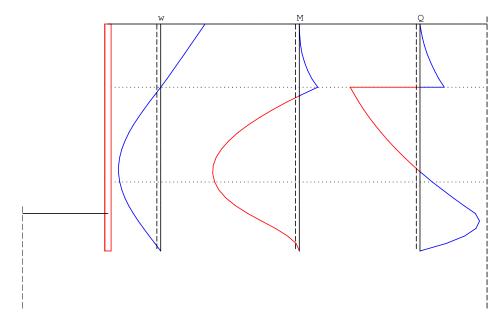
Отметка		eagh	eaph	eawh	epgh	eh
[м]			[кН/м2]		[кН/м2]	[кН/м2]
340.00		0.0*	2.9	0.0		2.9
339.33		2.9*	2.9	0.0		5.8
338.00		11.4	2.9	0.0		14.3
338.00		8.8*	2.6	0.0		11.4
336.56		15.1*	2.6	0.0		17.7
335.00		24.0	2.6	0.0		26.6
335.00		24.0	3.1	0.0		27.0
334.00		28.5	2.6	0.0	<u> </u>	31.1


ООО Техсофт, Москва

Позиция	t570		Страниц	a 609
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/570	Версия	2025.000

ſ	334.00	28.5	2.6	0.0	-	-8.7	П	22.5
	328.00	55.8	-0.0	0.0		-580.0		-524.2
ſ	328.00	55.7	18.2	0.0		-580.0		-506.0
	310.00	108.2	23.3	0.0	-	-1681.6		-1550.1

^{* =} минимальное давление грунта


M = 1 : 120

Сопротивл. грунта справа от стенки

Отметка EphC	ThetapC	epghC	epphC	ephC
[м] [кН/м2]	[°]	[KH/	м2] [к	Н/м2]
-716.5 -35.0	-216.0	66.0	-150.0	
-1529.5 -39.8	1			
1	-411.6	-222.4	-634.1	
- -3068.7 -44.5				
	-411.6	-111.7	-523.3	
-8305.7 -32.9	1			
-14597.3 -34.7	-788.8	31.1	-757.7	

Усилия в сечении для свободного опирания в грунте M = 1 : 120

t570 Позиция 610 Страница СТАТИКА тест всех модулей 28.10.2024 Проект Дата Разработчик **СТАТИКА/570** Версия 2025.000 Разраб.

Отметка	-	W	M	Q
[M]		[MM]	[кнм/м]	[кН/м]
340.00		-2.4	0.0	0.0
339.33		-1.6	-0.9	-2.9
338.00	1	0.0	-12.4	-16.4
				47.2
336.56	-	1.7	41.4	26.3
335.32	-	2.3	58.7	0.0
335.00	-	2.2	57.3	-8.3
334.00	-	1.5	34.8	-37.4
333.75	-	1.2	25.1	-40.2
332.81	-	0.0	0.0	0.0
max.	-	2.2	58.7	47.2
min.		-2.4	-12.4	-40.2

Реакции опор

1. Анкер 1

A1h = 63.5 kN/m

Глубина котлована	H =	6.00	m
Глубина точки нулевого давл.	u =	0.25	m
Расчетная глубина заделки	t1 =	1.19	m
Расчетная высота стенки	L =	7.19	m

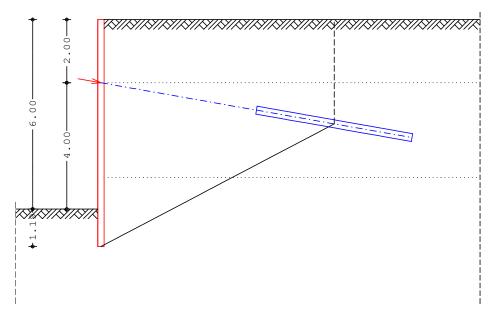
Расчёт по прочности стены в грунте по СП 63.13330.12 с использованием трехлинейной диаграммы состояния бетона.

Бетон В 25 (тяжелый)

Арматурная сталь : А500

Толшина стенки 300мм, защитный слой бетона 30мм Арматура со стороны грунта:

Наибольшее значение получено на отметке 340.0м Изг. момент 12.4кНм/м, продольная сила 0.0кН/м Минимальная продольная арматура 3.00см2/м Прутки диаметром 12мм, установлены с шагом 300мм Момент образования трещин -42.4кНм/м


Арматура со стороны котлована:

Наибольшее значение получено на отметке 340.0м наибольшее значение получено на отметке 340.0м Изг. момент 58.7кнм/м, продольная сила 0.0кн/м Расчетная продольная арматура I пр.с. 5.14cм2/м Прутки диаметром 12мм, установлены с шагом Ширина раскрытия трещин 0.028мм

Проверки

M = 1 : 120

Крепление анкера проверка на глубинный сдвиг при поступат. движении

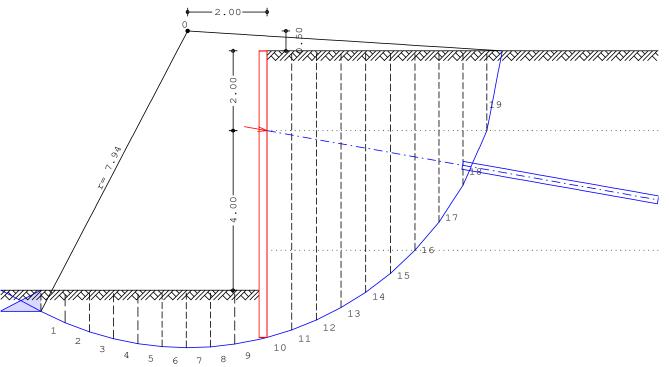
 Позиция
 t570
 Страница
 611

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/570
 Версия
 2025.000

Номер Г	Іогон.	Шаг	Усилие	допус.	Длина	Длина
анкера у	исилие р	расп.	В	усилие	анкерн.	рабочей
I	з анк. а	анкер.	анкере	в анк.	ТЯГИ	части
	[кН/м]	[M]	[ĸH]	[ĸH]	[м]	[м]
1	64.5	15.40	993.6	1000.0	5.00	5.00

Проверка анкера 1 Расстояние до условной стенки 1 = 7.39 Угол наклона плоскости сдвига theta = 27.7


			Высота[м]	Eh[кН/м]	Ev[кH/м]
Стенка до уров	ня с	Q = 0	7.19	138.3	55.6
Условная стенк	a		3.30	25.3	9.5

Слой	phi[°]	с[кН/м2]	G[кН/м]	Р[кН/м]	С[кН/м]
1	31.8	4.7	294.9	0.0	
2	34.5	1.3	547.2	0.0	6.3

Возмож. гориз. усилие в анкере Ah = 208.9 кН/м Расчет. гориз. усилие в анкере Ah = 63.5 кН/м коэфф. запаса eta a= 208.9 / 63.5 = 3.29 > 1.2

Устойчивость стенки на сдвиг по круглоцилиндреской поверхности скольж.

N	Слой 1	gam=22.0	Слой 2	gam=22.0	СлойЗа	gam=19.8
	Высота	g	Высота	g	Высота	g
	[м]	[кН/м2]	[м]	[кН/м2]	[M]	[кН/м2]
1	-	_	-	_	0.67	13.34
2	-	_	-	_	0.93	18.46
3	-	_	-	_	1.13	22.43
4	-	_	-	_	1.28	25.36
5	-	_	-	_	1.38	27.30
6	-	_	-	_	1.43	28.28
7	-	_	-	_	1.43	28.33
8	-	_	-	_	1.39	27.44
9	-	_	_	_	1.29	25.61
10	2.00	44.00	3.00	66.00	2.09	41.40
11	2.00	44.00	3.00	66.00	1.87	37.08
12	2.00	44.00	3.00	66.00	1.59	31.55

ООО Техсофт, Москва

Позиция	t570		Страниц	ıa 612
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/570	Версия	2025.000

13	2.00	44.00	3.00	66.00	1.25	24.66
14	2.00	44.00	3.00	66.00	0.82	16.18
15	2.00	44.00	3.00	66.00	0.29	5.76
16	2.00	44.00	2.65	58.23	_	_
17	2.00	44.00	1.83	40.30	_	-
18	2.00	44.00	0.69	15.07	_	-
19	1.00	22.00	-	-	_	-

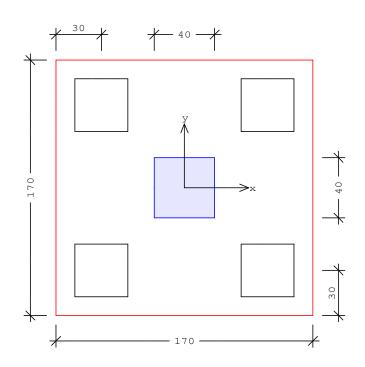
N	Слой3b	gam=12.7
	Высота	g
	[м]	[кН/м2]
1	_	_
1 2	_	_
3	_	_
4	-	_
5	_	_
6	-	_
7	-	_
8	-	_
9	-	_
10	-	_
11	-	_
12	-	_
13	-	_
14	_	_
15	-	_
16	-	_
17	-	_
18	-	_
19	<u> </u>	_

N	Сумма д	Ширина С	Собств. Е	Внешн.	G	theta
	[кН/м2]	[м]	[кН/м]	[кН/м]	[кН/м]	[°]
1	13.34	0.61	8.14	-	8.14	-25.29
2	18.46	0.61	11.27	-	11.27	-20.50
3	22.43	0.61	13.70	-	13.70	-15.86
4	25.36	0.61	15.48	-	15.48	-11.32
5	27.30	0.61	16.67	-	16.67	-6.86
6	28.28	0.61	17.27	-	17.27	-2.43
7	28.33	0.61	17.30	-	17.30	1.98
8	27.44	0.61	16.75	-	16.75	6.40
9	25.61	0.61	15.63	-	15.63	10.86
10	151.40	0.62	94.08	-	94.08	16.93
11	147.08	0.62	91.40	-	91.40	21.69
12	141.55	0.62	87.96	0.03	87.99	26.61
13	134.66	0.62	83.68	6.21	89.89	31.75
14	126.18	0.62	78.41	6.21	84.63	37.21
15	115.76	0.62	71.93	6.21	78.15	43.09
16	102.23	0.60	61.65	6.03	67.68	49.52
17	84.30	0.60	50.84	6.03	56.87	56.85
18	59.07	0.60	35.62	6.03	41.65	66.24
19	22.00	0.39	8.54	3.88	12.42	79.02

N	G*sin(theta)	phi	C	T
	[кН/м]	[°]	[кН/м2]	[кН/м]
1	-3.48	34.5	1.33	9.04
2	-3.95	34.5	1.33	11.02
3	-3.74	34.5	1.33	12.23
4	-3.04	34.5	1.33	12.87
5	-1.99	34.5	1.33	13.09
6	-0.73	34.5	1.33	12.96
7	0.60	34.5	1.33	12.53
8	1.87	34.5	1.33	11.82
91	2.94	34.5	1.33	10.84
10	27.40	34.5	1.33	60.24
11	33.78	34.5	1.33	58.11
12	39.41	34.5	1.33	55.95

Позиция	t570		Страниц	a 613
Проект	СТАТИКА тест всех модулей	i	Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/570	Версия	2025.000

13	47.31	34.5	1.33	57.57
14	51.17	34.5	1.33	55.17
15	53.39	34.5	1.33	52.50
16	51.48	31.8	4.67	46.65
17	47.61	31.8	4.67	42.83
18	38.12	31.8	4.67	36.86
19	12.19	29.1	1.33	13.48
	390.36			586.11


```
Радиус окружности скольжения r=7.94~{\rm M} Момент от касательных сил r*STi=4654.49~{\rm kNm/m} Момент от пассивного давления MEp = 47.66 {\rm kNm/m} Момент от веса и внешних сил r*SGi=3099.98~{\rm kNm/m} Запас устойч. грунта на сдвиг eta = ( 4654+48) / ( 3100+0) = 1.52>1.2
```

Расчет выполнен модулем 570 программы СТАТИКА 2025 © 000 Техсофт

Поз. t580

Свайный фундамент под колонну

Фундамент

Размеры сечения колонны	c ^x	=	4 0 4 0	CM CM
Размеры ростверка	1 _x		170 170	CM CM
Толщина ростверка	l _y h	=		CM
Число свай	n	=	4	_
D		-		~ - ~ ~

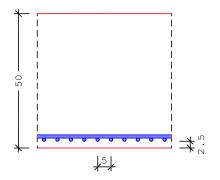
Расстояние от грани ростверка до осей крайних свай по оси х $a_{\rm x}=30$ см по оси у $a_{\rm y}=30$

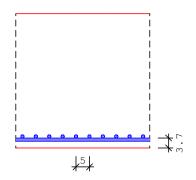
Вид свай висячие забивные железобетонные сваи

По	зиция	t580		Страниц	a 614
Пр	оект	СТАТИКА тест всех модулей		Дата	28.10.2024
Pa	зраб.	Разработчик	СТАТИКА/580	Версия	2025.000

Ширина сечения сваи d = 35 см

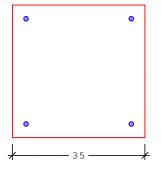
Наименьшее расстояние между осями свай


 $a_{min} = 110$ cm


Длина сваи 1 = 5.00 м

Арматура в ростверке по осям х и у

Ось	Арматура	ds	Шаг	Число	As	аз	h ₀	μ
		[MM]	[CM]	стерж.	[см2]	[MM]	[CM]	[응]
x *	пижняя	12	5	33	37.32	25	46.9	0.47
у *	пижняя	12	5	33	37.32	37	45.7	0.48


* арматура подобрана с учетом ограничения ширины раскрытия трещин

Арматура в свае

Число стержней Диаметр стержней Защитный слой бетона $n_s = 4 - d_s = 12$ mm $a_3 = 30$ mm

Стержни: 4 ϕ 12 Защитный слой: аз = 30 мм

Свая погружается молотом

Принимается шарнирное сопряжение сваи с ростверком

Глубина заложения ростверка от поверхности рельефа от уровня планировки

 $d_n = 3.00 M$ $d_0 = 3.00 M$
 Позиция
 t580
 Страница
 615

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/580
 Версия
 2025.000

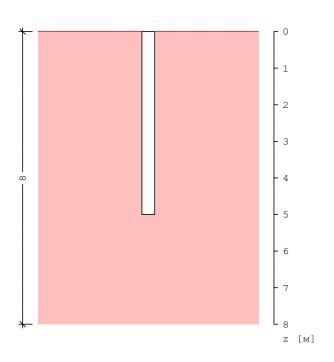
 Грунт
 Слой h [м]
 Вид грунта

 1
 8.00
 Глина полутвердая

Удельный вес грунта выше уровня подошвы ростверка нормативное значение $\gamma_{0n} = 20.0 \, \text{ kH/m3}$ расчетное значение $\gamma_{0} = 18.0 \, \text{ kH/m3}$

Удельный вес грунта Слой W S_r е γs γ [-] [응] [-] [кН/м3] [кН/м3] 15.0 0.66 0.59 26.0 18.0

Консистенция глинистого грунта Слой W_P W_L I_P I_L [%] [%] [%] [7]


Коэфф. надежности

 $\gamma_{g(c)}$ $\gamma_{g(\phi)}$ $\gamma_{g(\gamma)}$ 1.50 1.15

Характеристики грунта

Слой	c _{II}	ϕ_{II}	γιι	CI	$\phi_{\mathtt{I}}$	γΙ	E	ν
	[кПа]	[град]	[кН/м3]	[кПа]	[град]	[кН/м3]	[МПа]	[-]
1	15.0	25.0	18.0	10.0	21.7	16.4	20.0	0.30

Схема геологического разреза

Нагрузки

Nº	Вид наг	рузки	γ	f	Группа	Знак
1	Постоян	ная	1.	05		
N_{δ}	N	H_{x}	Н _У		M_{x}	My
	[ĸH]	[ĸH]	[ĸH]	[K	Нм]	[кНм]
1	2000.0	100.0				
Bec p	остверка		Gp	=	36.1	кН
ффеох	ициент наде:	жности	γf	=	1.10	_
Bec c	D 2 14		G	=	15.3	кН
			G _C			KII
коэфф	ициент наде:	жности	γ _f	=	1.10	_

Позиция	t580		Страниц	ıa 616
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/580	Версия	2025.000

Согласно СП 24.13330.2021, СП 63.13330.2018, Расчет СП 20.13330.2016 Материал ростверка Бетон В 20 (тяжелый) Коэффициент условий работы 0.900 γh A500 Продольная арматура **A4**00 Косвенная арматура 10.35 Сопротивление бетона МΠа $\gamma_b R_b$ = 0.81 МΠа $\gamma_b R_{bt}$ = R_s = 435 МΠа Сопротивление арматуры R_{sc} = 400МΠа $R_{s,xy} = 350$ МΠа В 25 (тяжелый) Материал сваи Бетон Коэффициент условий работы = 0.900 γ_b A500 Арматура 13.05 Сопротивление бетона $\gamma_b R_b$ МΠа Сопротивление арматуры = 435 МΠа R_s = 400 МΠа R_{sc}

Проверка прочности грунта основания сваи при сжимающей нагрузке

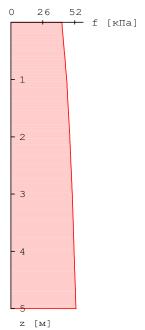
Комбинация нагрузок Момера нагрузок и коэффициенты 1 (1.05)

Нагрузка на куст свай

N	${ t M}_{ t X}$	My
[ĸH]	[кНм]	[кНм]
2139.7		52.5

Нагрузка на сваю

наибольшая сжимающая


N = 558.8

кН

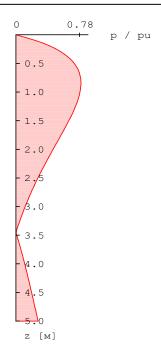
Сопротивление грунта под концом сваи

Коэффициент условий работы $\gamma_{R,R} = 1.00$

Сопротивление грунта на боковой поверхности сваи f

Сопротивление на боковой поверхности

Слой	z ₁	z ₂	γ _{R,f}	f ₁	f ₂
	[м]	[м]	[-]	[кПа]	[кПа]
1	0.00	5.00	1.00	41.5	53.0


ООО Техсофт, Москва

Позиция t580 Проект СТАТИКА тест в Разраб. Разработчик	зсех модулей СТАТИКА/580		Страниц Дата Версия	28.10.2024 2025.000
	Площадь опирания на грунт Периметр сечения сваи	A u	= 1 = 14	
	Коэффициент условий работы с	ваи при γ _с		ии 1.00 -
	Несущая способность сваи $F_{d} = F_{dR} + F_{df} = 483.9 + 60.00$	339.1	= 82	3.0 кН
Условие прочности	$N_0 \gamma_n \gamma_c, g/F_d =$			
T	575.6 * 1.00 * 1.40 /			
	ти давления на грунт боковой			
Комбинация нагрузок	H _X [кН] Н _У [кН] 105.0 0.0	Нагруз	ка (Ко	эффициент) 1 (1.05)
Нагрузка на сваю	$H_x = 26.2 \kappa H$	$H_{\underline{Y}}$	=	0.0 кН
Коэффициент постели		м4] 000	0	С _Z [кН/м3] - 25000
Примечание	Коэффициент постели c_{z} = Kz			
	Условная ширина сваи $b_p=1$. Модуль упругости Жесткость сваи	5d + 50 E EI	= 3	2.5 см 0.00 ГПа 7.52 МНм2
	Коэффициент деформации пр	$lpha_{\epsilon}$ ои К $1lpha_{\epsilon}$	= 5	0.672 1/м 000 кН/м4 3.36 -
	Давление р Пр	едельно	е дав	ление р _и
	-18.2-9.1 0 9.1 18.2 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -4.0 -4.5 5.0		33 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5	66 → pu [кПа]

z [M]

z [M]

Позиция	t580		Страниц	a 618
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/580	Версия	2025.000

Коэффициенты в условии допустимости давления (Б.8)
$$\eta_1 = 1.0 \qquad \eta_2 = 0.400 \qquad \xi = 0.6$$

 η_2 определяется по формуле (Б.9) приложения Б при n = 2.50 - M_C = 78.2 кНм M_{t} = 0.0 кНм

Условие допустимости

р /
$$p_u$$
 = 17.8 / 24.6 = **0.726** <= 1 при z = 0.85 / α_ϵ = 1.27 м

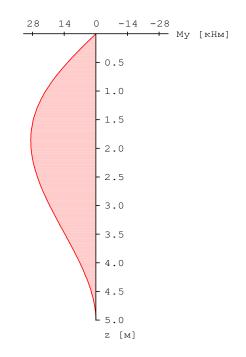
Примечание

Проверка проведена для глубины, указанной в нормах

Проверка прочности материала сваи

Комбинация нагрузок

Номера нагрузок и коэффициенты 1 (1.05)


Нагрузка на куст свай

N	H_{x}	Η _V	M_{\times}	M_{V}
[KH]	[ĸH]	[ĸĤ]	[кНм]	[кНм]
2139.7	105.0			52.5

Нагрузки на сваи

Позиция t580 619 Страница Дата 28.10.2024 Проект СТАТИКА тест всех модулей Разраб. Разработчик **СТАТИКА/580** Версия 2025.000

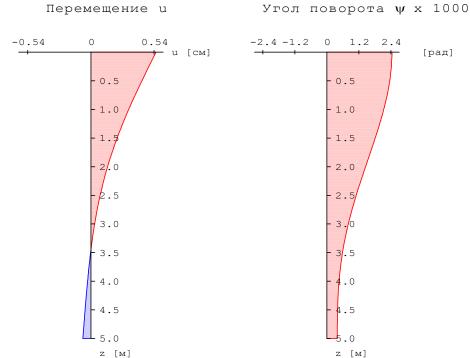
Изгибающий момент

Сжимающая сила

Момент $M_{\rm V}$

$$N_0 / N_{0u} = 558.8 / 1240 = 0.451 <= 1$$

 $M_y / M_{yu} = 28.8 / 63.9 = 0.451 <= 1$

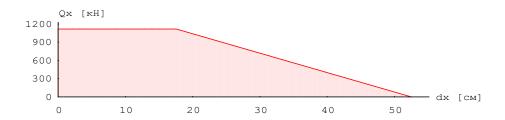

1.86 м при z =

Проверка допустимости перемещения и угла поворота головы сваи

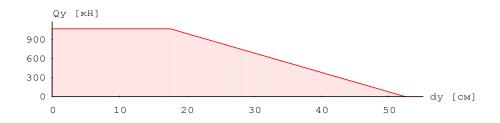
Комбинация нагрузок $\frac{H_{\rm x}$ [кН] 100.0 Η_γ [κΗ] Нагрузка (Коэффициент) 1 (1.00)

Нагрузка на сваю $H_{\rm X}$ = 25.0 кН

 $H_V = 0.0$ KH


Позиция t580 Проект СТАТИКА тест в Разраб. Разработчик	зсех моду		ТИКА/580		Страниі Дата Версия	4a 620 28.10.2024 2025.000
Перемещение	11	0 / u _u		5 / 3.00		0.185 <= 1
Угол поворота				1 / 0.0050		
-		υ . α	- 0.002	, 0.0050	, –	0.407 <- 1
Проверка трещиносто						
	-			сутствует	: зона	растяжения
Проверка допустимос	ги осадок	свай в				
Комбинация нагрузок			Номер	ра нагрузо	ж и ко	оэффициенть 1 (1.00)
Нагрузка на куст свай	N [KH]		آ ء	М _ж «Нм]		М _У [кНм]
на куст свай	2036.1		[F	CIIM		50.0
Модули сдвига и коэфф. Пуассона	G ₁ [МПа] 7.69		v ₁ [-] 0.30	IM]	32 [a] 69	v ₂ [-]
0.00.000.000					N	
Осадка свай	Свая	X [CM]	[C1	и]	[KH]	S [CM]
	1 2	-55.0 55.0	-55. -55.		501.6 547.1	1.68 1.73
	3	-55.0	55.	. 0	501.6	1.68
	4	55.0	55.		547.1	1.73
Условие допустимости			-			0.216 <= 1
Проверка прочности	Сечении	ростверк				
Комбинация нагрузок			номер	оа нагрузс	ж и ко	оэффициенть 1 (1.05)
Нагрузка	N			M _x		My
на куст свай	[KH] 2139.7		[F	сНм]		[кНм] 52.5
Условие прочности	ОСЬ	М [кНм	:]	М _и [кНм]		$M/M_u \ll 1$
	x	391. 374.		683.6 664.1		0.572 <= 1 0.564 <= 1
Проверка ширины рас					INY K	
						0.00
Предельная ширина раскрытия трещин	_		е раскрытие раскрытие	0 - ,		0.30 MM 0.20 MM
Комбинация нагрузок			Номер	а нагрузо	ж и ко	оэффициенть 1 (1.00)
Нагрузка	N	M _×	M _V	Nı	М,	Kl Myl
на куст свай	[ĸH] 2036.1	[кНм]	[кНм] 50.0	[ĸH] 2036.1	_	HM] [KHM] 50.0
Ширина раскрытия	Ось	М	Mı	M _{crc}		c1 a _{c2}
трещин		кНм] 72.2	[кНм] 372.2	[кНм] 194.5	[MI 0.18	
	I	56.3	356.3	191.8	0.18	
Проверка прочности	сечений	ростверк	а, наклон	ных к ося	ижм	У
Комбинация нагрузок			Номер	ра нагрузо	ж и к	эффициенть
						1 (1.05)

По	зиция	t580		Страниц	a 621
Пр	оект	СТАТИКА тест всех модулей		Дата	28.10.2024
Pa	зраб.	Разработчик	СТАТИКА/580	Версия	2025.000


Нагрузка на куст свай

N	M_{X}	M_{V}
[ĸH]	[кНм]	[кНм]
2139.7		52.5

Поперечная сила Qx

Поперечная сила Qy

d - расстояние от колонны вдоль указанной оси

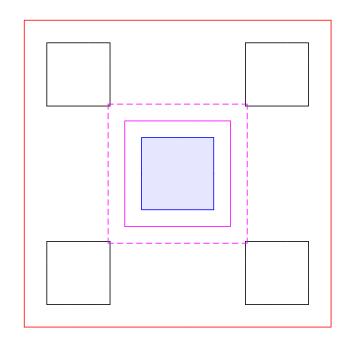
Ось	С	Q	Q _b
	[CM]	[ĸH]	[кН]
X	17.5	1117.6	1614.5
V	17.5	1069.9	1573.2

Условия прочности

$$Q_x$$
 / Q_{bx} = 0.692 <= 1
 Q_y / Q_{by} = 0.680 <= 1

Проверка прочности ростверка на смятие колонной

Комбинация нагрузок $\frac{\text{Номера нагрузок и коэффициенты}}{1 \ (1.05)}$ Сжимающая сила $N=2100 \ \text{кH}$ Предельная сила при отсутствии косвенной арматуры $N_{\rm b}=3974 \ \text{кH}$ Условие прочности $N/N_{\rm b}=0.528 <= 1$


Проверка прочности ростверка на продавливание колонной

 Позиция
 t580
 Страница
 622

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/580
 Версия
 2025.000

Расчетный контур

Расстояние от грани колонны до расчетного контура d = $9.3\,$ см

Средняя рабочая высота $h_0 = 46.3$ см

Периметр и моменты сопротивления контура

u = 585.2 cm $W_x = 11415$ cm2 $W_v = 11415$ cm2

Примечание. Значения u, $W_{\rm x}$, $W_{\rm y}$ определены c учетом h_0 / 2d = 2.50

Комбинация нагрузок

Номера нагрузок и коэффициенты 1 (1.05)

Нагрузка на куст свай

N	$M_{\mathbf{x}}$	M_{V}
[ĸH]	[кНм]	[кHм]
2139.7		52.5

Продавливающая нагрузка

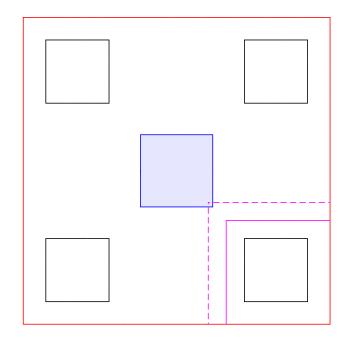
F	M_{x}	My
[ĸH]	[кНм]	[кНм]
2100.0	0.0	0.0

Предельные усилия в бетоне

Fult	$^{ m M}$ x,ult	M _y ,ult
[KH]	[кНм]	[кНм]
2194.7	428.1	428.1

Условие прочности

$$F / F_{ult} + M_x / M_{x,ult} + M_y / M_{y,ult} =$$


$$0.9569 + 0.0000 + 0.0000 = 0.957 <= 1$$

0.9569 + 0.0000 + 0.0000 = 0.957

Проверка прочности ростверка на продавливание угловой сваей

Позиция t580 623 Страница Дата 28.10.2024 СТАТИКА тест всех модулей Проект Разработчик **СТАТИКА/580** Версия 2025.000

Расчетный контур

Расстояние от угловой сваи до расчетного контура d = 10.0 cm

Периметр и моменты сопротивления контура

= 287.5CM W^{λ} $W_x = 2296$ cm2 = 2296 см2

Примечание. Значения u, $W_{\rm x}$, $W_{\rm y}$ определены c учетом h / 2d = 2.50

Комбинация нагрузок

Номера	нагрузок	И	коэффициенты
			1 (1.05)

Нагрузка на куст свай

N	M_{x}	M_{V}
[ĸH]	[кНм]	[кНм]
2139.7		52.5

Продавливающая нагрузка

F	M_{x}	M_{V}
[ĸH]	[кНм]	[кНм]
558.8	73.3	73.3

Предельные усилия в бетоне

F _{ult}	M _x ,ult	M _{y,ult}
[ĸH]	[кНм]	[кНм]
1164.4	93.0	93.0

Условие прочности
$$F$$
 / $F_{ult}+$ M_x / $M_{x,ult}+$ M_y / $M_{y,ult}=$

0.4799 + 0.1200 + 0.1200 = 0.720 <= 1

Вклад моментов ограничен согласно указаниям 8.1.46

Работоспособность фундамента обеспечена

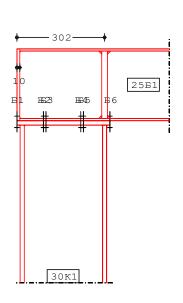
Расчет выполнен модулем 580 программы СТАТИКА 2025 © 000 Техсофт

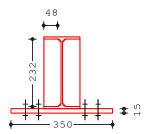
 Позиция
 t670
 Страница
 624

 Проект
 CTATИКА тест всех модулей
 дата
 28.10.2024

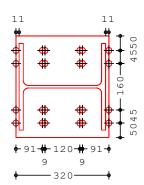
 Разраб.
 Разработчик
 CTATИКА/670
 Версия
 2025.000

Поз. t670


Расчет жесткости болтового узла


Болтовой узел рамы Графика (сечения) Двутавр равнополочный

M = 1 : 52


Вид сбоку

Вид спереди

Вид снизу

Материалы/сечения

Строите	льный элемент	Man	гериал	Сечение
				[mm]
	балки	С	255	2561
	колонны	С	255	30K1
	я плита	С	255	320/350/15
	a	С	255	284/299/10
	e c m k o c m k	C	255	232/ 48/20

 Позиция
 1670
 Страница
 625

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/670
 Версия
 2025.000

Характеристики материалов

Строительный элемент	R _v	R _u	E
	[МПа́]	[M∏a]	[Мпа]
балки	255.0	380.0	206000
колонны	245.0	370.0	206000
я плита	255.0	380.0	206000
a	245.0	370.0	206000
есткости	245.0	370.0	206000

Характеристики профиля

I _v ,	A	W_{V}	Sy
[CM ⁴]	[cm ²]	[cm³]	[cm³]
3537.0	32.68	2852.4	159.7
18850.0	110.80	12651.0	694.6

Болты

Маркировка	A	As	d	R _{bu}	R _{by}
	[mm²]	[mm ²]	[mm]	[МПа]	[MΠa]
	314	245	20	1220000	1100000

Сварные швы

Тип шва

а	n	lw	kf	
		[mm]	[mm]	
алки, наружний	2	124	5	
балки	2	208	5	
алки, внутренний	4	48	5	
а,продольный	2	234	5	
а, поперечный внутренний	í 4	127	5	
а,поперечный наружний	2	299	5	
ест., поперечный	4	30	5	
ест.,продольный	2	196	5	

Стенка	колонны	при	СКВинь	нент к1	K1	tSUB+SUB-		tSUB+SUB-
		А	6			[cm	9	200.9

Стенка колонны при р**Компонент к3**

Ряд

Ряд

וענ	р компон	ент кэ				
	A _V ç	b _{eff}	ω	tw	К3	Ft,wc,Rd
	[cm²]	[mm]		[mm]	[mm]	[ĸH]
	5.16	44.0	0.987	9.0	0.7	55.3
	5.16	426.6	0.529	9.0	6.4	287.7
	5.16	249.1	0.730	9.0	3.8	231.8
	5.16	249.1	0.730	9.0	3.8	231.8
	5.16	426.6	0.529	9.0	6.4	287.7
	5.16	426.6	0.529	9.0	6.4	287.7
	5.16	222.3	0.767	9.0	3.4	217.5
	5.16	222.3	0.767	9.0	3.4	217.5

Изгиб полки

Компонент к4

SUB+SUB-MSUB+SUB-FSUB+SUB**+FSUE+SBB_BEGBMSUB**bellenKopf, [kИзгиб фланцаРОS 28BLD+к5BLD-HOLD 4

gı	ceek>l	. 1 2	α	n ₁	n ₂	₂ m	l _{eff} ,
			[mm]	[mm]	[mm]	[mm]	[mm]
-	_	_	45.0	0.0	7.0	-4.0	-4.0
6	0.13	8.00	45.0	50.0	116.5	449.2	572.0
-	-	-	45.0	50.0	116.5	263.5	263.5
-	_	_	45.0	50.0	116.5	263.5	263.5
6	0.13	8.00	45.0	50.0	116.5	449.2	572.0
-	-	-	45.0	0.0	7.0	-4.0	-4.0
-	-	-	45.0	50.0	116.5	375.0	672.2
L	_	_	45.0	50.0	116.5	375.0	672.2

 Позиция
 t670
 Страница
 626

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/670
 Версия
 2025.000

[k LF-LF-TBL_BEGIN TabellenKopf Ряд М Nm] [kNm] [kN] [kN] [kN] [kN] .06 -0.06 -32.8 -16.4 1076.0 -32.8 556.5 .44 8.20 360.5 1076.0 360.5 3.78 .78 480.5 1076.0 211.4 211.4 211.4 .78 3.78 211.4 480.5 1076.0 . 44 556.5 360.5 8.20 360.5 1076.0 .06 -0.06 -32.8 -16.4 1076.0 -32.8 .38 9.64 300.9 581.2 1076.0 300.9 .38 9.64 300.9 581.2 1076.0 300.9

Полка и стенка балки**Комионент К7**

Ряд

M _{c,Rd}	F _{c,fb,Rd}	
[KHM]	[KH]	
340.4	1198.4	

Стенка балки при рас**Компонент К8**

Ряд l

\sim		AEHT KO	
1	eff,1	F _{t,wb,Rd}	
	449.2	990.6	
	263.5	581.0	
	263.5	581.0	
	449.2	990.6	
	375.0	826.9	
	375.0	826.9	

Коэффициенты	жедткосши	K ₃	K ₄	К ₅	K ₁₀	K _{eff}	
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	
	2.0	0.7	0.1	-35.4	20.1	0.1	
	1.0	6.4	0.6	3.7	20.1	0.5	
	2.0	3.8	0.4	2.2	20.1	0.3	
	2.0	3.8	0.4	2.2	20.1	0.3	
	1.0	6.4	0.6	3.7	20.1	0.5	
	2.0	6.4	0.6	-35.4	20.1	0.5	

Ряд

zea	kea	Si	
ſmm i	[mm]	[MHm/rad]	
02 0	0.8	7 9	
02.0	1 4	12.6	
02.0	⊥.4	13.6	

Проверка соединения Сварное соединение :

 $\eta = M/WR_{wf}\gamma_{c} <=1$

Коэффициент эффективности $\eta_f=1.3$ Коэффициент эффективности $\eta_z=0.9$ Момент сопротивления св.соед W = 353.7 cm 3 Предельный изг. момент балки M = 72.7 kHm Расчетное сопротивлению срезу Rwf = 235.0 МПа

Болтовое соединение при срезе :

 $N_{bs} = R_{bs}A_bn_s\gamma_b\gamma_c$

Расчетное сопротивление	R _{bs}	=	425.0	МПа
Число расчетных срезов болта	n _s	=	1	
Коэффициент условий работы	γ_b	=	1.00	
Коэффициент условий работы	γ _C	=	1.00	
Несущая способность узла	Nbs	=	3202.8	кН
Предельное усилие	N_{max}	=	171.6	кН

 Позиция
 1670
 Страница
 627

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/670
 Версия
 2025.000

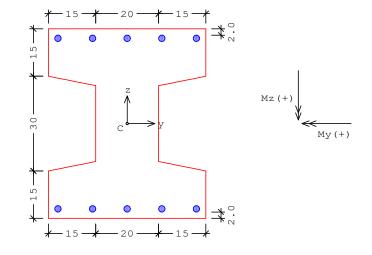
Болтовое соединение при растяжении :

 $N_{bt} = R_{bt}A_{bn}\gamma_c$

Расчетное сопротивление	R _{bt}	=	560.0	МΠа
Коэффициент условий работы	γ _C	=	1.00	
Несущая способность узла	N _{bt}	=	1646.4	кН
Предельное усилие	N_{max}	=	283.6	кН

Классификация узла Болтовое соединение узла рамы :

Момент	инерции	сечения	балки	l_b	=	3537	${ m cm}^4$
Момент	инерции	сечения	стойки	1 _c	=	18850	${ m cm}^4$
Пролет	балки			L_b	=	6.0	M
Высота	колонны			L_{c}	=	4.0	M
Среднее	е значени	re lb/Lb		K_b	=	0.58950	
Среднее	е значени	re lc/Lc		K_{c}	=	4.71250	


Расчет выполнен модулем 670 программы СТАТИКА 2025 © 000 Техсофт

<u>Поз. t671</u>

Предельные кривые ж/б сечения

Сечение

Двутавровое сечение

Ширина ребра	b	= 20	0.0	СМ
Высота сечения	h	= 60	0.0	СМ
Ширина верхней полки	b _{fв}	= 50	0.0	СМ
Толщина верхней полки у к	рая h _{fв1}	= 15	5.0	СМ
у р	ебра h _{fв2}	= 18	8.0	СМ
Ширина нижней полки	b _{fн}	= 50	0.0	СМ
Толщина нижней полки у к	рая h _{fн1}	= 15	5.0	СМ
у р	ебра h _{fн2}	= 18	8.0	СМ
Диаметр арматуры вверху	dsB	= 20	0 :	MM
внизу	d _{sн}	= 20	0 :	MM
Толщина защитного слоя вв		= 20	0 :	MM
ВН	_	= 20	0 :	MM
	- 511			
Общая площадь арматуры	A _{s,tot}	= 31	1.42 c	м2
Коэффициент армирования			1.43	용

Предельно допустимая ширина раскрытия трещин: $_{\rm Henpoдon}$ жительных $_{\rm acrcs}$ = 0.40

MM

Позиция	t671		Страница	628
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/671	Версия	2025.000

продолжительных a_{crcl} = 0.20 MMКоэффициенты безопасности нагрузок: продольной силы $k_{f\,N}$ = 1.00 1.20 изгибающего момента $k_{\mbox{fM}\,\mbox{Y}} =$ изгибающего момента $k_{\text{fM}\,\text{Z}}$ = 1.20 Коэффициенты длительной части нагрузок: 0.90 продольной силы k_{dN} = изгибающего момента $k_{\text{dM}\,\text{Y}}$ = 0.60 изгибающего момента k_{dMz} = 0.60 Диаграмма Му - Nx область допустимых значений при Mz = 0.0 кН*м.

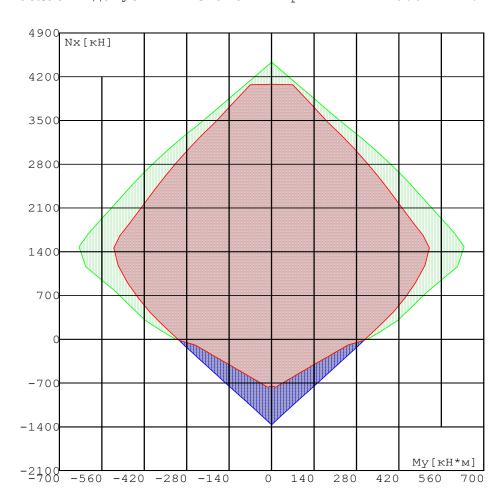


Таблица Му - Nx

М _У [кНм]				N _{x,max} [KH]	
 	1459.4			3406.3	-238.3
-400.0	2301.4	428.9	400.0	2301.4	428.9
-200.0	3406.3	-238.3	520.7	1459.4	
0 0	4078 5	-745 7			

 Позиция
 t671
 Страница
 629

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/671
 Версия
 2025.000

Диаграмма Mz - Nx область допустимых значений при My = 0.0 кH*m.

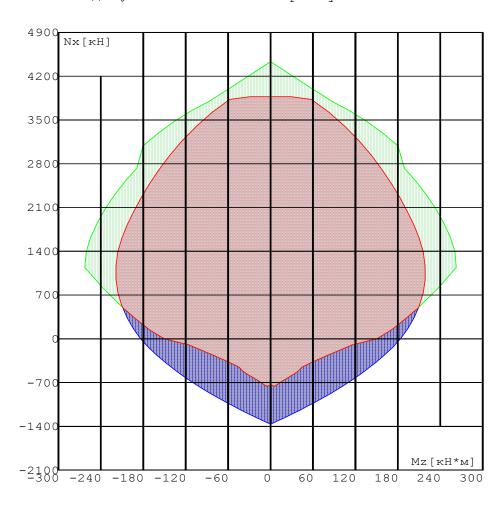


Таблица Mz - Nx

M_{Z}	N _{x,max}			N _{x,max}	
[KHM]	[ĸH]	[KH]	[KHM]	[ĸH]	[KH]
-218.7	950.0		60.0	3811.7	-368.4
-150.0	2821.5	-0.8	130.0	3103.4	-56.4
-80.0	3645.1	-267.5	200.0	1882.9	409.3
-10.0	3871.7	-726.5	218.7	950.0	

 Позиция
 t671
 Страница
 630

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/671
 Версия
 2025.000

Диаграмма Mz - My область допустимых значений при Nx = 50.0 кH.

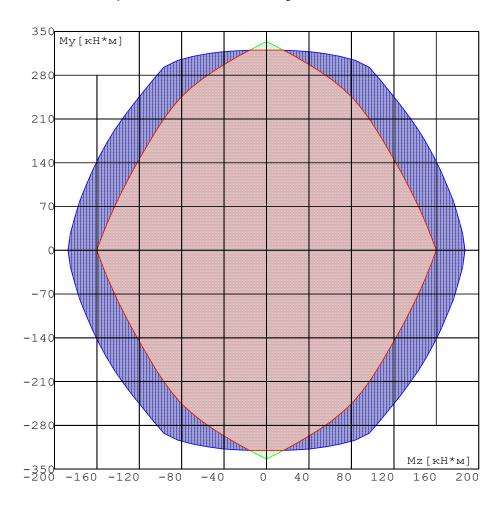
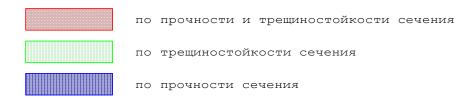
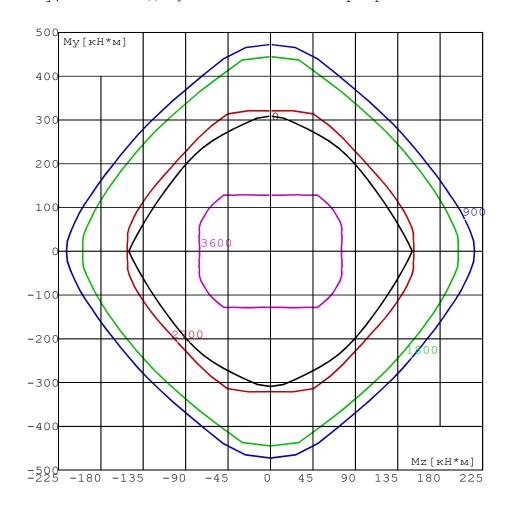



Таблица Mz - Му

М _z [кНм]	М _{у, max} [кНм]	M _{y, min} [кНм]	М _Z [кНм]	М _{у, max} [кНм]	M _{y,min} [кНм]
-160.0	0.0		30.0	307.0	-307.0
-120.0	145.7	-145.7	80.0	245.6	-245.6
-70.0	261.2	-261.2	130.0	114.7	-114.7
-20.0	316.4	-316.4	160.0	0.0	

Примечание:

штриховка областей допустимых значений



 Позиция
 t671
 Страница
 631

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/671
 Версия
 2025.000

Семейство диаграмм Mz-My, область допустимых значений при различных Nx

Расчет выполнен модулем 671 программы СТАТИКА 2025 © ООО Техсофт

[MΠa]

200.0

<u>Поз. t685</u> <u>Проверка устойчивости стенки балки</u>

Отсек стенки	Длина		a	= 500.0	MM
	Высота		h _{ef}	= 500.0	MM
	Толщина		t	= 10.0	MM
Верхний пояс	Ширина		bfB	= 200.0	MM
	Толщина		t _{fB}	= 10.0	MM
Нижний пояс	Ширина		b _{fн}	= 200.0	MM
	Толщина		t _{fн}	= 10.0	MM
Напряжения	$\sigma_{ extsf{x}}$ верх	о [×] нижн	$\sigma_{ m y}$	l _{ef}	τ

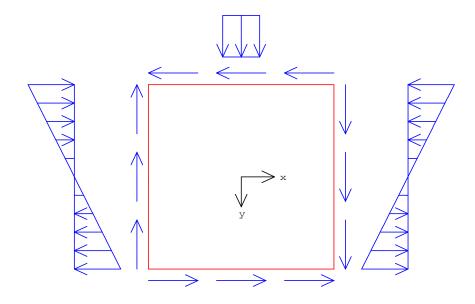
[МПа]

-200.0

[MΠa]

100.0

[MM]


100.0

[МПа]

 Позиция
 t685
 Страница
 632

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/685
 Версия
 2025.000

Расчет Согласно СП 16.13330.2017

Сталь	C 255			
Расчетные сопротивления	R_v	=	240	МΠа
	Rs	=	139	МΠа
Коэффициент условий работы	γ _C	=	1.00	_
Расчетные напряжения	σ	=	200.0	МΠа
	$\sigma_{ t l o c}$	=	100.0	МΠа
	τ	=	50.0	МΠа

a/h _{ef}	λ_{w}	δ	ρ	Ccr	C ₁	c ₂	σ _{cr} [ΜΠα]	σ _{loc,cr}	τ _{cr} [MΠa]
1.00	1.71	0.32	0.21	39.20	15.00	1.56	3230.1	1928.2	866.4

Согласно п. 8.5.5 условие (80) проверяется дважды Значение c_{cr} определено по таблице 16 Значения c_{l} , c_{2} определены при заданном значении а

Проверка по условию (80) 0.128 <= 1.000

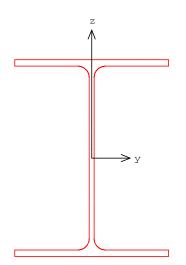
Устойчивость стенки обеспечена

Расчет выполнен модулем 685 программы СТАТИКА 2025 © 000 Техсофт

t690 Позиция 633 Страница 28.10.2024 СТАТИКА тест всех модулей Проект Дата Разработчик **СТАТИКА/690** Версия 2025.000 Разраб.

Поз. t690

Фланцевое соединение


Профиль

Двутавр 40Ш1

FOCT P 57837-2017

МΠа

МΠа

Размеры профиля

h	b	t _w	t _f	r
[MM]	[MM]	[MM]	[MM]	[MM]
383	299	9.5	12.5	22

Характеристики профиля

A	I _V	M^{Δ}	Sy
[см2]	[см4]	[см3]	[см3]
112.9	30550	1595	880.7

Усилия

K	N	M _V	Qz
	[ĸH]	[кНм]	[ĸH]
1	400.0	250.0	50.0

Расчет

Согласно СП 16.13330.2017 с учетом Рекомендаций по расчету фланцевых соединений (ЦНИИПСК, 1989)

C 255 Сталь профиля = 240Расчетные сопротивления R_y = 139

C 255 Сталь фланца

1.000 Коэффициент условий работы γ_{C}

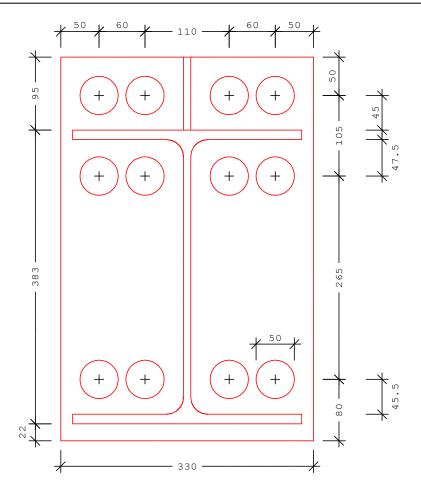
Rs

 d_b Диаметр болтов 24 d_s Наружный диаметр шайб = 50 MM

Минимальное расстояние от профиля до оси болта

 $a_{min} = 40$ MM $R_{bun} = 1078$ МΠа Нормативное сопротивление = 267 Расчетное усилие растяжения кН B_p

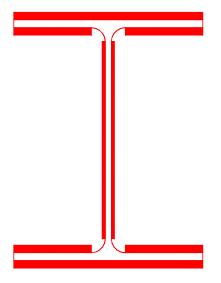
Конструирование фланцевого соединения


Размеры фланца

hφ	bф	tφ	Выступ
[MM]	[MM]	[MM]	[MM]
500	330	20	95

 Позиция
 t690
 Страница
 634

 Проект
 CTATИКА тест всех модулей
 дата
 28.10.2024


 Разраб.
 Разработчик
 CTATИКА/690
 Версия
 2025.000

Проверка прочности сварных швов

Вид сварки	автоматическая сварка
Сопротивление по металлу шва	$R_{wf} = 200$ M Π a
Сопротивление по металлу гран	ицы сплавления
с профилем	$R_{WZ} = 166$ M Π a
с фланцем	$R_{WZ} = 166$ MПа
Коэффициенты для расчета шва	$\beta_f = 0.70$
	$\beta_z = 1.00 -$
Проверка проводится по металл	у сварного шва
Катет шва полки	$k_f = 12$ MM
Катет шва стенки	$k_f = 5$ MM

Позиция t690 635 Страница СТАТИКА тест всех модулей 28.10.2024 Проект Дата Разработчик Версия 2025.000 Разраб. **СТАТИКА/690**

Площадь сечения швов = 107.7см2 A_w = 21.3 A_{wc} Площадь сечения швов стенки см2 = 31582Момент инерции сечения швов I_{VW} см4

Примечание. Расчетные длины швов уменьшены на 10мм

Напряжения в шве полки

= 188.7 $\tau_{\, ext{f}}$ МΠа = 163.1τf МΠа

Условие прочности

 $\tau_f / R_{wf} \gamma_c = 188.7 / 200.0 = 0.944 \le 1$

Проверка прочности фланцевого соединения при действии N, M_{v}

в шве стенки

 $R_{y \oplus} = 240$ МΠа Сопротивление стали фланца

Верхний пояс Усилие в поясе Nf = 874.8

кН

Предельное усилие определяется при помощи формул

 $N_{fp} = 1.8 \cdot B_{p} \cdot (K_{1} + h_{2} / h_{1}) + N_{H} \cdot (n_{H1} + n_{H2} \cdot h_{2} / h_{1})$ $N_{H}^{T} = \min(N_{\Phi}, N_{\delta})$ $N_{\Phi} = 1.3 \cdot (\alpha + 1) \cdot B_{p} / (\mu \cdot \alpha), N_{\delta} = \lambda \cdot B_{p}$ $\lambda = 0.5088 - 0.2356 \cdot \lg(\kappa)$ $\kappa = d_b^2 / w / (t_{\Phi} + d_b / 2) \cdot (b_f / t_{\Phi})^3$ $\mu = 0.9 \cdot B_p \cdot b_f / M, M = w \cdot t_{\Phi}^2 / 6 \cdot R_{y\Phi} \gamma_c$ $b_f = b - k_f^r$ 1.4 · κ · $(\alpha - 1)^3 - \alpha^2 + \mu$ · α · $(\alpha - 1) = 0$

 $h_1 = h_0 + b$, $h_2 = h_0 - a - t_f$, $h_0 = h / (1 - m)$ $m = \sigma_{min} / \sigma_{max}$

b, а - расстояния от осей болтов до граней полки - ширина фланца, приходящаяся на один болт W $\mathrm{n}_{\mathtt{H}\,\mathtt{1}}$, $\mathrm{n}_{\mathtt{H}\,\mathtt{2}}$ - числа болтов наружной зоны

 $K_1 = 0.8$

b	bf	W	к	λ	μ	α
[MM]	[MM]	[MM]	[-]	[-]	[-]	[-]
45.0	33.0	60.0	1.348	0.478	8.245	1.137

σ_{max}	σ_{min}	m	а	h ₀	h ₁	h ₂
[МПа]	МПа] [МПа]		[MM]	[MM]	[MM]	[MM]
192.1	-121.3	-0.63	47.5	234.8	279.8	174.8

 Позиция
 1690
 Страница
 636

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/690
 Версия
 2025.000

Ν _Φ	N _o	n _{н1}	n _{H2}	N _{fp}
[ĸH]	[ĸH]	[-]	[-]	[ĸH]
79.0	127.5	2	2	940.1

Условие прочности

$$N_{f} / N_{fp} = 874.8 / 940.1 = 0.931 <= 1$$

Проверка нижнего пояса не требуется

Проверка прочности фланцевого соединения при действии $Q_{\mathbf{z}}$

Коэффициент трения $\mu = 0.35$ — Усилие в верхнем поясе $N_{\rm f} = 874.8$ кН Усилие в нижнем поясе $N_{\rm f} = -474.8$ кН

Условие прочности $|Q_{\rm Z}|$ / $(\mu|N_{\rm f}|)$ = 50.0 / 166.2 = **0.301** <= 1

Расчет выполнен модулем 690 программы СТАТИКА 2025 © 000 Техсофт

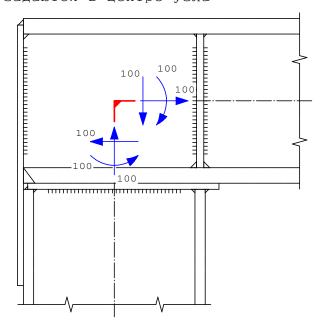
Поз. t692

Болтовой узел рамы

Конструкция Бол

Болтовой Г-образный узел рамы

Ригель


Профи	ль h	b	tw	t _f	R
	MM]] [MM]	[MM]	[MM]	[MM]
25Ш5	274	184	16	26	16

Стойка

Профиль	h	b	tw	t _f	R
	[MM]	[MM]	[MM]	[MM]	[MM]
30K4	304	301	11	17	18

Нагружение

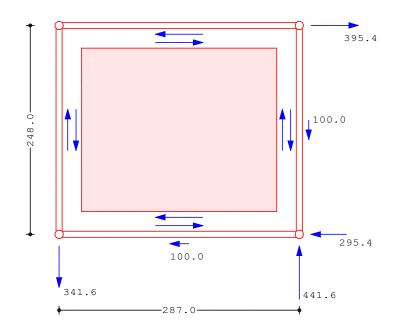
Усилия задаются в центре узла

Усилия

Место	N [ĸH]	М [кНм]	Q [кН]
справ	a 100.0	-100.0	100.0
снизу	-100.0	-100.0	100.0

Позиция	t692		Страниц	a 637
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/692	Версия	2025.000

Расчет	Connague	СП	16.13330.2017
racger	COLMACHO	C_{11}	10.13330.201/


Сталь Расчетное сопротивление Коэффициент условий работы	${f C}$ 255 ${f R}_{f Y}$ = 230 MMa ${f \gamma}_{f C}$ = 1.00 -
Класс прочности болтов Диаметр болтов Диаметр отверстий Диаметр шайб	8.8 $d_{b} = 24$ $d = 25$ $d_{b} = 35$
Вид сварки Расчетные сопротивления	ручная сварка $R_{\text{Wf}} = 200$ МПа $R_{\text{WZ}} = 166$ МПа

Проверка прочности профилей

Сечение	e N	М	Q	σ	τ	$\sigma_{\scriptscriptstyle m V}$	$\sigma/R_{y}\gamma_{c}$	τ/R _s γ _c	$\sigma_{_{ m V}}/{ m R}_{_{ m Y}}\gamma_{_{ m C}}$
	[ĸH]	[кНм]	[ĸH]	[МПа]	[МПа]	[МПа]	_		-
справа	100.0	-84.8	100.0	78.0	26.7	70.3	0.339	0.200	0.306
									0.361

Проверка прочности стенки узла на основе стержневой модели

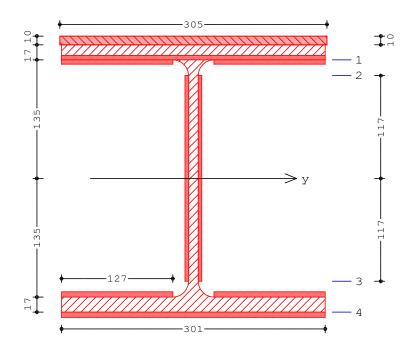
Расчетная модель

Краевые моменты	справа -	100.0	+ 100.	0 *	0.144	=	-85.7	кНм
	снизу -	100.0 -	- 100.	0 *	0.124	=	-112.4	кНм
Касательные силы	сверху, снизу			Τ _в	$=$ T_{H}	=	395.4	кН
	слева, справа			Тл	$=$ T_{Π}	=	341.6	кН
Уд.касательная сила					t	=	1377.6	Н/мм
Условие прочности	Стенка		86.1	/ 13	33.4	=	0.645	<= 1

Проверка прочности ребер жесткости

Нагрузка на ребра

Элемент	F _в	F _н	F _л	F _п
	[кН]	[кН]	[кН]	[кН]
Ригель	-0.0	-441.6		


Позиция t692 Проект СТАТИКА тест Разраб. Разработчик	всех модулей СТАТИКА/692	Страница 638 Дата 28.10.2024 Версия 2025.000
Ребра жесткости ригеля		k _{fпв} k _{fпн} k _{fс} м] [мм] [мм] [мм] 8 5 10 4
Усилия на гранях ребер	[KH] [KH] [K	e ₁ e ₂ e ₂ [MM] [MM] [MM]
Напряжения [МПа]	Ребро	σ _{wv1} σ _{wv2} σ _{wv3} 183.6 151.0 79.8
Условие прочности	Шов полки сверху 79.8 / 20	0.0 = 0.974 <= 1 0.0 = 0.399 <= 1 0.0 = 0.918 <= 1 0.0 = 0.755 <= 1
Проверка прочности	накладки	
Накладка	t [мм] b [мм] 10 305	1 [мм] l _а [мм] 433 170
	Число рядов болтов Число болтов в ряду	$ \begin{array}{rcl} m & = & 2 \\ n & = & 2 \end{array} $
Расстояния	№ До края [мм] 1 50 2 115	Между центрами [мм] 65
	Расстояние до бокового края	а ₂ = 55 мм
	Воспринимаемая сила	F = 346.2 kH
	Площадь сечения нетто	$A_{\rm HT} = 25.5 \text{cm}2$
Условие прочности	Накладка 135.8 / 23	0.590 <= 1
	Катет шва стенки Расчетная длина шва	$k_f = 7$ MM $l_w = 190$ MM
Условие прочности	Шов стенки 185.9 / 20	0.0 = 0.930 <= 1
Условие прочности	Срез болтов 86.5 / 14 Смятие отверстий 86.5 / 10	
Проверка прочности	сварных швов приварки стойки	
Швы стойки	Место Полка слева Полка справа Стенка	k _f [MM] 5 6 4

 Позиция
 t692
 Страница
 639

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/692
 Версия
 2025.000

Сварные швы

Характеристики

Площадь сечения швов Статический момент сечения Момент инерции сечения Площадь сечения швов стенки A = 86.3 CM2 $S_y = 404.9$ CM3 $I_y = 16521$ CM4 $A_c = 13.1$ CM2

Примечание. Для данной формы исполнения при определении характеристик сечения сварных швов учитывается сечение накладки

Усилия

Продольная сила Изгибающий момент Поперечная сила Нормальные напряже

M = -114.7 KHM Q = 100.0 KH

= -100.0

кН

Нормальные напряжения

 $egin{array}{llll} \pmb{\sigma}_1 &=& 60.4 & & \text{M}\Pi\text{a} \\ \pmb{\sigma}_2 &=& 45.7 & & \text{M}\Pi\text{a} \\ \pmb{\sigma}_3 &=& -145.4 & & \text{M}\Pi\text{a} \end{array}$

Касательные напряжения

 $\sigma_4 = -174.0$ MПа = $\tau_3 = 76.3$ МПа

Приведенные напряжения

 σ_{v2} = 88.9 M∏a σ_{v3} = 164.2 M∏a

Условие прочности

Шов полки Шов стенки 174.0 / 200.0 = **0.870** <= 1 164.2 / 200.0 = **0.821** <= 1

Ν

Проверка прочности торцевой плиты стойки

Плита

t	b	h	u _л	ип
[MM]	[MM]	[MM]	[MM]	[MM]
10	305	320	- 7	23

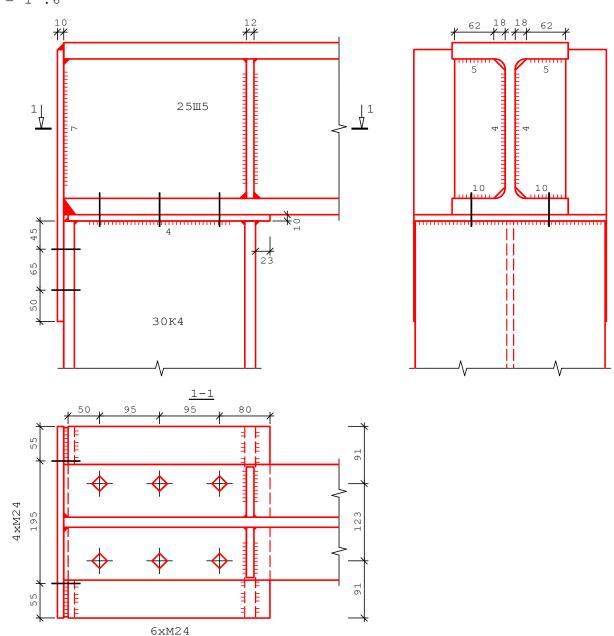
 τ_2

Число рядов болтов Число болтов в ряду $m = 2 \\
 n = 3$

Расстояния

N	у До	края	[MM]	Между	центрами	[MM]
-			50			
2			145			95
3			240			95

Расстояние до бокового края


 $a_2 = 91$

MM

Позиция Проект	t692 СТАТИКА тест	Страни Дата	ща 640 28.10.2024		
Разраб.	Разработчик	СТАТИК	(A/692	Версия	2025.000
Усили	я	Продольная сила Изгибающий момент Поперечная сила	N M Q	= -	100.0 кН 113.7 кНм 100.0 кН
Услов	вие прочности	Срез болтов Смятие отверстий	16.7 / 149.2 16.7 / 105.3	=	0.112 <= 1 0.158 <= 1

Несущая способность узла рамы обеспечена

M = 1 : 6

Спецификация

Ригель 25Ш5 bxh = 184 x 274 мм Стойка 30К4 bxh = 301 x 304 мм Ребро ригеля 2xbxhxt = 80 x 220 x 12 мм, c=18 мм Накладка bxlxt = 305 x 433 x 10 мм Плита стойки bxlxt = 305 x 320 x 10 мм

Расчет выполнен модулем 692 программы СТАТИКА 2025 © ООО Техсофт

t693 Позиция 641 28.10.2024 СТАТИКА тест всех модулей Проект Дата Разработчик **СТАТИКА/693** Версия 2025.000 Разраб.

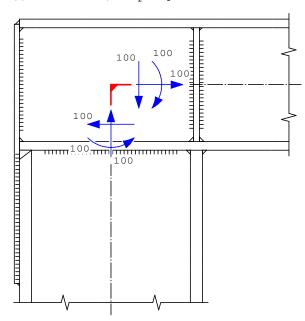
Поз. t693

Сварной узел рамы

Конструкция

Сварной Г-образный узел рамы

Ригель


Профиль	h	b	t _w	t _f	R
	[MM]	[MM]	[MM]	[MM]	[MM]
25Ⅲ3	256	177	10.5	17	16

Стойка

Профиль	h	b	t _w	t _f	R
	[MM]	[MM]	[MM]	[MM]	[MM]
35K4	360	352	15	24	20

Нагружение

Усилия задаются в центре узла

Усилия

Место	N [ĸH]	М [кНм]	Q [кН]
справа	100.0	-100.0	100.0
снизу	-100.0	-100.0	100.0

Расчет

Согласно СП 16.13330.2017

Сталь

C 255 Расчетное сопротивление $R_y = 230$ МΠа Коэффициент условий работы $\gamma_{\rm C} = 1.00$

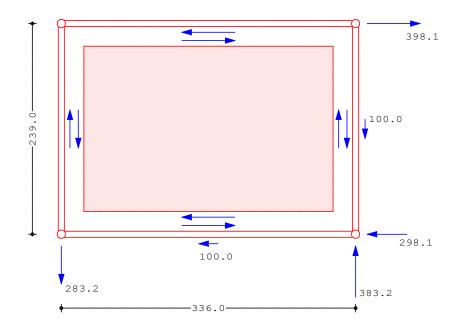
Вид сварки

ручная сварка Расчетное сопротивление $R_{wf} = 200$

Проверка прочности профилей

Сечение	∍ N	M	Q	σ	τ	$\sigma_{\scriptscriptstyle abla}$	$\sigma/R_{V}\gamma_{C}$	$\tau/R_s\gamma_c$	$\sigma_{_{ m V}}/{ m R}_{_{ m V}}\gamma_{_{ m C}}$
	[ĸH]	[кНм]	[ĸH]	[МПа]	[МПа]	[МПа]	2		_
справа	100.0	-82.0	100.0	118.6	42.3	112.4	0.515	0.317	0.489
									0.205

Проверка прочности стенки узла на основе стержневой модели


ООО Техсофт, Москва

 Позиция
 t693
 Страница
 642

 проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/693
 Версия
 2025.000

Расчетная модель

Краевые моменты справа -100.0 + 100.0 * 0.168 = -83.2кНм -100.0 -100.0 * 0.120 = -112.0снизу кНм = T_H Касательные силы T_B 398.1 сверху, снизу = кН $= T_{\Pi}$ 283.2 слева, справа кН = 1184.9Уд.касательная сила Н/мм 112.8 / 133.4 Условие прочности Стенка **0.846** <= 1

Проверка прочности ребер жесткости

 Ребра жесткости
 Ребро t
 :

 ригеля
 [мм] [:

Ребро	t	b	h	С	k _{fпв}	k _{fпн}	k _{fc}
	[MM]	[MM]	[MM]	[MM]	[MM]	[MM]	[MM]
1,2	12	8 0	220	18	5	9	4

Усилия на гранях ребер

Ребро	F ₁	F ₂	F ₃	e_1	e ₂
	[ĸH]	[ĸH]	[ĸH]	[MM]	[MM]
1,2	139.3	31.0	0.0	49.0	220.0

Напряжения [МПа]

Ребро	$\sigma_{ m v1}$	$\sigma_{ m v}$ 2	$\sigma_{\rm v,3}$	σ_{wv1}	σ_{wv2}	σ_{wv3}
1,2	200.7	109.3	72.2	182.7	135.2	71.5

Условие прочности

Ребра 1,2 200.7 / 230.0 = 0.873 <= 1 Шов полки сверху 71.5 / 200.0 = 0.358 <= 1 Шов полки снизу 182.7 / 200.0 = 0.914 <= 1 Шов стенки 135.2 / 200.0 = 0.676 <= 1

Проверка прочности накладки

 Накладка
 t [мм]
 b [мм]
 l [мм]
 la [мм]

 10
 180
 506
 260

Воспринимаемая сила F = 285.7 кН

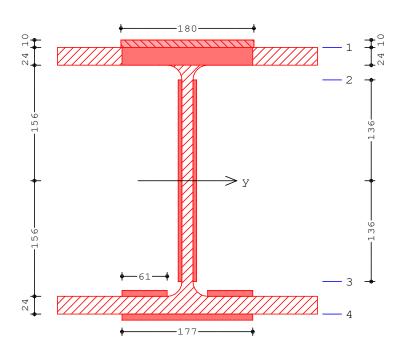
Условие прочности Накладка 158.7 / 230.0 = **0.690** <= 1

Позиция	t693		Страниц	a 643
Проект	СТАТИКА тест всех модулей		Дата	28.10.2024
Разраб.	Разработчик	СТАТИКА/693	Версия	2025.000

Сварные	швы
накладки	1

kfc	l _c	A _C	k _{fπ}	lπ	Ап
[MM]	[MM]	[cm2]	[MM]	[MM]	[см2]
6	190	16.0	5	700	24.5

Условие прочности


Шов стенки ригеля 179.0 / 200.0 = **0.895** <= 1 Шов полки стойки 116.6 / 200.0 = **0.583** <= 1

Проверка прочности сварных швов приварки стойки

Швы стойки

Место		k _f [мм]
Полка слева	Стыковой шов	24
Полка справа		8
Стенка		5

Сварные швы

Характеристики

Площадь сечения швов A = 96.3 Статический момент сечения $S_y = 761.7$ Момент инерции сечения $I_y = 24198$ Площадь сечения швов стенки $A_c = 19.0$

Примечание. Для данной формы исполнения при определении характеристик сечения сварных швов учитывается сечение накладки

Примечание. Длина швов полки ограничена шириной полки ригеля и составляет 177 мм

Усилия

= -100.0Продольная сила Ν кН Изгибающий момент = -112.8Μ кНм 100.0 Поперечная сила кН 56.6 Нормальные напряжения МΠа σ_1 27.4 МΠа σ_2 σ_3 = -153.3МΠа σ_4 = -182.5МΠа $= \tau_3$ Касательные напряжения τ 2 52.5 МΠа Приведенные напряжения 59.2 МΠа $\sigma_{v2} =$ 162.0 МΠа $\sigma_{v3} =$

Условие прочности

Стыковой шов Шов стенки

56.6 / 230.0 = **0.246** <= 1 162.0 / 200.0 = **0.810** <= 1

см2

см3

см4

 Позиция
 t693
 Страница
 644

 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/693
 Версия
 2025.000

Шов полки

182.5 / 200.0

0.913 <= 1

Несущая способность узла рамы обеспечена

M = 1 :7

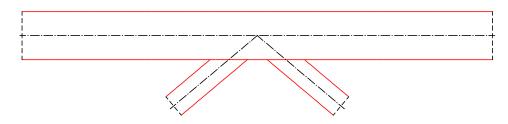
180

Спецификация

Ригель 25Ш3 bxh = 177 x 256 мм Стойка 35K4 bxh = 352 x 360 мм Ребро ригеля 2xbxhxt = 80 x 220 x 12 мм, c=18 мм Накладка bxlxt = 180 x 506 x 10 мм

Расчет выполнен модулем 693 программы СТАТИКА 2025 © 000 Техсофт

 Позиция
 t694
 Страница
 645


 Проект
 СТАТИКА тест всех модулей
 дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/694
 Версия
 2025.000

Поз. t694

Расчёт узла фермы из гнутосварных профилей

Узел К-образный при треугольной решётке

Размеры сечения пояса	Высота Ширина Толщина Площадь	h b t A	=	200 100 8.0 43.24	мм мм мм см2
Размеры сечения элемента решётки	Высота Ширина Толщина Площадь	h b t A	=	100 60 5.0 14.36	мм мм мм см2
	Угол примыкания раскоса к поя	су	=	40	град
<u>Усилия</u>	Расстояние между смежными сте элементов решётки Отношение $g / b = 41.4$	2g /155.6		0.266	MM -
	Продольная сила в поясе со ст элемента решётки	ороны F		100.0	кН
Усилия в раскосе	Продольная сила Изгибающий момент	N M	=		кН кНм
Расчет	Согласно СП 294.1325800.2017,	14.3			
	Сталь пояса Расчетное сопротивление	C 245		230	МПа
	Сталь элемента решётки Расчетное сопротивление	C 245 Ryd		230	МПа
	Коэффициент условий работы	γ _C	=	1.000	_
	Катет сварных швов Сопротивление металла швов Коэффициент для расчета шва	$egin{array}{l} k_{ extsf{f}} \ R_{ extsf{w} extsf{f}} \ oldsymbol{eta}_{ extsf{f}} \end{array}$	= =	4 200 1.00	мм МПа -

Проверка несущей способности стенки пояса

Проверка для раскоса по условию (87) **0.294** <= 1

Проверка несущей способности элемента решётки

Проверка для раскоса по условию (90) при k = 1.000 -

Проверка прочности сварных швов

Проверка для раскоса по условию (92) **0.105** <= 1

Несущая способность узла фермы обеспечена

 Позиция
 t694
 Страница
 646

 Проект
 СТАТИКА тест всех модулей
 Дата
 28.10.2024

 Разраб.
 Разработчик
 СТАТИКА/694
 Версия
 2025.000

Расчет выполнен модулем 694 программы СТАТИКА 2025 © 000 Техсофт